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Abstract—Routing algorithms were extensively studied first
in multi-computer systems, then in multi- and many-core ar-
chitectures. Among the commonly used routing techniques, the
turn model seems the most promising solution when targeting
adaptiveness. Based on the turn model, several alternative ap-
proaches with different turn prohibition schemes were proposed.
This paper gives a new theoretical background for designing
deadlock-free partially adaptive logic-based distributed routing
algorithms that are based on the turn model. Two properties
are presented, including a necessary and sufficient condition to
prove that a routing algorithm is deadlock-free as long as turn
restrictions follow a modular distribution. Existing approaches
can be considered a subset of the solution space identified
by this work. Finally, we propose a novel routing algorithm
exhibiting encouraging performance improvements over state-of-
the-art approaches.

I. INTRODUCTION

The network-on-chip (NoC) paradigm is nowadays consid-
ered the main solution to alleviate the communication scalabil-
ity problems that arise in multi- and many-core systems. NoCs
are mainly based on regular tile-based structures with two
dimensional (2D) mesh/torus topologies [1]. The modularity
and regularity of these topologies make them suitable for a
scalable interconnect fabric.

Given an underlying topology, the routing algorithm de-
termines the routes taken by messages to reach their desti-
nations. It plays a major role affecting performance, power
consumption and reliability of the whole system. Routing has
been extensively studied and several alternative approaches
have been proposed. Minimal logic-based distributed routing
algorithms are desirable due to their advantages in terms of
performance, energy efficiency, scalability and implementation
cost [1]. One example is the dimension-ordered routing (DOR)
where packets are allowed to move in a single dimension
at a time. This approach is very popular since it is easy
to implement and guarantees decent performance. However,
it follows a deterministic behavior and messages are forced
to take the same path between every source-destination pair.
On the contrary, adaptive routing allows different minimal
paths between a source node and a destination node. In case
of fully adaptive routing, all minimal paths can be used to
route a message, while partially adaptive routing exploits a
limited set of all minimal paths. In general, adaptiveness can
provide better performance and fault tolerance by allowing
alternative paths but requires complex techniques to avoid
deadlock situations.
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Fig. 1. Prohibited turns of WF (a), NL (b), NF (c) routing algorithms. The
dashed arrows indicate routing restrictions.

Deadlocks are tackled with two different strategies, i.e.
virtual channels [2] or turn model [3]. Virtual channels are
more suitable for fully adaptive routing algorithms and involve
a non-negligible implementation cost due to the complex
control logic and large buffer space required. On the contrary,
deadlock-free partially adaptive routing algorithms can be
designed with techniques of turn prohibitions, i.e. messages
are not allowed to take some turns in the network.

A turn consists in a 90-degree change in the traveling
direction. 2D meshes are characterized by eight types of turns,
i.e. ES, SW, WN, NW, WS, SE, EN, NE. For instance, a
NE turn involves a change of direction from North to East.
Turns can be classified into clockwise, i.e. NE, ES, SW, WN,
and counter-clockwise, i.e. NW, WS, SE, EN. According to
were to place turn prohibitions, several algorithms based on
the turn model were proposed [3], [4], [5], [6]. The turn
model, that is based on turn prohibitions, requires routing
algorithms to prohibit enough turns to avoid possible cycles
in the channel dependency graph (CDG) [3], thus ensuring
deadlock freedom [7].

It has been 25 years since the turn model [3] was proposed
by Glass and Ni. They demonstrated that deadlocks can be
avoided by prohibiting a single clockwise turn and a single
counter-clockwise turn in each cycle. On this assumption,
they proposed three different routing algorithms: West-First
(WF), North-Last (NL), Negative-First (NF). In the West-
First routing, all turns to the West (NW and SW) are not
allowed and, hence, packets that must reach the West must
start travelling in that direction. Similarly, in the North-Last
routing, all turns when travelling North (NW and NE) are not
allowed and, hence, the North is the last direction that may be
taken. Finally, in the Negative-First, the NW and ES turns are
prohibited. Fig. 1 depicts the prohibited turns.

The Odd-Even turn model (OE) was proposed in [4]. In
order to provide a fairer distribution of prohibited turns, EN
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Fig. 2. Prohibited turns of OE (a), RTM r3.0-1 (b), RTM r3.0-2 (c) routing
algorithms. The dashed arrows indicate routing restrictions.

and ES turns are not allowed on even columns and NW and
SW turns are not allowed on odd columns (Figure 2(a)). In
this way, nodes located on adjacent columns have different
prohibited turns. This helps reduce the load unbalancing of
previously proposed approaches.

