
NoC-based thread synchronization in a custom
manycore system

Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

Abstract This workshop paper presents an efficient hardware support for thread
synchronization in a customized manycore system developed within the MANGO
H2020 project. The solution relies on a distributed master and on a lightweight con-
trol unit on the core side, using hardware-level messages and thus avoiding mem-
ory accesses. It supports multiple barriers for different application kernels executed
simultaneously. The results for different NoC sizes provide indications about the
reduced synchronization times and the area overheads incurred by our solution.

1 Introduction

The increasing need for resource- and power-efficient computing over the last
decade has stimulated the emergence of compute platforms with moderate or high
levels of parallelism, like GPU, SIMD, and manycore processors in a variety of
application domains [1, 2, 10, 5]. In particular, manycore systems are based on a
considerable number of lightweight processor cores typically connected through a
Network-on-Chip (NoC) [3, 23], providing a scalable approach to the interconnec-
tion of parallel on-chip systems. In fact, on-chip connectivity has been attracting
much interest during the last years, also including recent developments at the phys-
ical technology level [6, 8]. While early NoCs, like the Epiphany mesh-based inter-
connect [14], used a flat cache-less memory model, caching and related coherence
management has become a crucial feature in today’s NoCs needed to improve per-
formance and preserve programmability in manycore systems. Examples of modern
manycore solutions include an integrated 80-tile NoC prototype architecture, based
on an on-chip 2D mesh topology, proposed by Intel [12], and the Tilera TILE64
processor [11], based on three-wide VLIW compute cores with 64-bit instruction

Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti
University of Naples Federico II / CeRICT, via Claudio 21, 80125, Napoli, Italy, e-mail:
acilardo@unina.it

1

2 Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

words as well as a scalable 2D mesh network with support for coherent shared
memory, where each core can directly access any other cache through the inter-
connect. The Tilera NoC infrastructure in fact provides five different networks for
different uses, including one dedicated to memory transactions. Being targeted at
parallel applications, these systems are expected to provide some form of support
for thread synchronization, e.g. barrier primitives. Existing solutions use a variety
of hardware- or software-based techniques. The work in [7] describes some syn-
chronization algorithms implemented in software, that rely on a message passing
infrastructure and different NoC topologies. In [24] the authors implemented a ded-
icated G-line net dedicated to barriers. This solution is limited to ASIC architectures
and requires a wire for each tile. In [25], the authors support thread synchronization
in a packet-switched manycore NoC by relying on two types of links.

This work presents an activity developed in the context of the MANGO: ex-
ploring Manycore Architectures for Next-GeneratiOn HPC systems H2020 research
project. As part of the manycore architecture exploration carried out by the project,
the authors developed a customizable GPU-like core used as the compute element
in a configurable NoC with support for coherent shared memory. The manycore
system is tested on a large-scale FPGA platform developed by MANGO, where
hardware reconfigurability is mostly used for emulation purposes, although FPGAs
could also be chosen as the final acceleration technology for certain classes of work-
loads [4, 9, 16, 19]. This workshop paper specifically explores the adoption of a dis-
tributed and NoC-based synchronization mechanism. At the heart of our approach is
a distributed synchronization master inspired by the directory-based coherence pro-
tocol. Relying on the distributed approach as well as the lightweight three-staged
synchronization client on the core side, the proposed architecture can support mul-
tiple synchronizations for different application kernels running concurrently. The
paper describes the main insights in our approach, the resulting architecture and the
way it handles multiple synchronizations concurrently, as well as the advantages of
the distributed mechanism.

The rest of the paper is organized as follows. In Section 2 we summarize previ-
ous techniques for supporting barrier synchronization in manycore architectures. In
Section 3 we describe the baseline manycore system as well as the synchronization
hardware introduced by this work. In Section 4 we describe the implementation of
the barrier function, while in Section 5 we evaluate it with a synthetic benchmark
both in a central and distributed configuration for different NoC sizes.

