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a b s t r a c t 

This paper presents a numerical method for solving logarithmic Fredholm integral equa- 

tions which occur as a reformulation of two-dimensional Helmholtz equations over the 

unit circle with the Robin boundary conditions. The method approximates the solution 

utilizing the discrete collocation method based on the locally supported thin plate splines 

as a type of free shape parameter radial basis functions. The local thin plate splines es- 

tablish an efficient and stable technique to estimate an unknown function by a small set 

of nodes instead of all points over the solution domain. To compute logarithm-like sin- 

gular integrals appeared in the method, we use a particular nonuniform Gauss–Legendre 

quadrature rule. Since the scheme does not require any mesh generations on the domain, 

it can be identified as a meshless method. The error estimate of the proposed method is 

presented. Numerical results are included to show the validity and efficiency of the new 

technique. These results also confirm that the proposed method uses much less computer 

memory in comparison with the method established on the globally supported thin plate 

splines. Moreover, it seems that the algorithm of the presented approach is attractive and 

easy to implement on computers. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

1. Introduction 

Consider the following two-dimensional Helmholtz equation 

�u (x ) + λ2 u (x ) = 0 , x ∈ D ⊂ R 

2 , (1)

with the Robin boundary condition 

∂u 

∂n x 
+ p(x ) u (x ) = g(x ) , x ∈ ∂D, 

where the region D is open, bounded and simply connected in R 

2 and its boundary is denoted by ∂D , n x denotes the out-

ward unit normal vector on ∂D , p ( x ) and g ( x ) are given functions on ∂D with p ( x ) ≥ 0 but p �≡ 0 , λ is a positive wave number

and the unknown function u (x ) ∈ C 1 ( ̄D ) ∩ C 2 (D ) must be determined. The Helmholtz equations arise from time-harmonic
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wave propagation, and the solutions are frequently required in many applications such as aero-acoustic, underwater acous-

tics, electromagnetic wave scattering and geophysical problems and a large number of papers have presented many numer-

ical methods for solving these equations [9,16,22,36,61] . It can be shown that the Helmholtz equation is uniquely solvable if

λ is not an eigenvalue for the corresponding problem. It is necessary to develop a method which is uniquely solvable for all 

frequencies λ [40] . 

Integral equations have been widely applied in connection with solving boundary value problems for elliptic partial

differential equations [8] . Using Green’s formula, these types of partial differential equations considered on a region in R 

2 

can be reformulated to equivalent integral equations over the boundary of the domain which are often called boundary

integral equations. Afterward, by parameterizing this boundary, two-dimensional partial differential equations are reduced 

to one-dimensional Fredholm integral equations [8] . It is an attractive work to solve partial differential equations which is

known in the literature as the boundary integral equation (BIE) method [6,42,44] . We use the representation 

r (t) = ( cos t , sin t ) , −π ≤ t ≤ π, 

for the unit circle and, by straightforward calculations based on the Greens formula, the Helmholtz Eq. (1) can be charac-

terized by the second-kind Fredholm integral equations with logarithmic kernels [40] 

u (t) − 1 

π

∫ π

−π
K(t, s ) u (s )d s = f (t) , −π ≤ t, s ≤ π, (2)

where the right-hand side function f ( t ) is given and the kernel function K ( t , s ) takes the form 

K(t, s ) = ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣{ 

a 0 + a (t, s ) sin 

2 t − s 

2 

} 

+ b(t, s ) , 

in which a 0 is a constant, a ( t , s ) and b ( t , s ) are continuous functions of ( t , s ) and 2 π periodic in each variable. It should be

noted that we assume u ( t ) ≡ u ( r ( t )) for simplicity in notations. 

Solving analytically logarithmic integral equations are mostly difficult so, it is significant to obtain their numerical so-

lutions. The collocation and Galerkin methods are the commonly used approaches for the numerical solutions of these

integral equations. The discrete Petrov–Galerkin methods [14] , piecewise polynomial collocation and Galerkin methods [53] ,

Sinc-collocation methods [52] , hybrid collocation methods [12] , high-order collocation methods [24] , iterated fast multiscale

Galerkin methods [46] , Bubnov-Galerkin methods [32] , Galerkin-wavelet methods [1,25] and arbitrary collocation points

(ACP) methods [15] have been applied to solve weakly singular Fredholm integral equations of the second kind. The meshless

product integration (MPI) method [5] has been proposed to solve one-dimensional linear weakly singular integral equations.

The Nystrom method has been used to solve weakly singular Fredholm integral equations [8,10] . Also, Khuri and Wazwaz

have investigated Adomian decomposition methods for solving logarithmic Fredholm integral equations [38,66] . The meth-

ods proposed in these papers usually require some quadrature formulae to estimate the singular integrals appeared in these

schemes, such as Gauss-type quadrature rules [25,37] and logarithmical Gaussian quadrature schemes [45] . 

The radial basis functions (RBFs) have significant applications in different problems of computational mathematics [17,18] .

The selection of a parameter in most RBFs, called as the shape parameter, influences heavily on the accuracy and stability

of the method. The optimal value for the shape parameters is still under the study and many authors have been suggested

some alternative schemes, such as the hybrid and binary shape parameter strategies [31] , the local optimization algorithm

[54] , cross-validation techniques [13,56] and the local Taylor expansions [33,34] . Therefore the application of free shape

parameter RBFs such as the thin plate splines (TPSs) is very effective for approximating unknown functions [27,30] . Since

the classical TPSs are global functions, the resultant coefficient matrix will be full and ill-condition when many points in

the domain are considered to achieve high-order accurate results [11,48,64] . To overcome this problem, we can use the

advantages of locally supported TPSs named as local thin plate splines (LTPSs) based on the main idea in the manuscript

[41] for the local multiquadric scheme. In constructing the approximation function by LTPSs at a simple point x in the

computational domain, the only geometrical data needed is the local configuration of nodes fallen within a subset of the

domain which is called the influence domain corresponding to x . A valuable advantage of LTPS approximation is that its

computational cost is modest in comparison with the global types and the matrix operations require only inversion of

matrices of small size which is equal to the number of nodes inside the influence domain [41,55] . 

