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1. Introduction

Digital images are generally corrupted by artefacts, acquisition processes or noise which require effective reconstruction
strategies in order to recover important information. The image reconstruction problem is usually formulated as an inverse
problem and, in different forms (denoising, filtering, restoration, segmentation, etc.) it arises in various research areas, such
as physics, optics, biomedical imaging. In the last years several numerical strategies have been specifically designed for
handling, with very different approaches, image reconstruction problems (see for example [2-4,14,18,19,22,29]). The adoption
of high performance computing environments in order to deal with the computationally very demanding real applications
has been investigated in several works [12,13,21,24].

Our paper is concerned with the efficient numerical solution of the image denoising problem. In image processing a
general regularization model can be formulated as

u* 1= argmin|¥ (u)| + H(u), (M

where |-| is a norm and the convex functions W(u) and H(u) are, respectively, the regularization and the fidelity terms. In
practice, u generally denote the column vector ue %N by lexicographical ordering of a two-dimensional image and u* e N is
a vector which represents the sought image. Furthermore when |-| is chosen as the ¢;-norm, (1) becomes the classical ¢;-
regularization problem. A special case of (1) is the Rudin-Osher-Fatemi Total Variation (TV-ROF) [25] minimization approach
to image denoising

ut = arglljflirlIIVth +llu— I3, (2)
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in which an image u* is recovered starting form its noisy version f, and where Vu is the gradient of u. A theoretical analysis
of this scheme has been proposed by Chambolle and Lions in[11]. The model (2) deals properly with edges and noise
removing in gray-scale images and the TV term discourages the solution from having oscillations. Neverthless, despite these
nice features, the overall effectiveness of (2) is limited by two main drawbacks:

- it supplies piecewise constant images: smooth regions in original image are recovered as piecewise smooth regions (stair-
casing effect);
- it suffers from the non-linearity and non-differentiability of the TV term.

In order to overcome these difficulties several strategies have been proposed [4,26]. The most commonly used approach
consists in modifying the cost function, by adding a penalty terms R(u) in (2), thus defining the new model

u* = argmin||Vull; + lu — flI3 + R(u). (3)
u

Generally, the choice of R(u) depends on the kind of “a priori” information available on the problem to be solved. Recent
studies confirm the advantages of combining TV filter with higher-order differential operators to avoid the well-known
staircasing effect induced by TV norm, preserving at the same time the image sharpness (see [27] for details). In this paper,
we focus on a modification of TV-ROF denoising functional, the isotropic TV denoising version, proposed in [10]. In particular
our model is formulated as follows:

u* := argmin|| Vull, + £ flu - fI3 + I# @, (4)
u

where p is a real positive number and A is the Hessian of the function u. Among the many algorithms which have been
proposed to solve the TV-ROF problem and its variants, for the numerical solution of (4) we adopted the Split Bregman
Algorithm (SBA), proposed in [17] by Goldstein and Osher, which can be seen as a special case of alternating direction
method of multipliers (ADMM) [5]. The SBA has been succesfully used in solving several regularized optimization problems
[1,16,28] and it has shown to be especially effective for problems involving TV regularization [15,20,26]. Some numerical
experiments are carried-out in order to show the benefits of using the second order penalty term in terms of accuracy for
image denoising and, furthermore, some experiments on Magnetic Resonance Imaging (MRI) data are reported. Finally, in
the Appendix, starting from [9,23], we present a theorem on the convergence of the Split Bregman iterative scheme applied
for solving (4). This result it is obtained by extending the proof of Theorems 3.1 and 3.2 for the TV-ROF case, presented
in[8].

The paper is organized as follows. In Section2 some preliminaries about notations are firstly introduced; then, starting
from the TV-ROF, we introduce our modified H-TV-ROF model and the related SBA formulation. In Section 3 a computational
scheme for the new algorithm is described. Numerical experiments for denoising of synthetic and real images are shown in
Section 4. Conclusions and future aims close the paper. The convergence theorem is reported in the Appendix.