2 Related work

Barrier synchronization is a common primitive used to separate in time different
phases of a parallel application. Efficient support for barrier synchronization in
manycore systems is of paramount importance because of its role in parallel code.
Culler and Gupta in [22] address this problem for shared-memory multiprocessors.
They present a software solution, which relies on hardware atomic instructions and

NoC-based thread synchronization in a custom manycore system 3

memory coherence. The solution uses a lock variable and a counter keeping track
of all the cores that have hit the synchronization point. Indeed, the literature offers
various software-based barrier solutions. Hoefler and Rehm [7] present a study on
software barrier algorithms combining both shared memory and message passing
techniques. The authors implement typical barrier synchronization algorithms, such
as Butterfly and Combining tree, and analyze message overheads and the required
memory for each of them. The results in [18] show that software barriers, even
when based on hardware message passing, incur considerable overheads causing
NoC resources to stay underutilized, unlike hardware barriers. As a consequence,
many NoC-based techniques have been proposed in the last years. In [24], the au-
thors implement a hard-wired barrier mechanism called G-line net. Each core has
a dedicated wire connected to the barrier master. Synchronization is established as
soon as each core asserts its line. This technique uses multidrop connectivity and the
S-CSMA collision detection in order to provide a flow control mechanism (EVC),
enhancing performance in terms of latency and power consumption. Such a solution
does not require memory accesses, and provides fast synchronization compared to
software solutions. However, the approach may lack scalability and supports only
one barrier at a time. The authors of [21] propose a communication unit in a NoC-
based system, relying on a barrier controller and a communication unit that en-
able synchronization operations. The control unit is integrated into a general NoC
switch and communicates with a centralized master located in the network. The
paper proposes an efficient control mechanism, but it still relies on a centralized
master resulting in limited scalability. Similarly, [20] introduces a synchronization
architecture, called the Synchronization State Buffer (SSB), which is a small buffer
attached to the memory controller of each memory bank. It records and manages
the states of active synchronized data units to support and accelerate word-level
fine-grain synchronization. The SSB solution has been implemented in the context
of the 160-core IBM Cyclops-64 chip architecture. The authors of [25] propose a
novel thread synchronization technique relying on packet-switching mechanisms
in a NoC-based manycore system. The interconnection system provides two phys-
ical links used in the protocol in order to avoid deadlocks. The work introduces
a synchronization-operation buffer (SB), which enqueues and manages the requests
issued by the processors. The mechanism uses a spin lock implementation, requiring
a constant number of network transactions and memory accesses per lock acquisi-
tion. Note that the approaches described above do not support concurrent barriers
if different application kernels are running in separate sub-regions of the manycore
system.

3 Architecture

The proposed synchronization mechanism has been integrated in the GPU-like ac-
celerator core being developed within the MANGO H2020 project. The core comes
with a NoC-based manycore architecture, as shown in Figure 1, where each tile

4 Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

MEMORY CONTROLLER

I/
O

 C
O

N
T

R
O

L
L

E
R

L2
DIRECTORY

CONTROLLER

CACHE

CONTROLLER

GPU-LIKE

 CORE

NETWORK INTERFACE

ROUTER

PROCESSING

TILE

CUSTOM MANYCORE

PROCESSING

TILE

PROCESSING

TILE

PROCESSING

TILE

PROCESSING

TILE

PROCESSING

TILE

H2C

TILE

PROCESSING

TILE

PROCESSING

TILE

SYNCHRONIZATION

CORE

Fig. 1 The custom manycore system addressed by this work.

includes a hardware multi-threaded SIMD processor. The system provides a dis-
tributed coherent L2 cache and hardware coherence support based on a directory
protocol. The main idea behind our solution is to provide a distributed approach
inspired by the directory-based system. Our architecture aims to eliminate central
synchronization masters, resulting in a better message balancing across the network.
Combining a distributed approach, hardware-level messages, and a fine-grain con-
trol, the solution supports multiple barriers simultaneously from different core sub-
sets. Coherence does not affect the overall performance, since the system provides a
dedicated virtual network exclusively used for synchronization. Below we describe
the main components of the proposed synchronization hardware.
Boot Setup. The Boot Setup module is in charge of initializing every structure in-
volved in a barrier synchronization. It sends the Setup messages in the initializa-
tion phase, then sets and updates the barrier counters in the involved Synchroniza-
tion Core. When an application kernel requires a synchronization, it specifies the
barrier ID and the number of cores involved. The Boot Setup module steps into
the Service state where it gathers all this information and selects a synchronization
master. Then, when the network is ready, the Boot Setup initializes the chosen Syn-
chronization Core by sending suitable messages through the NoC, conveying the
barrier ID and the number of cores involved. From this point onward, the desig-
nated Synchronization Core becomes the synchronization master of this barrier, and
it will handle all the synchronization messages from the involved cores.
Synchronization Core. The Synchronization Core is the key component of our so-
lution. This module acts as the synchronization master, but unlike other hardware
synchronization architectures, it is distributed among all tiles in the manycore. As
explained above, the Boot Setup module selects a specific Synchronization Core
based on the barrier ID set by the user. In this way, the architecture spreads the syn-
chronization messages all over the manycore. By using this approach, the synchro-
nization master is no longer a network congestion point. Figure 2 shows a simplified
view of the Synchronization Core. The module is made of three stages: the first stage