A large number of papers has presented numerical methods for solving several types of partial differential equations via

locally supported RBFs, such as diffusion-convection problems with phase change [63] , natural convection problems [39] ,

turbulent combined forced and natural convection problems [62] , natural convection under the influence of static mag-

netic field [50] , free surface problems [35] , hyperbolic PDEs [60,65] , coupled Burgers’ equations [59] , multi-dimensional

convection-dominated problems [70] , 2D incompressible Navier–Stokes equations [57] , diffusion equation with Dirichlet

jump boundary condition [69] , large-scale scattered data interpolation problems [68] , the system of second-order bound-

ary value problems [21] , polarized radiative transfer in participating media [58] , thermoelasticity in two dimensions [47] ,

multi-dimensional Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations [19] and simulate conservation laws 

equations [20] . 

We would like to survey some recent numerical methods for solving integral equations utilizing meshless approxima-

tions. The RBFs have been applied for solving Fredholm integral equations on non-rectangular domains with sufficiently

smooth kernels [2] and weakly singular kernels [6] . The meshless product integration (MPI) method [5] has been proposed
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to solve linear weakly singular integral equations. The moving least squares (MLS) collocation method has been used for

solving linear and nonlinear two-dimensional integral equations on non-rectangular domains [4,49] and integro-differential

equations [23] . A local meshless Galerkin method [3] has been utilized to solve weakly singular linear integral equations

of the second kind. An MLS-based scheme [42,44] has been applied to the numerical solution of singular boundary inte-

gral equations [7,43] . Authors of [28,29] have investigated a domain–type RBF collocation method and a boundary–type RBF

collocation method to solve some integro–differential models. 

The main purpose of this paper is to provide a computational method for solving the logarithmic integral Eq. (2) . These

types of integral equations result from boundary value problems of Helmholtz equations over the unit circle with the Robin

boundary conditions. The general framework of the current scheme is based on the collocation method together with LTPSs

constructed on scattered points to estimate the unknown function. The proposed scheme uses a special accurate quadrature

formula based on the nonuniform Gauss–Legendre integration rule on the local influence domain to compute logarithm-like

integrals appeared in the scheme. The new technique does not require any domain elements over the solution region, so

it is meshless. Moreover, we obtain the error bound and the convergence rate of the proposed approach. The presented

scheme developed in the current paper is simple, computationally attractive and more flexible for most classes of logarith-

mic integral equations. The technique obtains more accurate results using much fewer volume computing in compared with

global TPSs. The precision and convergence of the new approach are tested in various logarithmic integral equations. 

The outline of the paper is as follows. In Section 2 , we review some basic formulations and properties of the LTPSs

method. In Sections 3 , we present a computational method for solving the logarithmic integral Eq. (2) by the LTPS scheme

and provide the error analysis for the proposed method. Numerical examples are given in Section 5 . Finally, we conclude

the article in Section 6. 

2. Local thin plate spline 

The one-dimensional TPS φ : R → R of order k ∈ N is represented as follows [67] : 

φ(x ) = (−1) k +1 | x | 2 k log | x | . 
The TPSs of order k are strictly conditionally positive definite functions of degree k + 1 on R [67] . 

We estimate a function u ( x ) by the TPS φ( x ) of order k based on the use of distinct points { x 1 , . . . , x N } in the interval [ a ,

b ] as follows [26,67] : 

u (x ) ≈ P N u (x ) = 

N ∑ 

i =1 

c i φ(x − x i ) + 

k ∑ 

� =0 

d � L � (x ) , a ≤ x ≤ b, (3)

where L � (x ) , � = 0 , 1 , . . . , k, are the well-known Legendre polynomials of the degree � on [ a , b ]. 

The coefficients in the expansion (3) are given by the interpolation conditions 

P N u (x i ) = u (x i ) = u i , i = 1 , . . . , N, 

which results a system of N linear equations in the N + k + 1 unknowns c i and d l , so we consider the following k + 1 addi-

tional conditions to guarantee a unique solution [26] : 

N ∑ 

i =1 

c i L � (x i ) = 0 , � = 0 , 1 , . . . , k. 

We are ready to study the well-posedness of the interpolation problem via TPSs in the following theorem which is retrieved

from a general theorem for strictly conditionally positive definite functions on the domain D ⊂ R 

d , d ∈ N [67] . 

Theorem 2.1 [67] . Let φ be a TPS of order k and the set { x 1 , . . . , x N } give the scattered distinct points on the interval [ a , b ], then

the interpolation problem via TPSs is uniquely solvable. 

To analyze the stability of the TPS method, we require to present a definition from Wendland [67] . 

Definition 2.1 [26] . The separation distance of X = { x 1 , . . . , x N } is given by 

q X = 

1 

2 

min 

i � = j 
| x i − x j | . 

To measure the stability, we define � 2 -condition number for the coefficient matrix A corresponding to the thin plate

splines φ of order k and the data sites X = { x 1 , . . . , x N } ⊂ [ a, b] as follows 

cond (A ) = 

λmax 

λmin 

, 

where λmax and λmin denote the largest and smallest eigenvalues of A [67] . First, use of Gershgorin’s theorem yields during

the time that the data are not too savagely distributed, the increasing λmax will be satisfactory [67] . Therefore, the lower
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bounds for λmin must be found which eventually provides a bound for the condition number of A . The authors of [51] have

established lower bounds for λmin as follows: 

λmin ≥ C d c k (2 M d ) 
−d−2 k q 2 k X , 

where c k , M d and C d are explicit constants. It should be noted that the condition number of the global TPSs grows when

the number of nodal points N increases in the domain to obtain accurate results. 