Finally, more recently, the repetitive turn model [6] (RTM)
was introduced. The authors pointed out the importance of
repetitively distributing the prohibited turns in order to im-
plement the routing algorithm in a distributed logic-based
way. Then, they investigated the design space of routing
algorithms that have prohibited turns repetitively distributed
along the rows or columns. Finally, they presented two routing
algorithms, named r3.0-1 and r3.0-2, that outperform the OE
routing algorithm. In the r3.0-1 routing, NW and SW turns are
not allowed on the ith column if i mod 3 6= 0, while ES and
EN turns are not allowed on the ith column if i mod 3 = 0.
Similarly, in the r3.0-2 routing, WN and EN turns are not
allowed on the ith row if i mod 3 6= 0, while SE and SW
turns are not allowed on the ith row if i mod 3 = 0. Figs.
2(b) and 2(c) depict the prohibited turns of the two algorithms.

These algorithms have in common that they are obtained
through purely empirical approaches, as the choice of the
forbidden turns as well as their distribution come from the
intuition and expertise of a few researchers. The novel con-
tribution of this paper is two-fold. First, the problem domain
is described and formalized. We thus provide a new theoreti-
cal background for designing deadlock-free partially adaptive
routing algorithms based on the turn model. We present two
properties that help pruning the solution space and designing
new routing algorithms. Finally, we also propose a novel
routing algorithm that exhibits better performance for some
traffic patterns compared to alternative approaches.

II. PROPOSED MODEL AND ROUTING ALGORITHM

In an m× n mesh, a node can be uniquely identified by its
position in the 2D grid. In the following we will use (xi, yi)
with 0 ≤ xi ≤ m − 1 and 0 ≤ yi ≤ n − 1 to indicate the
ith node of the network. Two nodes i and j are neighbors
if and only if xi = xj and yi = yj ± 1 or yi = yj and
xi = xj ± 1. Neighboring nodes are connected by means of
two unidirectional channels. Channels are denoted according to
their traveling directions. For instance, a channel connecting
nodes i and j is called a north channel if yi = yj − 1. In
the same way, we have east, south and west channels. The
nodes that have the same coordinates in the first dimension

are located on the same column. In the same way, the nodes
that have the same coordinates in the second dimension are
located on the same row.

Below we will present two properties that are essential for
the design of partially-adaptive routing algorithms that are
based on the turn model. In particular, the second property
gives a necessary and sufficient condition to prove that a rout-
ing algorithm is deadlock-free as long as certain requirements
are meet. Note that all the following proofs only consider the
clockwise deadlock condition, since the proof in the case of
counterclockwise deadlock is equivalent.

Definition 1. A turn restriction is called upper/lower if it
breaks cycles that are located above/under the node where
it is placed. A turn restriction is called right/left if it breaks
cycles that are located on the right/left of the node where it is
placed.

EN, SE, SW, WN are upper turn restrictions, while NE,
NW, ES, WS are lower turn restrictions. NE, SE, WN, WS
are right turn restrictions, while NW, EN, ES, SW are left
turn restrictions.

Property 1. In a deadlock-free routing algorithm based on
the turn model, if a node prohibits a right (left) lower (upper)
turn, the nodes on the same row must prohibit right (left) turns
and the nodes on the same column must prohibit lower (upper)
turns.

Proof of Property. Let (x0, y0) and (x0, y1) be two generic
nodes of the network that are located on the same column and
are characterized by the same turn restriction. Without loss
of generality, we assume that they both prohibit a right lower
turn. Let (x1, y0) and (x1, y1), with x1 < x0, be two generic
nodes located on the same rows of (x0, y0) and (x0, y1). We
proceed by contradiction. Assume that (x1, y0) and (x1, y1)
prohibit left turns. Now, consider the set of channels con-
necting nodes (x1, y0), (x1, y1), (x0, y1), and (x0, y0) in a
clockwise direction. There is no turn restriction avoiding a set
of packets to be deadlocked clockwise and, hence, (x1, y0) and
(x1, y1) must prohibit right turns. In the same way, consider
the set of channels connecting in a clockwise direction nodes
(x0, y0), (x0, y2), (x2, y2), and (x2, y0), with y2 > y0 and
(x2, y0) prohibiting the same turn of (x0, y0). In case of nodes
(x0, y2) and (x2, y2) prohibiting upper turns, there is no turn
restriction avoiding a set of packets to be deadlocked clockwise
and, hence, nodes (x0, y2) and (x2, y2) must prohibit a lower
turn. The property is proved.