NoC-based thread synchronization in a custom manycore system 5

N
e

tw
o

rk In
te

rfa
ce

Barrier_Sync_core

Barrier_Sync_Stage_1

Arbiter

FIFO

Release

Barrier_Sync_Stage_2

 Select

 Account

 /Setup

Message

BRAM_read

AND

 Setup_tmp

Account_tmp

Logic Process

Logic Process

B
a

rr
ie

r_
Id

address_in value_out

message_info

BRAM_write

Barrier_Id(address)

mask_barrier

mask_barrier
 Update

Setup/Account_tmp

 by message_ info

generate message

if AND =1 and

updates Setup_tmp

and Account_tmp

BRAM

value_in

address_write

Account_message

Setup_message

Release_

message

Account_request

Setup_request

message_release

Barrier_Sync_Stage_3

Fig. 2 Overview of the Synchronization Core.

selects and schedules the Setup and the Account requests. The selected request
steps into the second stage, which strips the control information from the message.
In the last stage, the stripped request is finally processed. If it is a Setup request,
the counter is initialized with the number of involved threads. On the other hand,
if the request is an Account message, the counter is decremented by 1. When the
counter is 0, all the involved cores have hit the synchronization point, and the master
sends a multicast Release message reaching all of them. Refer to Figure 3 for the
format of the synchronization messages.

Type

(00)

Type

(01)

Type

(10)

Setup

Account

Release

Memory Block

 for Barrier

012

01

01

Counter
Bit

MBarrier ID

3N+2N+3M+N+2

Barrier ID

Tile SourceBarrier ID

M+1 2

64(!it_size)

64(!it_size)

64(!it_size)

2M+T+1

01

T+1T+2

One-hot Tile Mask

T+1T+N+1

 is
Setup

Counter

T+2

Fig. 3 Synchronization messages, 64 bits each. The Setup message is sent by the Boot Setup
module in order to initialize the chosen synchronization master. It encloses the unique barrier ID
and the number of threads to synchronize. The Account message is sent to the master, when a
thread hits the barrier from the core side. The Release message is sent by the synchronization
master to all the involved cores when all the Account messages are collected.

Barrier Core. The Barrier Core manages the synchronization on the core side. Each
thread in a processing core can issue a barrier request through a specific barrier in-
struction introduced into the processor ISA. When a thread hits the synchronization
point, the Barrier Core sends an Account message to the Synchronization Core,
and stalls the requesting thread until a Release message from the master arrives.

6 Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

An example of synchronization. Assume we have a manycore with 16 tiles: 14 pro-
cessing tiles, one tile for the host interface, and one tile connected to the memory
controller. The programmer executes a parallel kernel that involves the 14 pro-
cessor tiles. As a first step, a core sends a Setup message to the chosen syn-
chronization master, containing a counter value set to 14 and the unique barrier
ID. The synchronization master is chosen by a simple module operation on ID:
T = ID mod TileNumber. The Synchronization Core, located in tile T , receives
those values and initializes a counter, that will be assigned to this specific barrier
from this moment onward. The most significant bits of the barrier ID locate the
tile that manages that ID, as in a distributed directory approach. On the core side,
when a thread hits the synchronization point, the Barrier Core in its tile sends an
Account message to the master in tile T and freezes the thread. As soon as the
master receives this type of message, it decrements the respective counter. When
the counter reaches 0, all the involved cores have hit the synchronization point, and
the master sends to each of them a Release message by multicast. When receiv-
ing the Release message, the Barrier Core releases the thread and resumes the
execution flow.