Suppose [ a i , b i ] = [ x i − r i , x i + r i ] in which r i > 0 is chosen such that the set of them establishes an open bounded cover

for [ a , b ], i.e. 

[ a, b] ⊆
N ⋃ 

i =1 

[ a i , b i ] . 

Adopting a single cover-size r i for all points may lead to various extreme cases. In fact, a too small value of r i often leads to a

cover having too few nodes fallen inside. Vice versa, there may be too many nodes fallen within a nodal cover in the densely

populated zone when r i is too big. In addition, a cover embracing too many nodes will definitely increase the bandwidth of

the resulting matrix regardless of the nodal numbering sequence and hence pushes up the computational cost. To avoid the

occurrence of these extreme scenarios, a strategy of assigning variable cover sizes to different nodes is adopted whenever

non-uniform distribution of nodes is encountered [41] . The cover size r i of the node x i is determined as follows [41] : 

1. Consider the four nearest the nodes x j , j = 1 , 2 , 3 , 4 to x i . 

2. Define 

d i = max 
j=1 , 2 , 3 , 4 

| x i − x j | . 
3. Determine the cover size r i of x i such that r i = ρd i , where ρ is a constant > 1. 

We can estimate the function u ( x ) on [ a i , b i ], i = 1 , . . . , N, as follows: 

u (x ) ≈ R i u (x ) = 

∑ 

j∈ I i 
c i j φ

i (x − x j ) + 

k ∑ 

� =0 

d i � L 

i 
� (x ) , x ∈ [ a i , b i ] , (4)

where I i is the set of indexes corresponding to points fallen within the influence domain [ a i , b i ] (or cover) with the cardinal

number | I i | = n i . 

To ensure the unique solution for the problem (4) , we need to enforce n i interpolation conditions 

R i u (x r ) = u r , r ∈ I i , (5) 

and k + 1 additional equations ∑ 

j∈ I i 
c i j L 

i 
� (x j ) = 0 , � = 0 , 1 , . . . , k. (6)

Similar to the idea presented in the manuscript [41] , we can obtain c i 
k ′ 
� 

, � = 0 , . . . , k from the system (6) as follows: 

c i k ′ � 
= 

∑ 

j ∈ I i , j � = k ′ 
0 
, ... ,k ′ 

k 

α
k ′ � 
j 

c i j , � = 0 , . . . , k, 

where 

α
k ′ � 
j 

= − 1 

L 

i 
� (x k ′ � ) 

( 

� −1 ∑ 

v =0 

c i k ′ v L 

i 
� (x k ′ v ) + L 

i 
� (x j ) −

k ∑ 

v = � +1 

L 

i 
v (x j ) 

L 

i 
v (x k ′ v ) 

) 

, � = 0 , . . . , k. (7) 

Therefore, the expansion (4) can be rewritten as 

R i u (x ) = 

∑ 

j ∈ I i , j � = k ′ 
0 
, ... ,k ′ 

k 

c i j g 
i 
j (x ) + 

k ∑ 

� =0 

d i � L 

i 
� (x ) , x ∈ [ a i , b i ] , (8)

where 

g i j (x ) = φi (x − x j ) + 

k ∑ 

� =0 

α
k ′ � 
j 
φi (x − x k ′ � ) . 

From (7) , we conclude that the additional coefficients d i � , � = 0 , . . . , k can be replaced by c k ′ 
� 
, � = 0 , . . . , k [41] . Thus, the

expansion (8) can be reformulated as 

R i u (x ) = 

∑ 

j∈ I i 
c i j g 

i 
j (x ) . 
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On the other hand, we consider the following matrix form for the linear system (5) as: 

B 

i C 

i = U 

i , 

where 

U 

i = [ u 1 , u 2 , . . . , u n i ] 
T , C 

i = [ c 1 , c 2 , . . . , c n i ] 
T , 

and B 

i = [ g j (x r )] n i ×n i is a real symmetric coefficient matrix. If we define 

ϕ 

i (x ) = [ g 1 (x ) , g 2 (x ) , . . . , g n i (x )] T , (9)

then the expansion R i u (x ) and the matrix B 

i can be expressed as 

R i u (x ) = ϕ 

i (x ) T C 

i . 

From Theorem 2.1 , we know that the matrix B 

i is invertible and so the vector C 

i is obtained by 

C 

i = (B 

i ) −1 U 

i . 

Therefore, it results that [41] 

R i u (x ) = ϕ 

i (x ) T (B 

i ) −1 U 

i = � i (x ) T U 

i , 

or equivalently 

R i u (x ) = 

∑ 

j∈ I i 
u j ψ 

i 
j (x ) , 

where 

ψ 

i 
j (x ) = 

∑ 

k ∈ I i 
[(B 

i ) −1 ] k j g 
i 
k (x ) , j ∈ I i . 

It can be easily proved that the support of ψ 

i 
j 
(x ) is the interval [ a i , b i ] and satisfies the Kronecker delta condition [41] , .i.e.

ψ 

i 
j (x i ) = δi j , i, j ∈ I i , (10)

We explain the LTPS collocation method to approximate a function u ( x ) at an arbitrary point x ∈ [ a , b ] as follows: 

u (x ) ≈ G N u (x ) = 

N ∑ 

i =1 

u i ψ 

i 
i (x ) , x ∈ [ a, b] , (11)

where the functions ψ 

i 
i 
(x ) are called as the shape functions of the LTPS interpolation. 