2. The H-TV-ROF model
2.1. Preliminaries

Let
Q = [ay, b1] x [az, by ], ap, az, by, by € 9,
be a rectangular domain and assume that the function u e C3(Q2). Given N> 2, Q is covered by the regular grid:

. . bi —a
th{(xi,yj):x,:m-f—zhx, i=1,....N, hy= lN Ly

yi=ay+jhy,, j=1,....N, hy= }CQ. (5)

The u values in the mesh points are denoted as
upji=ul,y;), Lj=1,....N
and, in general for any function g(x, y)
g =8%.yp), i,j=1,...,N
Moreover
Viuxi, y;) = (Vaw)ij, Vyu(xi,yj) i= (Vyu);
are respectively the horizontal and the vertical derivatives in an interior point (;, y;), and therefore the gradient of u at (x;,
yj) is

_ [ Vaw)ij
(vu)i,j = ((Vyu)lj>
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We also define:
VT (W)= (Vaw)j+ (Vyu); .

In the following (fou),»,j, (V}?yu)i_j, (V,%yu)i,j are the second-order derivatives of u at (x; y;); the Laplacian A of u at an
interior node (x;, y;) of € is:

(Au);j := (V)i + (Vi) ;.

whereas the differential operator for the second order derivatives D is defined as follows:

Finally, D7 is defined similarly to V7.
2.2. The H-TV-ROF model and SBA iterations
The main feature of the isotropic model consists in using a pixel-wise Euclidean norm for the TV term. This choice is

based on the simplified assumption of regarding a digital image as a 2-dimensional matrix of size N x N. The isotropic TV
denoising model can be defined as:

= argmin Y [|(Vu)yll2 + 5 3wy = fi) (6)
ij ij

Following the idea of the Split Bregman method, (6) can be formulated in terms of the equivalent constrained minimization
problem:

= afgtfnif12||di,j||2+%Z(Ui,j—fi,j)z, (7)
i i

st. d=Vu.

By penalizing the constraint violation, the following unconstrained problem can be defined:
. . A
f:= argmin Y ;> + b 3 (s~ fi)? + 5 3 s — Va3, (8)
w ij ij ij

where A >0 is a fixed penalty parameter. By following [17] the Split Bregman Algoritm (SBA) k-th iteration is defined as
follows:

. A
uit = arglfnm % Z(ui,]’ - fi.j)z + 5 Z ||d:<j - Vui,j - bf]“% (9)
ij ij
. A
it = argmin 3 sl + 5 3 s - Vel - o1 (10)
ij i.j
BT B (V! ), )

where b0 is set equal to 0.
In our model we add a second-order regularization term to the isotropic model (6) which becomes:

= argmin Y [|(Vu)ylla + 5 3wy = fi)? + B3 17(us)
ij ij

ij

1
where # denotes the Hessian. The ¢;—norm of #(u; ;) can be approximated by the LogSumExp (LSE) function [6] which is
the convex and infinitely differentiable function defined as:

LSE(x1, ..., Xn) 1= log(exp(x1) + - - + €xp(xa)).
Therefore, our model, with a second order penalty term, becomes:

i:= 31"glllninz (V)i jll2 + %Z(Ui,]‘ - fii)?
i ij

+ B log(exp(Viu + V) j +exp(Vau + VAu); ;). (12)
ij
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In the sequel we will refer to (12) as H-TV-ROF model, where H stands for Hessian. Let now define the auxiliary variables
d=(dy, dy)T, h=(hxx, hyy, hxy)T, and let consider the constrained problem

i:= arg;ninz lldi jll2 + % Z(ui,j —fij)?
ij ij
+ B Z log(exp(hxx + hxy)i j + exp(hyy + hyy); )
ij
st. d=Vu and h="Du, (13)

thus, by penalizing the constraints violation, we end up with the unconstrained minimization problem
. . " A
a:=argmin)_|dijll2+5 Y (Wij—fi)*>+ 5> ldij— Vuijls
u,d,h i,j 2 i,j 2 f,j
A 2
+ iZ”hi,j_Dui,j”zv (14)
ij

