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Abstract—Shared memory coherence is a key feature in many-
core accelerators, ensuring programmability and application
portability. Most established solutions for coherence in homo-
geneous systems cannot be simply reused because of the special
requirements of accelerator architectures. This paper introduces
a low-overhead hardware coherence system for heterogeneous
accelerators, with customizable granularity and noncoherent
region support. The coherence system has been demonstrated in
operation in a full manycore accelerator, exhibiting significant
improvements in terms of network load, execution time, and
power consumption.

I. INTRODUCTION

Accelerator-based –or heterogeneous– computing has be-
come increasingly important in a variety of scenarios [1],
ranging from High-Performance Computing (HPC) to embed-
ded systems. Heterogeneous resources may include GPUs but
also dedicated processing units, often implemented on FPGAs
or dedicated ASIC units. To maximize resource and power
efficiency, accelerator architectures tend to rely on parallelism
to improve performance, with multi/manycore accelerators
being today commonplace. In such scenarios, coherent shared
memory is an important facility [2] acting as a key en-
abler for programmer-friendly models exposed to the software
as well as for the effective adaptation of existing parallel
applications. However, unlike general-purpose architectures,
hardware-managed coherence poses a major challenge for
accelerators, due to the cost of the coherence infrastructure
as well as the possible limitations in terms of scalability
and performance. Full implementation of standard coherence
protocols can induce significant overheads even when there
is essentially no data sharing, e.g. when handling a nonshared
block eviction. In fact, in many workloads a significant fraction
of blocks are private to a single processing unit requiring
in principle no coherence maintenance [3], [4]. While such
problems have been widely investigated in the area of con-
ventional homogeneous architectures, manycore accelerator-
based systems pose special requirements and constraints. For
example, some existing solutions require a software support [5]
or even an active role of the Operating System in conjunction
with a paging mechanism [4], which cannot be assumed
on most accelerator-based systems. Other approaches target
small/medium-scale on-chip multi-processors (CMPs) and rely
on broadcasting mechanisms [6] [7], limiting the scalability
towards massively parallel manycore systems.

This paper introduces a low-overhead hardware coherence
system for heterogeneous accelerators, with customizable gran-
ularity and noncoherent region support, able to significantly
reduce the messaging overhead due to coherence transactions.
The coherence maintenance system distinguishes private and
shared data, avoiding unnecessary coherence operations and

optimizing indirection latencies for private data. The archi-
tecture is mostly protocol-independent and is demonstrated
here in conjunction with an extended Modified-Shared-Invalid
(MSI) protocol.

Some related contributions in the technical literature are
briefly reviewed in Section II, while Section III provides the
details of the proposed coherence infrastructure and Section IV
presents the results of our experimental evaluation. Unlike
typical works dealing with coherence in homogeneous proces-
sors, these results are not only collected from simulation, as
the technique has been embodied in a fully-fledged manycore
accelerator available as an RTL model and emulated on a large-
scale FPGA platform. The evaluation in Section IV, which
relies on a number of kernels with various compute/memory
access patterns, shows significant reduction of the communi-
cation load and, consequently, improved execution time and
energy consumption. The results also highlight the limited
hardware overhead incurred by the proposed technique and
confirm its potential benefits for future large-scale manycore
accelerators, as summarized by the final remarks in Section V.

II. RELATED WORK

Most of the relevant work in the literature targets
small/medium scale CMP architectures relying on snooping
protocols. For example, in [6] the memory space is divided in
regions and each CMP core keeps track of sharing information
with a coarse granularity. Broadcasting on the shared bus is
used to keep this information consistent across the system,
while coherence transactions can be significantly reduced in
case of exclusive ownership of memory blocks. The technique
does not address false sharing, with cores accessing different
parts of the same block still competing for its ownership, and
extensively relies on broadcasting, which limits the scalability
of the solution. Similar considerations hold for [8], where a
table called Region-Coherence Array is deployed to track the
memory region’s coherence state.

Demetriades et al. [9] propose Stash Directory a solution
which extends the traditional sparse directory by avoiding
invalidation for blocks that are known to be private. Our
solution takes a similar approach, although in our work the
directory is totally unaware of private blocks, so both directory
entry evictions and directory indirection are avoided.