Since many terms in the expansion (11) will vanish, we can assume that 

G N u (x ) = 

∑ 

i ∈ I x 
u i ψ 

i 
i (x ) , x ∈ [ a, b] , 

where I x = { i : x ∈ [ a i , b i ] } and the influence domain of the point x is D x = ∪ i ∈ I x [ a i , b i ] . 

3. Solution of logarithmic integral equations 

Let K : C([ −π, π ]) → C([ −π, π ]) be the logarithmic singular integral operator as follows: 

Ku (t) = 

∫ π

−π

[ 
ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣{ 

a 0 + a (t, s ) sin 

2 t − s 

2 

} 

+ b(t, s ) 
] 

u (s )d s. (12)

The integral operator K with the logarithmic kernel is a compact operator on C([ −π, π ]) [40] . 

Utilizing the operator (12) , we can rewrite the integral Eq. (2) as 

(I − 1 

π
K) u = f . 

To apply the LTPS method for solving the integral Eq. (2) , we require N nodal points in the interval [ −π, π ] . The distribution

of these nodes could be selected regularly or randomly as 

−π ≤ t 1 < · · · < t N ≤ π. 

Therefore the unknown function u ( x ) can be approximated by the LTPSs as 

u (t) ≈
N ∑ 

i =1 

c i ψ 

i 
i (t) , −π ≤ t ≤ π. (13)
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By replacing the expansion (13) with u ( t ) and pick distinct node points t 1 , t 2 , . . . , t N ∈ [ −π, π ] in the integral Eq. (2) , we

obtain 

N ∑ 

i =1 

c i 

(
ψ 

i 
i (t j ) −

1 

π

∫ π

−π
K 

(
t j , s 

)
ψ 

i 
i (s )d s 

)
= f (t j ) , j = 1 , . . . , N, 

where 

K 

(
t j , s 

)
= ln 

∣∣∣2 sin 

t j − s 

2 

∣∣∣{ 

a 0 + a (t j , s ) sin 

2 t j − s 

2 

} 

+ b(t j , s ) . 

Since the support of the shape functions ψ 

i 
i 
(t) is [ αi , βi ] = [ t i − r i , t i + r i ] and also the shape functions ψ 

i 
i 
(t) satisfy the

Kronecker delta condition from (10) , it leads to 

c j −
1 

π

N ∑ 

i =1 

c i 

∫ βi 

αi 

K 

(
t j , s 

)
ψ 

i 
i (s )d s = f (t j ) , j = 1 , . . . , N, (14)

where 

αi = max {−π, t i − r i } , and βi = min { π, t i + r i } . 
The discrete collocation method results from the numerical integration of all integrals in the system (14) associated with

the collocation method [8] . Therefore, there are two types of integrals to be evaluated as 

I i j = 

∫ βi 

αi 

ln 

∣∣∣2 sin 

t j − s 

2 

∣∣∣{ 

a 0 + a (t j , s ) sin 

2 t j − s 

2 

} 

ψ 

i 
i (s )d s ︸ ︷︷ ︸ 

I i j, 1 

+ 

∫ βi 

αi 

b(t j , s ) ψ 

i 
i (s )d s ︸ ︷︷ ︸ 

I i j, 2 

. 

Since the right-hand side integral I ij ,1 is singular at the point t j , this integral appeared in the scheme cannot be estimated

by classical integration rules, such as commonly Gauss–Legendre quadrature rules. In the following, we present a simple but

efficient quadrature rule from Fang et al. [25] for computing such integrals. 

Now, we present the composite m N -point Gauss–Legendre quadrature rule for weakly singular integrals with M non-

uniform subdivisions. Let h ( s ) be defined on (0, 1) and near s = 0 satisfy 

| h 

(2 m N ) (s ) | ≤ Cs −r−2 m N , for som r ∈ (0 , 1) , (15)

and for all s ∈ (0, 1). Suppose { v k } are the m N zero of the Legendre polynomial of degree m N on [ −1 , 1] and { w k } are weights

for Gauss–Legendre quadrature rule. Then, for any given integer M > 0, we have ∫ 1 

0 

h (s )d s = 

M ∑ 

q =1 

m N ∑ 

k =1 

w k 

�s q 

2 

f (θ q 

k 
) + O( 

1 

M 

2 m N 
) , (16) 

where 

�s q = s q − s q −1 , s̄ q = 

s q + s q −1 

2 

, θ q 

k 
= 

�s q 

2 

v k + s q , 

with s q = ( q M 

) p , p = ( 
2 m N +1 

1 −r ) . 

It is easy to see that the integral I ij ,1 singular along the point t j , so the quadrature rule (16) can not be applied for this

integral. Therefore, we consider the decomposition 

I i j, 1 = 

∫ t j 

αi 

ln 

∣∣∣2 sin 

t j − s 

2 

∣∣∣{ 

a 0 + a (t j , s ) sin 

2 t j − s 

2 

} 

ψ 

i 
i (s )d s 

+ 

∫ βi 

t j 

ln 

∣∣∣2 sin 

t j − s 

2 

∣∣∣{ 

a 0 + a (t j , s ) sin 

2 t j − s 

2 

} 

ψ 

i 
i (s )d s. 