Similarly as for the TV-ROF problem (7), for the H-TV-ROF Problem, the following SBA formulation can be defined:

. A
wh: = argmin 37 %(uu —fi))* + 5 2o i = Vi = b3
ij ij

A
+ ZZthj—Dui,j—ij”%, (15)
i
. A
de arg;nm Z lld ;1l2 + 5 Z lld; j — Vugf}rl _ b{.fj||%, (16)
T i

R - arg]min B log(exp(hu + hy)ij) + exp(hyy + hy)i ;)
1 ij

A
+ 5 2 Ik — Dl — 13, (17)
ij
bk+1 = bi'(,j + (Vufjl _ dzl'f}rl)’ (18)
Ck+1 = ij + (Duff}’l _ hgc,-}—l)’ (19)

where A, >0 are fixed penalty parameters and the auxiliary variables b® and c? are set equal to 0. We recall that for any
convex function F: R" — % the subdifferential of F in u is defined as

OF(u) ={penR":F(v) > F(u) + (p,v—u), Yv € domF},

where (., -) is the scalar product, domF is the domain of the function F and every element p € 9F is a subgradient of F in u.
The Euler-Lagrange conditions for (15-17) are respectively:

(it = fi) = AV = Vi = b ) + ADT (h; - Dt~ cf) =0, (20)
pEsT 4 A @ — vl — bl ) =0, (21)
BVITY) + AR = Duf! — ;) =0, (22)

where pi.‘;f] € 8||d1(‘_]+.1 ll2 and J(h) = log(exp(hxx + hyy)) + exp(hyy + hyy)). with h=(hx, hyy, hy). It is possible to show that,
under suitable hypothesis on the second order derivatives,
lim,_ uk =1,

wehere {u,} is the sequence generated by the Split Bregman iterative scheme (15-19) and  is solution of H-TV-ROF prob-
lem. A proof of this result is given in the Appendix to this paper, similar to the one proposed by Cai etal. in[8] for the
convergence of the inexact Split Bregman scheme for a general unconstrained minimization problem.
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3. The computational scheme

An algorithmic framework for solving (15-17) can be formulated starting from the optimality conditions (20-22). In
particular, collecting terms in (20) we obtain the equation
(- — AA + )»DTD)ukH = —ufij— AVT(df; = bf;) + ADT (hf; - cf)) (23)
from which is formally possible to compute u*+!, About d**!, from Eq. (20) we have

k+l

IId" Il2

+ A - kb)),

We now proceed similarly as in [17]; by approximating ||d14<].||2 with sfj, where 55(.]' - ||Vu§<j + bi.‘j||2 we obtain:
X k o pk
si A (Vug; + by )

dkl =
sf_j)» +1

(24)

Finally, about h, a component-wise formulation can be derived by the optimality condition (22). Let ¢ = (cx, Cyy, Cxy) defined
as in (19), by solving with respect to (hx); ; (the same can obviously be done by solving with respect to (hyy); ;) we get

exp((h&)); j
exp(hl)i j + exp(hyy)i j
If we approximate the exponential function with the first-order Taylor expansion:

exp(h); ; - 1+ (h&
exp(h)ij+exp(hly)i; 2+ (Wi + (hfy)ij
and we define
tzk =24 (h)ij+ (h y)lr

we eventually obtain

Ozﬂ +)‘((hk+l)u_v;?x kel _(C )lj)

(hk+1)' . )Ltk ( 2 k+1 k ) ) :3 25
ks ,J_m + (k)i At"+ﬂ (25a)
)»tk ﬂ
l 1 2 k 1 k
( o )ij = )\Ik + B (Vyy 17 + (ny),;j) - 7)\1—,{{] T B (25b)
(H )i = Vit + ()i = 5. (230)

where the equation (25c) is obtained by solving the equation

0::3+)\((h§;—1)i]_vz k+1 (Ck )1])