The work in [7] eliminates both the traditional coher-
ence invalidation/update scheme and the costly sharer-tracking
mechanism, mitigating the directory storage overhead, the need
for indirection as well as the traditional protocol complexity.
The solution, however, still relies on an expensive broadcast-
based invalidation mechanism to retrieve all block copies from
the sharers.

Power et al. [1] focus on hardware coherence in CPU-
GPU-centric heterogeneous systems, highlighting coherence
bottlenecks and showing that limited directory resources are



a major show-stopper in such systems. In fact, a few solutions
aim to reduce the directory size by redefining the granularity
of the coherence regions. SCT [10] supports a dual-grain
coherence system which tracks private regions by observing
memory requests from the cores and keeping only one entry
at the directory level for any number of blocks in that region.

In [5], Kelm et al. propose a hybrid solution for switching
from a hardware coherence maintenance scheme to a software
model, and vice versa. The solution heavily relies on a global
coherence table within the last-level cache (LLC), which tracks
the coherence approach to use and the block-level granularity.
Cuesta et al. [4] aim to improve the efficient use of the memory
in the directory. The authors propose a mechanism that clas-
sifies memory blocks into private and shared data, providing
coherence support only for shared blocks. The technique relies
on memory paging support and an active involvement of the
Operating System, and hence it does not lend itself for the
case of bare-metal accelerators.

III. PROPOSED COHERENCE INFRASTRUCTURE

Before presenting our coherence system, we provide a few
technical details of the manycore accelerator used for our
experiments. We relied on the Naples Processing Unit (Naples
PU) [11] open-source manycore system, demonstrated by the
authors within the MANGO H2020 projcet. Naples PU is
based on a 2D mesh of heterogeneous tiles relying on a
network-on-chip (NoC). The NoC routers are tightly coupled
with network interface modules providing packet-based com-
munication over four different virtual channels. A two-stage
look-ahead router is used implementing a wormhole flit-based
communication. The networking infrastructure allows both
intra-tile and inter-tile communication. One virtual channel is
dedicated to service message flows. In particular, the many-
core system supports a distributed synchronization mechanism
based on hardware barriers. The accelerator core, shown in
Figure 1a, is fully parameterizable. It features a lightweight
control infrastructure, hardware multithreading as well as a
vector instruction set targeted at data-parallel kernels, a typical
approach taken by heterogeneous accelerators. In particular,
the core is organized in N processing elements (PEs), each
capable of both integer and floating-point operations on inde-
pendent data. Correspondingly, each thread is equipped with a
vector register file, where each register can store up to N scalar
data allowing each thread to perform vector operations on N
independent data simultaneously. In the default configuration,
the architecture employs N = 16 PEs that can handle 32-bit
data concurrently. The accelerator core also features its own m-
way set-associative write-back L1 caching system, as well as a
load/store unit tightly interconnected with the cache controller.
The load/store unit is independent of the adopted coherence
protocol. For each cached block it stores two permission bits,
namely can_read and can_write, which are updated by
the cache controller and used by the accelerator to detect a
cache hit or miss. The cache line width matches the number
of physical PEs, i.e. a read memory request loads 16 scalar data
from the main memory and stores them into a vector register at
once. Each core stores a byte-level dirty mask for each private
cache block, which is evaluated when the cache line is flushed
back to the LLC. This mask is attached to the message and
the LLC proceeds to update only the dirty part of the cached
value. Such a mechanism allows multiple cores to work on
non-overlapping portions of the same memory blocks without

incurring any data loss and unneeded contentions, providing
an effective solution to the false sharing problem.

A. Baseline coherence system
To ensure scalability, Naples PU resorts to a sparse directory

approach and a distributed L2 cache, resulting in a dramatic
area reduction compared to a full-map directory model [12].
Each tile deploys a coherence maintenance infrastructure along
with the accelerator core, as shown in Figure 1b. A cache
controller handles the local processing unit’s memory requests,
turning load and store misses into directory requests over the
network. It also handles responses and forwarded requests
coming from the network, updating the block state in compli-
ance with the given coherence protocol, while the accelerator is
totally unaware of it. In fact, the architectures of the cache and
the directory controllers have been designed with flexibility in
mind and are not bound to any specific coherence protocol.
They are equipped with a configurable protocol ROM, which
provides a simple means for coherence protocol extensions,
as it precisely describes the actions to take for each request
based on the current block state. Furthermore, the directories
are totally unaware of the selective coherence deactivation
for private blocks, described in Section III-B, so any existing
design can be used.