By the following simple change of variables 

x = 

t j − s 

αi − t j 
, and y = 

s − t j 

βi − t j 
, 

the integral I ij ,1 can be written as 

I i j, 1 = ( t j − αi ) 

∫ 1 

0 

H 1 [ i j, x, ψ 

i 
i ]d x + (βi − t j ) 

∫ 1 

0 

H 2 [ i j, y, ψ 

i 
i ]d y, 

where 
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H 1 [ t j , x, ψ 

i 
i ] = ln 

∣∣∣2 sin 

(t j (αi − t j ) x ) 

2 

∣∣∣
{

a 0 + a (t j , t j − x (αi − t j )) sin 

2 (t j (αi − t j ) x ) 

2 

}
ψ 

i 
i (t j − x (αi − t j )) , 

and 

H 2 [ t j , y, ψ 

i 
i ] = ln 

∣∣∣∣2 sin 

(βi − t j ) y 

2 

∣∣∣∣
{

a 0 + a (t j , t j − y (αi − t j )) sin 

2 (βi − t j ) y 

2 

}
ψ 

i 
i (t j − y (αi − t j )) . 

By this representation of the integral I ij ,1 , the functions H 1 [ i j, x, ψ 

i 
i 
] and H 2 [ i j, y, ψ 

i 
i 
] satisfy the condition (15) for any posi-

tive integer m N and for any small positive number r , since it has the weakly singularity in x = 0 and y = 0 [25,37] . Now, the

numerical integration rule (16) can be applied in these integrals, so 

I i j, 1 = 

M ∑ 

q =1 

m N ∑ 

k =1 

w k 

�x q 

2 

F 1 [ t j , θ
q 

k 
, ψ 

i 
i ] + O( 

1 

M 

2 m N 
) , (17)

where 

F 1 [ t j , θ
q 

k 
, ψ 

i 
i ] = ( t j − αi ) H 1 [ t j , θ

q 

k 
, ψ 

i 
i ] + (βi − t j ) H 2 [ t j , θ

q 

k 
, ψ 

i 
i ] . 

On the other hand, to approximate the integral I ij ,2 , we use the composite m N -point Gauss–Legendre rule with M uniform

subdivisions relative to the coefficients { v � } and weights { w � } in the interval [ −1 , 1] as 

I i j, 2 = 

�x i 
2 

M ∑ 

p=1 

m N ∑ 

� =1 

w � b(t j , τ
p 
�,i 

) ψ 

i 
i (τ

p 
�,i 

) + O( 
1 

M 

2 m N 
) , (18)

where �x i = 

βi −αi 
M 

and τ p 
�,i 

= 

�x i 
2 v � + (p − 1 

2 )�x i . 

Utilizing the quadrature formulae (17) and (18) , for all integrals in the system (14) , the following system is obtained 

ˆ c j −
1 

π

N ∑ 

i =1 

ˆ c i 

( 

M ∑ 

q =1 

m N ∑ 

k =1 

w k 

�x q 

2 

F 1 [ t j , θ̄
q 

k 
, ψ 

i 
i ] + 

�x i 
2 

M ∑ 

p=1 

m N ∑ 

� =1 

w � b(t j , τ
p 
�,i 

) ψ 

i 
i (τ

p 
�,i 

) 

) 

= f (x j ) , (19)

A sequence of numerical integral operators K N , N ≥ 1 on C [ a , b ] is also introduced by 

K N u (t) = 

M ∑ 

q =1 

m N ∑ 

k =1 

w k 

�h q 

2 

F 1 [ t, θ
q 

k 
, u ] + 

�x i 
2 

M ∑ 

p=1 

m k ∑ 

� =1 

w � b(t j , τ
p 
�,i 

) u (τ p 
�,i 

) . 

It should be noted that {K N } is a collectively compact family that is pointwise convergent [25] and there is the constant

C N > 0 such that 

‖Ku − K N u ‖ ≤ C N 
M 

2 m N 
sup 

−π≤t≤π
| u 

(2 m N ) (t) | , u ∈ C (2 m N ) [ −π, π ] . (20)

We can rewrite the system (19) in the operator form as 

(I − 1 

π
G N K N ) ̂  u N = G N f, 

where the solution ˆ u N is gotten by the proposed scheme which is obtained by solving this system for { ̂ c 1 , . . . , ̂  c N } . Thus, by

solving this system, the values of u ( t ) can be evaluated by 

ˆ u N (t) = 

N ∑ 

i =1 

ˆ c i ψ 

i 
i (t) . 

We define the iterated discrete collocation solution by 

ū N = f + 

1 

π
G N K N ̂  u N . (21)

Then it is easily seen that 

G N ̄u N = 

ˆ u N , 

and consequently 

(I − 1 

π
K N G N ) ̄u N = f . 

We give the following theorem from Atkinson [8] about the error analysis of iterated collocation method. 
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Theorem 3.1 [8] . Assume that V is the framework of some complete function space on [ a , b ] and 

A1. {Q N } is a family of interpolatory projection operators on V to V N ⊂ V and Q N u → u as N → ∞ for all u ∈ V. 

A2. {K N } is a collectively compact family on V and pointwise convergent for all u ∈ V. 

A3. ū N is a unique solution of the equation (I − λK N Q N ) ̄u N = f, where λ is a positive constant. 

Then (I − λK N Q N ) 
−1 exists for all sufficiently large N , say N > M̄ , and is uniformly bounded. 

Now, we are ready to obtain the error estimate and the convergence rate of the new scheme based on the use of

Theorem 3.1 . But before that, the error estimate of LTPs interpolation is presented in terms of the fill distance parame-

ter which is defended as follows: 

Definition 3.1. For a set of points X = { x 1 , . . . , x N } ⊂ [ a, b] , the fill distance of X is described by 

h X, [ a,b] = sup 

a ≤x ≤b 

min { | x − x i | : i = 1 , . . . , N } . 
Also, we call also the set X as a quasi-uniform set corresponding to a constant c > 0 if 

q X ≤ h X, [ a,b] ≤ cq X . 