XY, j

with respect to h’,ﬁ;l. Hence, our computational scheme can be summarized as follows:

Modified Split Bregman Isotropic TV Denoising
Inizialize: u® = f,d°=b0=c"=h0=0
While: [ukt! — uk||, > tol
Compute ukt! by (23)
Compute d*+1 by (24)
Compute h¥+1 by (25a-25c)
End

The numerical solutions are computed using a finite-difference (FD) scheme for approximating all the partial derivatives
and differential operators. Specifically, we have adopted a centered finite-difference scheme at interior points and one-sided
(backward or forward) finite-difference at the boundaries of the image. For our problems we adopted Dirichlet boundary
conditions (i.e. the values of the function at the boundaries are specified). The FD scheme applied to (25a-25c) generates a
system of equations that can be solved in different ways, according to the intrinsic properties of the problem: as suggested
in [17] we use one sweep of the Gauss-Seidel method.
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Table 1
Values corresponding to restored images in Fig. 1.
Denoising algorithm  Image PSNR (dB)  Relative error
Cameraman  24.5156 0.011704
TV-ROF Spiral 24.3347 0.015036
Lena 24.3268 0.015491
Cameraman  25.6337 0.012705
H-TV-ROF Spiral 274950 0.012064
Lena 26.4955 0.013536

Fig. 1. From left to right the frames show, respectively, the original image, the noisy image (Gaussian noise), the restored TV-ROF image, the restored
H-TV-ROF image.

4. Numerical experiments

In this section we report numerical results that compare H-TV-ROF and TV-ROF on the image denoising problem using
a set of standard grayscale and MRI images. The implementation has been done in Matlab R2016b. We adopted the Peak
Signal-to-Noise Ratio (PSNR) to evaluate the quality of output images, defined as follows:

max(X)

PSNR =10 -logyg ——————,
810 mse (X, u)

where max (X) is the maximum intensity value of the original image X and mse(X, u) is the mean square error between X

and the denoised image u. As usual, the PSNR is expressed in terms of the logarithmic decibel scale. For each case study,

we have performed a set of numerical tests with the values of the parameters A, u and 8 chosen on the basis of our

computational experiments.

4.1. Case study 1: grayscale images

We start by examining the problem of image denoising using three standard grayscale images (Cameraman, Spiral, Lena).
The original images are corrupted with2% of Gaussian noise. Table 1 illustrates the performance of the two algorithms,
with the setting of u = 1.5, A =0.05, B = 1.9 for the parameters. The higher values of PSNR show that the second order
derivatives term leads to better restored images. This is visually confirmed by Fig. 1. Moreover, in Spiral and Lena images we
can observe a decrease of relative errors.
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Table 2
Quality test on a 2D Shepp-Logan phantom image.

Denoising algorithm  Noise (%)  PSNR (dB)  Iteration

3 29.37 10
TV-ROF 5 25.75 n
9 21.07 13
3 28.88 8
H-TV-ROF 5 26.27 9
9 22.20 10

Fig. 2. From left to right: Ground Truth, noisy image with PS = T1, NL = 5%; restored image.

Table 3
Quality test on a T1 brain web dataset.