B. Selective coherence deactivation
Our solution supports selective coherence deactivation for

private data by means of noncoherent memory region tables,
which track the start/end addresses of noncoherent areas. The
granularity of a region is configurable. It is set to 4 MB
in the default configuration. When an accelerator requests a
memory access, if the requested address lies within any of the
configured noncoherent regions, the local cache controller is
notified that this is a noncoherent memory access. The location
of the table impacts the overall system performance. While a
single global table (which can be distributed uniformly in the
design, as in [5]) ensures a consistent view of the memory
configuration, the corresponding operations (updates, queries,
etc.) cause additional pressure on the interconnection. In our
solution, each tile is equipped with a private table, minimizing
the table access latency, under the assumption that the initial
table configuration by the software is consistent. Consequently,
operations on the table generate no additional traffic over
the network-on-chip. The region tables can be accessed by
the accelerator through special control registers, as shown in
Figure 1c, providing a flexible configuration and debugging
infrastructure. Registers are directly mapped to the region
table interface, allowing entry allocation/modification from the
accelerator side during run-time.

C. Extended MSI protocol
The basic MSI coherence protocol has been extended to

support non-coherent memory blocks. The cache controller is
the only coherence actor aware of the noncoherent memory
blocks, as the directory controller is completely bypassed in
case of noncoherent accesses and thus it allocates no entry
during noncoherent transactions. The proposed protocol is
depicted in Figure 1d in a simplified diagram which involves
the new noncoherent states and the related transient states.
Every request coming from the local accelerator is tagged with
a coherence bit, according to the region table look-up result.
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Fig. 1. a) Overview of an accelerator core within Naples PU. b) Detail of a processing tile extended with the proposed coherence system. This figure highlights
the Cache Controller (CC) and the extension for noncoherent region support. The CC mainly relies on the distributed directory, on an extended coherence
protocol which resides in its embedded protocol ROM, and on a local bypass which allows the CC to directly access the forward virtual network interface of
the network infrastructure. c) Detail of the region look-up table. d) Extended MSI protocol used in the Cache Controller. Only the noncoherent states and the
related transient states are represented.

When a block is in the invalid state I, the first access will
determine which coherence mechanism will be applied on it. If
the access is a noncoherent load, the read request is forwarded
directly to the LLC while the block is in the transient state
IUd waiting for the data. The noncoherent state, namely U, is
applied to this block when data are received. All the subsequent
reads or writes will always result in a cache hit and no
additional traffic is required to track the block status. On the
other hand, if the first access is a noncoherent store, the request
always results in a hit, the block transits into the noncoherent
write state, namely UW, and no memory block is fetched form
the LLC. A bit-mask is used to keep track of which bytes of
the block are dirty: further loads from those parts will result in
a hit. This approach is based on the observation that store-first
noncoherent blocks are usually used to track either the output
of the computations or the memory stack of a core (which
is also private), so there is no need to fetch their previous
value. This significantly reduces the overall network traffic,
since no message is generated during these operations. If a
noncoherent load request occurs for a block in the UW state,
the cache controller checks the dirty bit-mask. If the request
address offset is marked as dirty, the data is retrieved from the
local cache and no coherence state transition occurs. On the
other hand, if the requested data is not marked as dirty, it needs
to be fetched from the LLC, so the cache controller sends the
request over the network-on-chip and moves the block state
from UW to the transient state UWUd. As soon as the data is
received, the block transits into state U. Notice that our solution
does not rely on broadcasting for eviction, thereby improving
performance and network efficiency.

IV. EXPERIMENTAL EVALUATION

The proposed approach has been fully validated and demon-
strated on the Naples PU system, as an example of a real
large-scale manycore accelerator, emulated on the FPGA-based