4 Implementation

In addition to the hardware, this activity also relied on the LLVM-based compiler
developed within the MANGO project for the GPU-like core. We extended both the
back-end and the front-end in the compiler in order to provide a C-level support to
synchronization. On the back-end side, the processor ISA has been extended with
ad-hoc instructions. On the front-end side, an intrinsic operation has been added,
called builtin nuplus barrier core(Id Barrier, NULL). The syn-
chronization components rely on a private virtual channel added in the system,
which routes all synchronization messages. The baseline system already provided
virtual channels but, as observed above, the hardware coherence support tends to
flood the network infrastructure with data and coherence messages, and could eas-
ily impact the synchronization mechanism performance. On the core side, when a
barrier instruction is decoded, the control unit waits until all previous instructions
are committed, then it stalls the requesting thread, and fetches the barrier into the
Barrier Core module in the execution stage (see Figure 4). This component sends
an Account message to the designated Synchronization Core, and waits until a
Release message arrives. We integrated the Boot Setup component in the Host
Interface tile, which is normally used for communication and for booting the many-
core system. An arbiter selects the proper component in the Host Interface tile de-
pending on the commands coming in through the interface. The Synchronization
Core has been integrated at the tile level, as shown in Figure 1. It is connected to
the Network Interface of the processor tile and dispatches messages on the synchro-
nization virtual channel. Below we will compare the performance of our distributed

NoC-based thread synchronization in a custom manycore system 7

D
E

C
O

D
E

IN
S

T
R

U
C

T
IO

N
 C

A
C

H
E

IN
S

T
R

U
C

T
IO

N
 F

E
T

C
H

D
Y

N
A

M
IC

 S
C

H
E

D
U

L
E

R

R
R

 S
C

H
E

D
U

L
E

R

THREAD SCHEDULER

R
R

 S
C

H
E

D
U

L
E

R

FIFO

FIFO

FIFO

WRITEBACK

SCOREBOARD

OPERAND

FETCH

S
C

A
L

A
R

R
E

G
IS

T
E

R
 F

IL
E

V
E

C
T

O
R

R
E

G
IS

T
E

R
 F

IL
E

THREAD CONTROLLER CACHE CONTROLLER

lo
a

d
/s

to
re

m
is

s

T
h

re
a

d

sl
e

e
p

/w
a

k
e

-u
p

F
IF

O
 f

u
ll

Missing Thread ID

EXECUTION

PIPE

P
C

T
H

R
E

A
D

 S
E

L
E

C
T

O
R

P
C

P
C

ACTIVE THREAD MASK

BARRIER

CORE

Fig. 4 The microarchitecture of the GPU-like core and the Barrier functional unit.

solution with a centralized master approach that allocates the Synchronization Core
only in Tile 0.

5 Evaluation

In this section, we will evaluate the performance of the proposed solution in terms
of clock cycles and area overhead. Next, we will compare the presented solution
with a standard synchronization mechanism based on a centralized master. We will
not compare our work with any software approach [25], since the proposed solution
does not require memory accesses or atomic instructions, and thus incurs a signifi-
cantly lower latency. A useful feature introduced by our solution is the support for
multiple barrier synchronizations from different application kernels being executed
simultaneously on different subsets of cores.
Simulation. For timing evaluation, we run the system with different NoC sizes by us-
ing a cycle-accurate simulator. The architecture has been successfully synthesized
on a Xilinx xc7a100tcsg324-1 FPGA with two different versions of the synchro-
nization master: a standard centralized configuration and our distributed approach.
Table 1 summarizes the resource requirements of the two approaches for different
NoC sizes. The areas occupied by the Barrier Core and the Boot Setup are constant,
since those modules are not influenced by NoC parameters such as the number of
tiles or specific topologies. The distributed approach incurs area costs increasing
with the number of tiles, although it can support a larger number of barriers, which
can involve selected sub-groups of threads, with a resource overead distributed uni-
formly across the tiles.