Denoising algorithm  Noise (%)  PSNR (dB)  Iteration

4411
34.58
30.09
40.53
34.7
34.59

TV-ROF

H-TV-ROF

DW= U1 W=
NN WNNN

4.2. Case study 2: MRI denoising of brain images

Our algorithm has been tested on a 2D Shepp-Logan phantom, by applying three different percentages of Gaussian noise.
Table 2 reports the values obtained for u = 1.9, A = 0.05, 8 = 0.4. Afterwards we have considered a simulated 3D brain MRI
image dataset produced by a MRI simulator. This 3D simulator gives 181 images, each of size 217 x 181, that are generated
by varying specific imaging parameters and artifacts. Then we have analyzed several images (slices of the 3D dataset) with
three different pulse sequences (PS = {T1,T2,PD}) and noise levels. The noise level percentage (relative to the brightest
tissue) (NL) has been set equal to 1%, 3%, 5%, 7%, 9%. For a global analysis, the visual inspection of the denoised images is
presented, specifically for regions containing some relevant structure (i.e. central slices) shown in Fig.2. As in the previous
case study, in order to estimate the performance of H-TV-ROF, we have considered the PSNR and the relative error estimate.
For T1 pulse sequence we set u =19, A =0.06, 8 =0.005, while for T2 and Proton density pulse sequences we have
assigned u = 1.9, A = 0.04, 8 = 0.005. As expected the quality of the denoised image deteriorates when the noise increase,
as shown in Tables 2-4. Such deterioration is mitigated with the H-TV-ROF model as shown Tables2 and 3. This is especially
evident for the T1 image denoising with 5% of noise level.

4.3. Case study 3: MRI denoising of real images of a knee
Finally, we have tested H-TV-ROF on slices of a real 3D knee MRI dataset. In particular, we have performed two different

case studies: i) a low resolution images denoising; ii) the reconstruction of a high resolution MRI image, assumed as Ground
Truth, that has been corrupted by 5% noise level.

1 Brainweb dataset: http://brainweb.bic.mni.mcgill.ca/
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Table 4
Quality test on a single central slice of a simulated 3D brain MRI image with increasing noise.
Pulse sequence  Noise (%)  PSNR Rel. error  Iterations  Execution time (s)
1 40.5296  0.007288 3 0.38791
T1 3 34.7034  0.024236 2 0.352572
5 30.6141 0.042607 3 0.483256
1 35.1379 0.013182 3 0.478549
T2 3 30.0766  0.038759 4 0.397612
5 263093  0.067752 3 0.327295
1 37.2733 0.005555 2 0.341341
Proton density 3 30.9288  0.020124 2 0.354039
5 26.7636  0.035474 2 0.239194
Noisy image Restored Image

Fig. 3. A central slice of a real knee MRI image. From left to right the frames show: the original low resolution image and the restored image.

Table 5
Relative error estimation and execution
times.

Rel. error estim.  Execution time (s)

0.734 x 103 0.675473
0.867 x 103 0.532719
0.743 x 1073 0.571054
0.749 x 103 0.570331
0.649 x 103 0.657509

Fig.3 clearly shows an improvement of the image quality. Furthermore, Table 5 reports the relative error estimation and
execution times for different slices, with u =1.9, A =0.05, 8 = 0.005. The quality of the restored image is confirmed by
the values of the PSNR equal to 28.6761dB in 9 iterations and the relative error of magnitude 0.0816134 in the elapsed
time of 3.065753 s. The visual inspection confirms the quality of the denoised image (see Fig.4). Finally, the performances of
the model have been investigated also by comparing the gray level profiles of the input image with the denoised one (see
Fig.5).

5. Conclusions and future aims

In this paper we have proposed a novel denoising model based on a penalty term with second order derivatives. More-
over, the convergence of the adapted Split Bregman iterative scheme to solve this problem has been proved. Numerical
experiments confirm the advantages of the proposed scheme to avoid the staircasing effect induced by TV norm and we
also observe the ability of our algorithm to improve the contrast and to lift image visual quality. This last feature is very
useful in real image denoising of MRI data. Finally, we observe that the choice of such parameters in the models, as for
example how to optimally weigh the penalty term, is a general and open question. To address this issue several of method-
ologies are known and therefore one of our future aims is to investigate on the impact of the parameter values on the
proposed models.
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Ground Truth Noisy Image Restored Image

Fig. 4. A central slice of a real knee MRI image. From left to right the frames show: the original high resolution image, the noisy image (5% Gaussian
noise) and the restored image.
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Fig. 5. The behavior of the restored image follows the one of the original image (Fig.3); the gap between the profiles is due to the noise level introduced.