There are some important consequences that arise from this
property:

1) At most two turn restrictions can be enforced in the
clockwise and counter-clockwise direction.

2) It is not possible to have lower right and upper left turn
restrictions at the same time. Similarly, it is not possible
to have lower left and upper right turn restrictions at the
same time.

Property 2. A routing algorithm exploiting the turn model is
deadlock-free iff turn restrictions follow a modular distribu-
tion, i.e. ∃ n ∈ N such that every two nodes i and j prohibit
the same turns if xi ≡ xj mod n or yi ≡ yj mod n.



Proof of Property. (⇒) Let (x0, y0) be a node of the network.
Without loss of generality, we assume that it prohibits a lower
right turn. Due to Property 1, all the nodes (x0, yi) ∀yi located
on the column x0 must prohibit lower turns, and all the nodes
(xi, y0) ∀xi located on the row y0 must prohibit right turns.
As a consequence, considering the clockwise direction, nodes
(x0, yi) can prohibit NE or ES turns, while nodes (xi, y0) can
prohibit NE or WN turns. The case of all the nodes (xi, y0)
and (x0, yi) prohibiting NE turns is trivial, since, according to
Property 1, we will have all nodes of the network prohibiting
the same turn. Differently, we assume that some nodes located
on row y0 prohibit WN turns (similar considerations hold true
in the case of some nodes located on the column x0 prohibiting
ES turns). Due to the first consequence of Property 1, ES turn
restrictions are not possible and hence all the nodes (x0, yi)
prohibit NE turns that are lower right turns. Now, consider
a generic node (x1, y1). Since node (x0, y1) prohibits the NE
turn, that is a right turn, (x1, y1) must prohibit a right turn
too. Now, if node (x1, y0) prohibits an upper turn, then node
(x1, y1) must prohibit a right upper turn, otherwise a right
lower turn. Note that in this way, we have that two generic
nodes (xi, yi) and (xi, yj), ∀xi, yi, yj prohibit the same turns.
This means that also nodes (xi, yi) and (xi, yi + 1), ∀xi, yi
prohibit the same turns. As a consequence, the nodes located
on the same columns prohibit the same turns. Hence, there is
a modular distribution and we prove the property.

(⇐) Consider that there exists a positive integer n ∈ N
such that every two nodes i and j prohibit the same turns if
xi ≡ xj mod n (similar considerations hold true in the case
of yi ≡ yj mod n). This means that all nodes located on the
same column prohibit the same turns. We prove the property
by contradiction. Assume that there exists a set of packets
p0, p1, ..., pn−1, where pi+1 waits for pi with 0 ≤ i ≤ n − 2.
A deadlock arises if p0 waits for pn−1, as a circular de-
pendence is generated through the packets. The waiting path
must include both row and column channels. Now, consider
the rightmost and leftmost columns. Two cases need to be
considered. In case 1, the nodes on the rightmost column
prohibit a left turn and hence the dependency cycle is broken in
the rightmost column. In case 2, the nodes on the rightmost
column prohibit a right turn. According to Property 1, the
nodes on the leftmost column must prohibit a right turn too
and, hence, the dependency cycle is broken in the leftmost
column. Hence, the property is proved.

Property 2 gives a necessary and sufficient condition to
choose a turn prohibitions distribution scheme ensuring free-
dom from deadlocks. As a consequence, all routing algorithms
based on the turn model, including existing approaches, are
part of the solution space identified by this work. For instance,
consider the routing algorithms surveyed in Section I. The case
of the routing algorithms WF, NL and NF is trivial, since all
nodes of the network prohibit the same turns. Differently, in
the OE algorithm, a generic node (xi, yi) prohibits ES and EN
turns if xi mod 2 = 0 and SW and NW turns if xi mod 2 = 1.
Similar considerations apply for RTM r3.0-1 and RTM r3.0-
2 routing algorithms. In the RTM r3.0-1 algorithm, a generic
node (xi, yi) prohibits ES and EN turns if xi mod 3 = 0,
otherwise SW and NW turns. Similarly, in the RTM r3.0-2

algorithm, a generic node (xi, yi) prohibits SW and SE turns
if yi mod 3 = 0, otherwise WN and EN turns. Note that,
Property 2 partitions the nodes of the network in n class of
nodes, with nodes in the same class providing the same turn
restrictions. Each node belongs to a class for clockwise turn
restrictions and to another class for counter-clockwise turn
restrictions, potentially enlarging the solution space.