The proposed architecture and the centralized solution are simulated in the same
environment with the same parameters. Both run the same kernel made of a barrier
setup performed by Core 0, followed by a call to the synchronization intrinsic pro-

8 Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

Table 1 Comparison of the resource requirements of the synchronization hardware

Barrier Boot Centralized Distributed
Core setup Synchronization Core Synchronization Core

(per tile)

2x2 4x2 4x4 2x2 4x2 4x4

LUT 69 16 257 324 572 185 207 268

Flip-Flop 56 17 369 520 786 321 420 567

vided by the compiler, as explained in Section 4. The time performance is evaluated
by averaging out the synchronization times of all the involved threads. Each core
has been equipped with a 64-bit performance counter which is initialized when it
detects a barrier operation, and stopped when the release message from the master
is received.
Synchronization of the whole manycore. As a first experiment, we run a kernel which
involves all processing cores instantiated in the manycore. We compare the approach
based on a centralized synchronization master with our distributed solution. Ta-
ble 2 summarizes the clock cycles required by the synchronization for different
NoC sizes. As observed, the two approaches reach the same results, due the limited
size of the network and the absence of concurrent synchronizations.

Table 2 Time of a single synchronization operation involving all cores

NoC Size Centralized Distributed

2x2 26 26
4x2 72 72
4x4 74 74

Average clock cycles per thread

Synchronization with concurrent kernels. The proposed architecture supports mul-
tiple barrier synchronizations from different application kernels being executed si-
multaneously on different subsets of cores. The maximum number of distinct barri-
ers supported is N/2, where N is the number of threads instantiated in the system. In
the experiments below, we compare the number of clock cycles needed to synchro-
nize all the subsets, running the maximum number of supported barriers in parallel.
We assume that the developer parallelizes the kernel on sets of consecutive tiles.

Table 3 summarizes the results of our study. The centralized solution lacks scal-
ability, even for small NoC configurations, and the final count is highly dependent
on the position of the synchronization master. Our approach requires the same clock
count for the smallest NoC, but results in improved scalability as the NoC size is in-

NoC-based thread synchronization in a custom manycore system 9

creased. Furthermore, our solution does not rely on a fixed master, as this is chosen
based on the barrier ID, hence by the user or possibly by the compiler.

Table 3 Time of multiple independent synchronization operations taking place concurrently.

NoC Size Centralized Distributed

2x2 26 26
4x2 164 135
4x4 263 216

Average clock cycles per thread

6 Conclusions

This workshop paper presented the synchronization hardware added to the GPU-like
custom manycore accelerator being developed within the MANGO H2020 project.
The proposed solution relies on a distributed master and on a lightweight control unit
on the core side, providing a synchronization mechanism through hardware-level
message exchange without any memory access overhead. The proposed solution
supports multiple barriers for different application kernels executed simultaneously
on different subsets of cores. The results collected for different NoC sizes provided
indications about the area overheads incurred by our solution and demonstrated the
benefits of using a dedicated hardware synchronization support. As a long-term goal
of this research, we aim to explore the implications of different NoC topologies as
well as the impact of the positions of concurrent masters when multiple kernels are
run in different subsets of cores.
Acknowledgments. This work is supported by the European Commission in the
framework of the H2020-FETHPC-2014 project n. 671668 - MANGO: exploring
Manycore Architectures for Next-GeneratiOn HPC systems.

References

1. K. Paranjape, S. Hebert, and B. Masson, “Heterogeneous computing in the cloud: Crunching
big data and democratizing HPC access for the life sciences,” Intel, Tech. Rep., 2010.

2. M. Barbareschi, A. Mazzeo, A. Vespoli, “Network traffic analysis using Android on a hybrid
computing architecture”, Int’l Conf. on Algorithms and Architectures for Parallel Processing,
Springer, pp. 141–148, 2013.

3. T. Bjerregaard and S. Mahadevan. “A survey of research and practices of network-on-chip”,
ACM Computing Surveys, vol. 38. no. 1, 2006.

4. A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo, “Automated synthesis of FPGA-based heteroge-
neous interconnect topologies”, Int’l Conf. on. Field Programmable Logic and Applications
(FPL), 2013.