Appendix

We, first, recall two properties of the norm, which will be useful for proving Theorem 1. Let H be an Hilbert space. For
any x, y € H we have:

Lo lx+yl2 = [IX]12 + Iy I + 2(x. ).
2. 1X+ylI2+ lIx = ylI2 = 2|Ixl12 + 2|lylI® (parallelogram law).

Let ue C*R), and fe%(2) and let consider the problem

min || Vull; + %(u — [)? + Blog(exp(V2u + V3u) + exp(VAu + V2u)) (26)
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The SBA formulation for problem (26) is:
k+1 M 2 Ay k2 o Ak k(2
w1 = argmin Sllu — fI13 + 5 1d - Vi - 513 + 5 1§ — Vyu - b3

A A
+ i”hl):x - Vfu - C,;x”% + E”h,;y - V;U _C§y||%

A
+ 5||h’,§y—VyV,(u—cf§y 2 (27)

. A
(di dit) = argmin | (dy. dy) 2 + +5 lldy — Val**! = B3
X1y
A
X, - v - e )

(T it RESY) = arg min  Blog(exp(dy + diy) + exp(dyy + dy))

By hyy

A A
+ Sl = V2 — 3+ 5

2,k+1 _ k12
[hyy — Vou*t — ¢ 5

A
+ j”hxy -V, V! — Cl;y“%’ (29)

b§+1 — bﬁ + (quk+1 _ d)’:H),

k+1 _ pk k+1 k+1

BEFT = B 4 (V! — dlt,

it = b (VT - B,

k+1 _ -k 2, k+1 _ pk+1

ny - ny + (Vyu hyy )’

k+1 k k+1 k+1

Gy = Gy + (V, V™t — st (30)

Theorem 1. Let be A € R™. Assume that there exist a solutionu* of H-TV-ROF problem (26) and 81, 85, 63 €(0, 1) such that, for
each k e N, || V2uk|| < 8. [IVZuk|l < 85, ||VyVxuk|l < 83, where u* is defined in (27) and uf = u* — u*. Then

limy, . ||u* — u*|| = 0. (31)
Proof. Let u* be an arbitrary solution of (26).
Let
1 1 |d| 1 1 |d;l
bt = —p* 1= — X ; b = —p* = — y i = ,
SRR A @ T AT A an e P
1 1 exp(d;, 1 1 exp(d;,)

= B = Bexp(di) + exp(dy)’ Y T BT Bexp(dy) + exp(dy)
Then it holds:

0 = u(u* — f) = AV (d; — Vit — b%) — AV, (d; — Vyu* — b})
+ AV (I = V3ur — i) + AVi (5, — Viu* —c5,) (32)
+ )»ny(hﬁy — Vyu* — cj;y),

0= p} + A(d; — Vu* —by),

0 = pj +A(d; — Vyu* —bj),

0 = By + A(hy — ViU —ciy),

0 = Bq;, + Alhy, — Viu* —c;),

0= B +Ar(hy — Vyu* —by), (33)

by = by + (Vxu* — d),

by = by + (Vyu' — d),

G = o + (V3U" — 3),

Gy =Gy + (Vyu' —hjy).

Cry = Gy + (V" — ). (34)
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(*, dg, dy, d.3, . b, 05y, b%, by, ¢y, Gy €5y) is @ fixed point of (27-29), consequently if the modified Split Bregman iteration
converges, it converges to a solution of the problem.
Let denote the errors by

uk = uk —ur, d’;e =dk—d;, dj,‘e = d§ —d, b,’ig = bk — bz,
b’y‘e = b’y‘ - by, hﬁfye = h’,jy - hg,. h’,ﬁxe =hk, — h, h§ye = h’;y - hy,,
= Gy Co = O — Civ  Cpy. = Chy — Cpy-
From the Euler-Lagrange condition for (27) by subtracting Eq. (32) we obtain
0 = puft — AV (di — Vit — bEFT) — AV, (dit! — Vyukt! — bkt
+AVERET — V2uk — i) + AVE (T — V2uk — !