Now the error analysis of the global TPS interpolation is described which mostly follows from Wendland [67] . 

Theorem 3.2 [67] . Let u ( x ) be in the Sobolev space W 

2 k 
2 

(R ) and the set X = { x 1 , . . . , x N } ⊂ [ a, b] consist of distinct points on the

interval [ a , b ] . Then there exist constants h 0 , C > 0 such that 

‖ u − P N u ‖ ∞ 

≤ Ch 

2 k −1 
X, [ a,b] 

‖ u 

(k ) ‖ L 2 [ a,b] , 

provided that h X ,[ a , b ] ≤ h 0 . 

As a conclusion from Theorem 3.2 , there exist constants h 0, x , C x > 0 such that 

‖ u − G N u ‖ ≤ C x h 

2 k −1 
I x ,D x 

| u | L 2 (D x ) , x ∈ D x , 

provided h I x ,D x ≤ h 0 ,x . Therefore, by considering 

h̄ X, [ a,b] = max 
x ∈ [ a,b] 

h I x ,D x , 

so that h X, [ a,b] ≤ h̄ X, [ a,b] , we have 

‖ u − G N u ‖ ≤ C̄ ̄h 

2 k −1 
X, [ a,b] 

‖ u ‖ a,b , x ∈ [ a, b] , 

where 

C̄ = max 
x ∈ [ a,b] 

C x , and ‖ u ‖ a,b = max ‖ u ‖ L 2 (D x ) . 

Let u 0 ∈ W 

2 k 
2 

[ −π, π ] ∩ C 2 m N [ −π, π ] be a unique exact solution of the logarithmic integral Eq. (2) . Assume the method has

been installed on the quasi-uniform set X on the interval [ −π, π ] , then G N u → u as N → ∞ based on the error bound (3).

Theorem 3.1 find that ū N is a solution of the iterated method and there exists M̄ > 0 such that (I − 1 
π K N G N ) −1 exists for

every N ≥ M̄ and bounded, namely 

‖ (I − 1 

π
K N G N ) −1 ‖ < γ1 . 

This yields that 

‖ ̄u N − u 0 ‖ ∞ 

≤ γ1 ‖Ku 0 − K N G N u 0 ‖ ∞ 

. 

By considering ˆ u N = G N ̄u N , it results that ˆ u N is a solution for the new scheme, because by taking P N from both sides of

Eq. (21) , we obtain 

G N ̄u N = G N f + 

1 

π
G N K N ̂  u N ⇒ (I − 1 

π
G N K N ) ̂  u N = G N f . 

The existence and boundedness of (I − 1 
π K N G N ) −1 eventuate forthwith the existence and boundedness of (I − 1 

π G N K N ) 
−1 

[8] , since 

(I − 1 

π
G N K N ) 

−1 = λ
[ 

I − G N (I − 1 

π
K N G N ) −1 K N 

] 
, ˆ M ≥ M̄ ≥ N. 

This results that ˆ u N is a unique solution for the presented method. From the pointwise convergence of {K N } (see [8] , Theo-

rem A.3), we can assume that ‖K N ‖ ≤ γ2 . On the other hand 

‖ ̂

 u N − u 0 ‖ ∞ 

≤ γ1 γ2 ‖ u 0 − G N u 0 ‖ ∞ 

+ γ1 ‖Ku 0 − K N u 0 ‖ ∞ 

. 
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Considering h̄ ≡ h̄ X, [ −π,π ] and using (20) and (3), we obtain 

‖ ̂

 u N − u 0 ‖ ∞ 

≤ γ1 γ2 ̄C ̄h 

2 k −1 ‖ u ‖ −π,π + 

γ1 C N 
M 

2 m N 
sup 

−π≤t≤π
| u 

(2 m N ) 
0 

(t) | . (22)

Remark 1. The error bound (22) results that the error of the scheme presented in the current paper appertains to the error

of the m N -point numerical integration method and the LTPS error. It is concluded that for sufficiently large integration nodes

the error of the LTPS is dominated by the error of integration rule. Therefore increasing m N has no important effect on the

global error and the approximation order of the proposed method will be of O( ̄h 2 k −1 ) . Moreover, utilizing weaker norms

i.e., L 2 -error to measure the error, we can improve the convergence order which will be of order O( ̄h 2 k +2 ) . But the order

of accuracy near the endpoints is of O( ̄h k + 
1 
2 ) for general smooth data functions which this fact is effective on the global

error [11] . 

4. Numerical examples 

To test the efficiency and accuracy of the proposed method, four logarithmic Fredholm integral equations are solved.

We apply LTPSs with different orders by adding fixed polynomials in the method. In illustrative examples, we put ρ = 2

[41] . We employ 5-points composite Gauss–Legendre quadrature rule with M = 5 for approximating integrals in the scheme.

The error bound (22) shows that for a sufficiently large number of integration points, the error of the LTPS interpolation

is dominated over the quadrature error. Therefore, increasing the number of nodes in the numerical integration method

has no significant effect on the error. We also compare the results obtained in Examples 4.2 and 4.4 with the meshless

discrete Galerkin (MDG) method [3] . The MDG is a technique for solving logarithmic integral equations which is based on

the moving least squares by combining the Galerkin method. For the tests in the MDG method, we used the linear (q = 1)

and quadratic (q = 2) basis functions and the Gaussian weight functions [3] . The following conclusions have been given in

comparison with numerical results: 

� The obtained results by the scheme presented in the current paper are better than the results given by the MDG

method. 

� The convergence rates of the proposed scheme are higher than the convergence rates of the MDG method. 

� The CPU times of the method presented in the current paper are lower than the MDG method. 

� Since determining the shape functions of the moving least squares requires computing an inverse matrix in each step,

the algorithm of the method is simpler than the MDG method. 