10 Alessandro Cilardo, Mirko Gagliardi, Daniele Passaretti

5. F. Amato and F. Moscato, “Pattern-based orchestration and automatic verification of compos-
ite cloud services”, Computers and Electrical Engineering, vol. 56, pp. 842-853, 2016.

6. E. Fusella and A. Cilardo, “Lighting up on-chip communications with photonics: Design
tradeoffs for optical NoC architectures”, IEEE Circuits and Systems Magazine, vol. 16, no. 3,
pp. 4-14, 2016.

7. T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “A Survey of Barrier Algorithms for Coarse
Grained Supercomputers”, Chemnitzer Informatik Berichte, 2004.

8. E. Fusella, A. Cilardo, “H2ONoC: A Hybrid OpticalElectronic NoC Based on Hybrid Topol-
ogy”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 1, pp. 330-
343, 2017.

9. M. Barbareschi, E. Battista, N. Mazzocca, S. Venkatesan, “A hardware accelerator for data
classification within the sensing infrastructure”, Int’l Conf. on Information Reuse and Inte-
gration (IRI), IEEE, pp. 400–405, 2014.

10. F. Amato and F. Moscato, “Exploiting Cloud and Workflow Patterns for the Analysis of Com-
posite Cloud Services”, Future Generation Computer Systems, vol. 67, pp. 255-265, 2017.

11. D. Wentzlaff, et al., “On-Chip Interconnect Architecture Of The TILE Processor”, IEEE Mi-
cro, vol. 27, no. 5, 2007.

12. S. Vangal, et al. “An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS”, IEEE Interna-
tional Conference on Solid-State Circuits (ISSCC), IEEE, 2007.

13. G. Tan, V. C. Sreedhar, and G. R. Gao. “Analysis and performance results of computing
betweenness centrality on IBM Cyclops64”, The Journal of Supercomputing, vol. 56, no. 1,
pp. 1-24, 2011.

14. A. Olofsson, “Epiphany-V: a 1024 processor 64-bit RISC system-on-chip”, arXiv preprint
arXiv:1610.01832, 2016.

15. I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-215, 2007.

16. A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo, “Joint communication scheduling and intercon-
nect synthesis for FPGA-based manycore systems”, Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2014.

17. J. R. Goodman, M. K. Vernon, and P. J. Woest, “Efficient synchronization primitives for large-
scale cache-coherent multiprocessors”, SIGARCH Comput. Archit. News, ACM, vol. 17, no.
2, pp. 64-75, 1989.

18. O. Villa, G. Palermo, and C. Silvano, “Efficiency and scalability of barrier synchronization
on NoC based manycore architectures”, Proceedings of the 2008 international conference on
Compilers, architectures and synthesis for embedded systems, pp. 81-90, 2008.

19. A. Cilardo, E. Fusella, L. Gallo, A. Mazzeo, “Exploiting concurrency for the automated syn-
thesis of MPSoC interconnects”, ACM Trans. on Embedded Computing Systems (TECS) vol.
14, no. 3, pp. 57, 2015.

20. W. Zhu, et al. “Synchronization state buffer: supporting efficient fine-grain synchronization
on manycore architectures”, ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pp.
35-45, 2007.

21. Y.-L. Tseng, K.-H. Huang, and B.-C. C. Lai, “Scalable mutli-layer barrier synchronization on
NoC”, International Symposium on VLSI Design, Automation and Test (VLSI-DAT), IEEE,
2016.

22. D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture, a Hardware/Software
Approch, Morgan Kaufmann, 1998.

23. A. Cilardo, E. Fusella, “Design automation for application-specific on-chip interconnects: A
survey”, Integration, the VLSI Journal, vol. 52, pp. 102-121, 2016.

24. J. L. Abellán, J. Fernández, and M. E. Acacio, “Efficient Hardware Barrier Synchronization
in manycore CMPs”, IEEE Trans. on Parallel and Distributed Systems, vol. 23, no. 8, pp.
1453-1466, 2012.

25. M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient Synchronization for Embed-
ded On-Chip Multiprocessors”, IEEE Trans. on Very Large Scale Integration (VLSI) Systems,
vol. 14, no. 10, pp. 1049-1062, 2006.