k+1 k+1 k+1Yy.
+ )\fvxy (hxye - nyue - nye )7

k
nye =C

Then by taking the inner product of both left hand and right hand sides with respect to u’é” we obtain
0 = wllug I* + AN Vgt || = A(Vady,, ug™) + A(Vib},, ug™)
+ AVt 2 = A(Vydy ugth) + A (VB ugt)

y %ye>
— MIVZUE P + A(VEG, g™ — A(Vick, . ug™)
— MIVRug 2 + A(Vhy,  ugth) — (Ve  ugt)
— M VgueI? + A(nyhﬁye, ugt) - A<nyC’;§y57 ugth). (35)

By using the same manipulations to the Euler-Lagrange for (28) an to (33), we have:
0= (pkt' —pi, dd*! —d) + )L||d,’<‘:r1 | — A(Vyukt?, d,’j:”) — k(b’;e, d,’j:rl),
0= (pf,“ - Dy d;f“ —dy) + Al|d§jl [ — A(Vyui_f“, d;‘:“) - )L(bgje, dj,‘f),
0=BLa" — oo W = M) + ARG = A(VRueH BT — Ack, ),

XXe XXe
0= Blay" — dy, by — h5y) + Al = AUt gt — My B,
0 = AR = AV, Va1 T — Ak, ).

By adding Eq. (35) side-by-side with the above equations it follows:

0= plluf ™2 + (P — py, i — i) + (Pl — by i — d)

+ BT — e BT — ) + By — 3y ST — )
Y e N e N e Al

— [ Vaug ™ 117+ N+ Ny I+ R+ IR+ (R

XYe XXe VYe
= (Vg + ) + (B Vi - A
= (Vyug dy +dyth) + (by, Vyugt! — ditt)
= (Ve g+ i) + (e, Ve — i)
— (Vyuft R, + R + (e, Vougt — kil

YYe?
— (ViU RE, R (| Vigukt - h';;j)). (36)

By subtracting the first equation of (30) by the first equation of (34) we get:
BEF = B 4 Vbt - dlt,
It follows
B = 1BE, + Viug™! — di 12 = 16117 + I Vit — it 12
2Bk, Vet — ),
This leads to

1 1
(b, Vgt = ) = S BT + D5 1) — 5 1 Vg™ — 1% (37)
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Similarly, the same manipulations applied to the remaining equations of (30) and (34) give:
1 1
I k+1 k+1 k+1 (2 k|12 k+1 k+112
{by,. Vyue™ —dy"0) = S Uy, 117 = 1By %) = 5 1Vyue™ —dy" I

1 1
(i Viue™ = HT) = S UG = e 1) — 5 1 VRug™ — B

2
XXe >

(e, V2T T = 2 (kT — ek, 1) — 3 I V2t — T2
(e, Vit 1) = 22— ek, 1) — 5 1 Vg™t — . (38)
Then we substitute properly Eqs. (37) and (38) into Eq. (36):
2 0B 02 = U 2) 2 (0 02 = B 12) + 2 Ok, I = Tk 12)
2k, 2~ k) + 5 (e, 12— ek 1)
= w2+ (P - p d = dp) + (P - py, di - dy)
BT — g BT — ) + BUat — gy hT — i)
R (L e A R Al B
Vg2 12 T2 4 (IR IZ + IR + (2
(V) Vit - a2
(V) - LV - k2

1
— (VZUl B, BT - VR T2

1
— (V}?ulg#—l’ hﬁxg + h;i;':) _ invjulgﬂ _ Rk ”2

Ve
1
— (VgtlH1 By, + 1) — | Vgt — T ||2). (39)

O

After suitable manipulations, applying properly the properties of the norm to the terms involved the right-hand side, the
above equation becomes:

A A A
o (B = 1B 12) 5 (5,1 = 15877 12) + 5 (ke 12 = ek 1)
A A
+ 51k, 17 = 15 12) + 5 (lcky, 12 = ek 112)
=l (k- pp s - dg) o+ (pk s — )
+ B — gl B — ) + B — gy BT — )

1 1 1 1
(Ve = s 24 518 - Sl 2 + 5 VT = 2

1 1 1
+ 5 Iy = Sl 112 = 20 Vi 2 + 5 I VRuet — i 112

1 1 1
S ISEI = o I 2 = 20 V212 4 5 | Vs — B, |2
1 1 1
+ j”hl;;re] > - §||h,;ye||2 = 2|| Vgt |? + §||nyu’é+l - h’iyellz
1 1
LA LA (40)

Furthermore, we sum the above equation from k=0 to k = K:
A A A
5 (IB8 12 = DK 12) + 5 (189,112 = B 1) + 5 (e, 12 = Nl 1)

XXe
A A
S (0B, 17 = 1) + 5 (Nel, I — Nk 1)
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K K K
= Yy ugTP 4+ Y (kT - p T —dy) + ) (ot - . di - dy)
k=0 k=0 k=0
K K
+ B @S — G B =B + B layy — gy bt — By
k=0 k=0

N =

K K
1 1
(5 NVt = s 2 4 ST 4 5 Y IVt - 2
k=0 k=0

K K

1 1

S I =2 Y (VR 4 5 Y VR b
k=0 k=0

K K

1 1

b LR 2y SR LY v
k=0 k=0

K
1 1
+ I =23 IV Va7 4 5 [ Vit — bl |12
k=0

ISP = 127 = S22 = S 7 = 5 1, 17 = 5 1S, 1. (1)
We recall that, for any convex function J, by definition (see [7]) of the Bregman distance associated with J

Dj(z,t) :=](2) = J(t) — (s,z—t),
with s e dJ(t), follow the equation:

DP(u,v) +Df(v,u) = (g —p.u—v) Vpedj(u),qedW). (42)
Furthermore, the non-negativity of the Bregman distance implies that

(q—p.u—-v)=0.
Since both the functions || - || and log-sum-exp are convex we have

(P = P —dy) 0. Vk

and the same is true for the remaining inner products involved in(41). Therefore all terms in the right-hand member are
nonnegative and this leads to the following inequality:

A A A A A 1
B2+ SIS 12+ 5 e 12 + 5 e, 12 + S, 12+ += 12,12

1 1 1 1 K
+ )17+ SR I1Z + SIS, 17 + SR, 17 +22 3 I ViugH )2

xye
k=0
K K
+ 20 IIVRUETI2 + 20 ) [ Vigus |12
k=0 k=0
K K K
> Y k2 (P — pp d —dy) + Y Pk - py. diTT — d)
k=0 k=0 k=0
K K
+ B @ — G B = hi) + B {4yt —apy by — )
k=0 k=0

1 K 1 1 K
(5 NVt = 2 4 S 4 5 YVt — P
k=0 k=0
= 1w 1
o DIV~ RE N7 4 o ST IV 124 5 |Vt — B, 12
k=0 k=0

1 1 1 1
I 4 SR + IR + 5 IR 1), (43)
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In particular

A A A A A 1
B2+ SIS 12+ 5 e 12+ 5 e, 12 + S, 12+ += 12,2
K

+ )17 + SRR N2 + SIS, 17 + SR, 117 +22 Y D VEugH )2
k=0

K K K
+ 24 VU P + 22 3 IV Vg I = e ) g1 (44)
k=0 k=0 k=0

The series 3% [ V2uk*!||? converges (since || VZuk*!|| < §;) and the same holds true for the remaining series involved in
the left-hand side). Then we have:

+00
2l < oo,
k=0

where uk*! = uk+1 _ y* and therefore:

limy ool — ]| = 0.
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