We have measured the accuracy of the presented technique by the maximum error ‖ e N ‖ ∞ 

and the mean error ‖ e N ‖ 2
which can be defined as follows: 

‖ e N ‖ ∞ 

= max 
−π≤t≤π

{| u ex (t) − ˆ u N (t ) |} , ‖ e N ‖ 2 = 

(∫ π

−π
| u ex (t ) − ˆ u N (t ) | 2 d t 

) 1 
2 

, 

where the exact solution u ex ( t ) is estimated by the numerical solution ˆ u N (t) obtained in the current paper. The convergence

rate of the presented scheme has been also reported by 

Ratio = 

ln (‖ e N ‖ ∞ 

) − ln (‖ e N ′ ‖ ∞ 

) 

ln ( ̄h 

′ 
X 
) − ln ( ̄h 

X 
) 

. 

We have written all routines in “Maple” software (with the Digits environment variable assigned to be 20) and a Laptop

equipped with 2.10 GHz of Core 2 CPU and 4 GB of RAM has been used to run these. To solve the final linear system of

algebraic equations the “LinearSolve” command from “Linear Algebra” package has been employed. 

Example 4.1. Consider the following logarithmic integral equation: 

u (t) − 1 

π

∫ π

−π

[ 
ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣{ 

1 + e ts sin 

2 t − s 

2 

} 

+ 

1 

s 2 + t 2 + 1 

] 
u (s )d s = f (t) (23)

where the function f ( t ) has been so chosen that the exact solution is 

u ex (x ) = cosh 

(
1 

t 2 + 7 t + 1 

)
. 

The classical methods to numerically solve these types of singular integral equations have deficiencies, but this problem

can be easily solved via the local meshless method presented in this work based on some random nodes on the interval

[ −π, π ] . Table 1 reports ‖ e ‖ ∞ 

, ‖ e ‖ 2 and the values of the ratio at different numbers of N and k . We also compared the

obtained errors for k = 1 , 2 , 3 , 4 and different numbers of N in Fig. 1 drawn in the logarithmic mode. It is seen that the

obtained numerical results converge to the exact values along with the increase of the nodes N and the convergence rates

grow by increasing the order k . All results have confirmed the theoretical error estimate. 
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Table 1 

Some numerical results for Example 4.1. 

N k = 1 k = 2 k = 3 

‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 4.97e-03 1.38e-02 1.57e-05 4.41e-05 5.11e-08 1.43e-07 

50 1.90e-03 5.36e-03 3.50e-06 9.86e-06 7.06e-09 1.94e-08 

60 7.82e-04 2.18e-03 9.01e-07 2.52e-06 1.19e-09 3.25e-09 

70 3.15e-04 8.67e-04 2.39e-07 6.56e-07 2.44e-10 5.93e-10 

80 1.16e-04 2.99e-04 6.23e-08 1.55e-07 5.82e-11 1.23e-10 

90 3.76e-05 7.96e-05 2.13e-08 4.18e-08 2.03e-11 2.45e-11 

Fig. 1. Distribution of absolute error for Example 4.1. 

Table 2 

Some numerical results for Example 4.2. 

N k = 1 k = 2 k = 3 

‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 6.45e-04 1.75e-03 8.50e-06 2.37e-05 1.18e-07 3.29e-07 

50 1.68e-04 4.20e-04 1.19e-06 3.38e-06 1.08e-08 2.91e-08 

60 4.90e-05 1.04e-04 1.97e-07 5.48e-07 1.29e-09 3.25e-09 

70 1.13e-05 2.38e-05 3.28e-08 8.90e-08 2.21e-10 3.97e-10 

80 2.69e-06 6.40e-06 5.04e-09 1.18e-08 4.74e-12 8.12e-11 

90 5.46e-07 1.26e-06 3.83e-10 1.54e-09 9.57e-12 2.08e-11 

 

 

 

 

 

 

Example 4.2. Consider the following logarithmic integral equation: 

u (t) − 1 

π

∫ π

−π

[ 
ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣{ 

π + 

t + s 

t + s + π
sin 

2 t − s 

2 

} 

+ cos s + t + 1 

] 
u (s )d s = f (t) (24) 

where the function f ( t ) has been so chosen that the exact solution is 

u ex (x ) = 

√ 

t 3 + t + π. 

Table 2 reports ‖ e ‖ ∞ 

, ‖ e ‖ 2 and the values of the ratio at different numbers of N and k . We also solve the integral

Eq. (24) utilizing the MDG method and the numerical results are given in Table 3 . As we can see, the results gradually

converge to the exact values as the number of nodes increases. The obtained errors for different numbers of N are drawn in

the logarithmic mode in Fig. 2 . We have compared the CPU times (sec.) for solving this integral equation using global and

local TPSs and MDG for different numbers of N in Fig. 3 . It is clear that the CPU times for the proposed method are much

lower than the CPU times for the global RBF and MDG schemes. This comparison confirms that the new scheme is faster

than the mentioned methods. 
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Table 3 

Some numerical results for Example 4.2 using the MDG method. 

N q = 1 q = 2 

δ ‖ e N ‖ 2 ‖ e N ‖ ∞ δ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 0.051 1.64e-04 3.08e-04 0.077 9.62e-06 1.82e-05 

50 0.041 1.05e-04 1.97e-04 0.061 4.94e-06 9.29e-06 

60 0.034 7.28e-05 1.36e-04 0.051 2.89e-06 5.43e-06 

70 0.029 5.44e-05 1.02e-04 0.043 1.86e-06 3.42e-06 

80 0.025 4.21e-05 7.73e-05 0.038 1.26e-06 2.31e-06 

90 0.022 3.34e-05 6.11e-05 0.034 8.72e-07 1.62e-06 

Fig. 2. Distribution of absolute error for Example 4.2. 