Novel routing algorithms can be found in two steps: 1) find a
positive integer value n ∈ N that is the dividend of the modulo
operation. 2) specify which turn prohibitions are associated
with each class of nodes. In case of a n × n NoC, there
are 2n+2 − 4 different turn prohibitions distribution schemes
for both the clockwise and counter-clockwise directions. This
is because according to the first consequence of Property 1,
a routing algorithm can prohibit at most two turns in the
clockwise direction and two turns in the counter-clockwise
direction. As a consequence, there are 2n − 1 different class
of nodes and four pairs of turn restrictions.

Based on the above considerations, it is possible to find
new routing algorithms, potentially outperforming previously
proposed approaches. In that respect, we analyzed all routing
algorithms considering a maximum dividend of the modulo
operation equal to 4. Please, note that this is very preliminary
and is here only to show that the proposed model enhances the
solution space found by previously proposed works and, hence,
gives the opportunity to find routing algorithms that outperform
existing ones. Second, all routing algorithms are evaluated
according to their routing pressures [8], a new metric useful to
measure routing performance in a fast and effective way. Last,
we choose the routing algorithm whose average pressure is
closer to the ideal pressure, i.e. the minimum value among the
pressures of all the different algorithms. The prohibited turns
of the proposed routing algorithm are shown in Figure 3 for
the case of an 7×7 mesh topology. Basically, in the proposed
algorithm, a generic node (xi, yi) prohibits SW and NW turns
if xi mod 3 = 0, ES and NW turns if xi mod 3 = 1 and SW
and EN turns if xi mod 3 = 2.

III. EVALUATION

In this section, we evaluate the proposed routing algorithm
in terms of performance, i.e. latency and throughput. For
our experimental evaluation, we relied on Noxim, an open

Fig. 3. Prohibited turns of the proposed routing algorithm. The dashed arrows
indicate routing restrictions.
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Fig. 4. (a) (b) (c) (d) Latency and (e) (f) (g) (h) throughput variation under (a) (e) transpose1 (b) (f) transpose2 (c) (g) shuffle and (d) (h) uniform traffic
scenarios.

source SystemC NoC simulator [9]. The proposed routing
algorithm, shown in Figure 3, was implemented in SystemC
and embedded in Noxim. We consider a 16×16 mesh topology.
All packets have the same size of eight flits and routers are
configured to have a buffer depth of four flits. The commonly
used round-robin policy is adopted to select requesting inputs
in switch allocation stage and output ports are choosen from
the outputSet set according to a random selection strategy. Each
simulation runs 50, 000 cycles after 2, 500 cycles of warm-up
period in order to allow the system to stabilize. The simulation
for each configuration is iterated a number of times to improve
accuracy.

We compared the proposed approach with the OE and RTM
routing algorithms in terms of latency and throughput. The
comparison is done with transpose1, transpose2, shuffle and
uniform traffic patterns [9]. Consider an n×n mesh topology.
Nodes (xi, yi) communicate with nodes (n−yi−1, n−xi−1)
and (yi, xi) in case of respectively transpose1 and transpose2.
Differently, nodes with address an−1, an−2, ..., a1, a0 commu-
nicate with nodes with address an−2, an−3, ..., a0, an−1 in case
of shuffle traffic. In the uniform traffic, destination nodes are
chosen with equal probability in the whole network.

The latency and throughput variations under transpose1
and transpose2 traffics are shown in Figure 4(a) and (e) and
Figure 4(b) and (f). In case of transpose1, the proposed algo-
rithm decreases on the average the packet delay of more than
55% and 14% compared to OE and RTM routing algorithms.
Differently, in case of transpose2, the proposed algorithm
and RTM achieve similar performance with a 17% average
advantage in terms of latency compared to OE. The simulation
results for bit-reversal and uniform traffics are shown in Figs.
4(c) and (g) and 4(d) and (h). As regards shuffle traffic,
the three algorithms achieve the same performance with a
small advantage compared to OE at higher injection rates.
Finally, the proposed algorithm has better performance than
OE under uniform traffic. However, it reaches saturation with a
smaller injection rate compared to RTM and, hence, for higher
injection rate values, RTM has lower packet latency.

IV. CONCLUSIONS

We have presented a novel formal model for designing par-
tially adaptive logic-based distributed routing algorithms that
are based on the turn model. This work improves on previously
proposed approaches, identifying a superset of the solutions
spanned by existing works. Based on the proposed model, we
presented a novel routing algorithm that outperforms state-of-
the-art approaches for some traffic patterns.
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