Fig. 3. CPU times for Example 4.2. 
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Table 4 

Some numerical results for Example 4.3. 

N k = 1 k = 2 k = 3 

‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 5.85e-02 1.62e-01 3.73e-04 1.04e-03 2.43e-06 6.82e-06 

50 2.28e-02 6.43e-02 8.51e-05 2.39e-04 3.42e-07 9.51e-07 

60 9.51e-03 2.65e-02 2.21e-05 6.17e-05 5.96e-08 1.61e-07 

70 3.85e-03 1.06e-02 5.95e-06 1.63e-05 1.22e-08 2.99e-08 

80 1.42e-03 3.70e-03 1.56e-06 3.91e-06 2.94e-09 6.16e-09 

90 4.50e-04 9.52e-04 5.37e-07 1.05e-06 1.02e-09 2.25e-09 

Table 5 

Some numerical results for Example 4.4. 

N k = 1 k = 2 k = 3 

‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 2.36e-02 6.57e-02 9.74e-05 2.72e-04 4.11e-07 1.15e-06 

50 9.12e-03 2.56e-02 2.18e-05 6.15e-05 5.67e-08 1.57e-07 

60 3.76e-03 1.05e-02 5.64e-06 1.57e-05 9.77e-09 2.65e-08 

70 1.51e-03 4.18e-03 1.50e-06 4.12e-06 1.99e-09 4.85e-09 

80 5.61e-04 1.45e-03 3.12e-07 9.83e-07 4.79e-10 1.01e-09 

90 1.79e-04 4.21e-04 1.34e-07 2.64e-07 1.66e-10 3.65e-10 

Fig. 4. Distribution of absolute error for Example 4.3. 

 

 

 

 

Example 4.3. Consider the following logarithmic integral equation: 

u (t) − 1 

π

∫ π

−π

[ 

ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣
{ 

2 

3 

+ 

√ 

1 

t + s + 3 

sin 

2 t − s 

2 

} 

+ 

7 

2 

t + 1 

] 

u (s )d s = f (t) (25) 

where the function f ( t ) has been so chosen that the exact solution is 

u ex (x ) = ln 

(
2 π + 

1 + t 

t 2 + π

)
. 

Table 4 reports ‖ e ‖ ∞ 

, ‖ e ‖ 2 and the values of the ratio at different numbers of N and k . Apparently, the method provides

accurate numerical solutions for the logarithmic integral equation. Although the error near the boundary occasionally in-

creases which consequently effects on the maximum error, but the ratio of error increases by selecting a bigger value for

the order k . We also compared the obtained errors for the different numbers k and N in Fig. 4 drawn in the logarithmic

mode. The error bound (22) justifies the results converge to the exact solution when N → ∞ with the high order. 
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Fig. 5. Distribution of absolute error for Example 4.4. 

Fig. 6. CPU times for Example 4.4. 

 

 

 

 

 

Example 4.4. Consider the following logarithmic integral equation: 

u (t) − 1 

π

∫ π

−π

[ 
ln 

∣∣∣2 sin 

t − s 

2 

∣∣∣{ 

sinh 

t + s 

2 

sin 

2 t − s 

2 

} 

+ ln (t + 10) 
] 

u (s )d s = f (t) (26)

where the function f ( t ) has been so chosen that the exact solution is 

u ex (x ) = 

te t 

t 2 + e 
. 

Table 4 reports ‖ e ‖ ∞ 

, ‖ e ‖ 2 and the values of the ratio at different numbers of N and k . We also solve the integral

Eq. (26) utilizing the MDG method and the numerical results are given in Table 6 . The obtained errors for different numbers

of N are drawn in the logarithmic mode in Fig. 4 . We have compared the CPU times (sec.) for solving this integral equa-

tion using global and local MDG and MDG approach for different numbers of N in Fig. 5 . These results show the presented
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Table 6 

Some numerical results for Example 4.4 using the MDG method. 

N q = 1 q = 2 

δ ‖ e N ‖ 2 ‖ e N ‖ ∞ δ ‖ e N ‖ 2 ‖ e N ‖ ∞ 
40 0.051 4.52e-03 8.49e-03 0.077 1.15e-04 2.16e-04 

50 0.041 2.96e-03 5.44e-03 0.061 5.86e-05 1.12e-04 

60 0.034 1.98e-03 3.79e-03 0.051 3.41e-05 6.52e-05 

70 0.029 1.51e-03 2.76e-03 0.043 2.17e-05 4.16e-05 

80 0.025 1.14e-03 2.11e-03 0.038 1.43e-05 2.78e-05 

90 0.022 8.86e-04 1.65e-03 0.034 9.94e-06 1.93e-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method in the current paper, in comparison with the method based on the globally supported RBFs and MDG for solving

logarithmic integral equations, uses much less computer memory and times ( Fig. 6 ). 

5. Conclusion 

This article has studied an efficient technique for numerically solving a class of Fredholm integral equations of the sec-

ond kind with logarithmic-singular kernels. These types of integral equations result from boundary value problems of two-

dimensional Helmholtz equations with the Robin boundary conditions. The method uses locally supported thin plate splines

constructed on scattered points as a basis in the discrete collocation method. The singular integrals occurred in this method

have been computed utilizing a composite non-uniform Gauss–Legendre integration rule. We have also investigated the er-

ror estimate of the new approach. The proposed scheme has been constructed on a set of scattered data and does not

require any background meshes, so it is meshless. As demonstrated by the numerical results, the proposed technique is able

to produce accurate solutions with the low CPU time for various types of logarithmic integral equations. 
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