platform provided by the MANGO project. Naples PU also
comes with an LLVM-based software toolchain, not described
here, used to compile the parallel kernels under study, which
are written in C language. The experimental system features
a 4 × 4 mesh with 14 units, one memory controller tile,
and one host-communication tile. Each unit deploys 16 PEs
and it is equipped with 8 hardware threads, totalling 224
PEs physically allocated in the system. Threads in the same
accelerator share the same L1 cache and network access
interface. The quantitative evaluation was carried out on a
proFPGA MB-4M FPGA board by ProDesign, equipped with
one Xilinx Virtex-7 XC7V2000T FPGA. Each kernel used for
the evaluation is parallelized over 128 processing elements.
The host-communication tile is used to gather termination sig-
nals from the parallel threads and determine the completion of
the kernel. Each workload is executed (1) using a baseline MSI
coherence support, and (2) employing our selective coherence
system. In the latter configuration, the noncoherent regions
can overlap with the kernel input and output data. We first
measure the impact of our solution on the network traffic in
terms of the total number of flits processed by the routers.
Figure 2c shows the results. By overlapping the noncoherent
regions with the kernel data section, we observe a remarkable
saving in terms of flits flowing over the network (up to 77%
in the convolution workload). This is due to the lower
number of unnecessary coherence requests sent to the involved
directory controllers, resulting in both a considerable reduction
of the indirection latencies and limited transaction overhead
caused by false sharing. Next, we evaluate the impact of the
proposed mechanism in terms of total kernel clock cycles and
the number of data misses occurred during the computation.
These results are shown in Figure 2b and Figure 2a. The
number of data cache misses drops in all the presented
workloads, almost up to 80% in the dct, and about 85%
in the kmeans workload, while in convolution, matrix



co
nv dct �t

lud ms mt
mm

kmeans
0

0.2

0.4

0.6

0.8

1

1.2
Ke

rn
el

 c
yc

le
s

Coherent
Non-Coherent

co
nv dct �t

lud ms mt
mm

kmeans
0

0.2

0.4

0.6

0.8

1

1.2

Ke
rn

el
 m

is
se

s 
(n

or
m

al
iz

ed
)

Coherent
Non-Coherent

co
nv dct �t

lud ms mt
mm

kmeans
0

0.2

0.4

0.6

0.8

1

1.2

FL
IT

s 
nu

m
be

r (
no

rm
al

iz
ed

)

Coherent
Non-Coherent

co
nv dct �t

lud ms mt
mm

kmeans
0.8

0.85

0.9

0.95

1

1.05

N
et

w
or

k 
po

w
er

 c
on

su
m

pt
io

n 
(n

or
m

al
iz

ed
)

Coherent
Non-Coherent

a) b) c) d)

Fig. 2. a) Number of cycles for each kernel in coherent and noncoherent configurations. b) Total number of data misses in the whole system. c) Total number
of flits flowing through the network-on-chip. d) Dynamic power consumption of the networking infrastructure.

multiplication, and marching squares these num-
bers stay constant. Furthermore, in dct, fft, and kmeans
these reductions are more prominent due to the distribution of
the data. Such kernels are heavily affected by false sharing
due the granularity of the memory blocks. In these cases,
different PEs compete for different data placed within the same
memory blocks, resulting in coherence maintenance which
generates unnecessary network messages when running with
baseline MSI coherence support. In terms of kernel duration,
we observe a reduction in most of the presented workloads, up
to 25% for matrix transpose. In three cases our solution
has a marginal impact, namely convolution, fft, and
marching squares. Although these workloads generate
less flits, the memory layout for noncoherent data and the
accelerators’ multithreading support hide the potential im-
provement. Finally, we evaluate the dynamic power reduction
in the networking infrastructure. Figure 2d shows the results.
All workloads experience a power reduction, up to 5% in
the matrix transpose case. These results are directly
correlated to the previously exposed results, i.e. the reduction
of flits and directory activity.

TABLE I. RESOURCE OCCUPATION OF ONE TILE.

LUT Flip-Flop BRAM
Baseline coherence system 20.888 (135.717) 43.197 (216.508) 37 (133)
Selective coherence system 24.045 (132.560) 46.308 (213.397) 37 (133)

A. Hardware overhead
We also discuss the hardware overhead incurred by the

coherence system, both in the baseline version and the ver-
sion proposed here supporting multi-grain blocks, selective
coherence deactivation, and private data optimizations. In
both cases the system can handle up to 32 concurrent co-
herence transactions, while the Region Tables contain 128
entries. Table I shows the hardware resources required by
the emulated system on the Virtex-7 XC7V2000T FPGA. The
numbers refer to the additional hardware needed for coherence
maintenance in a single manycore tile, while the values in
parentheses indicate the overall requirements of a tile. The
baseline coherence support brings a moderate overhead on the
tile cost, and proportionally on the whole manycore, ranging
from 16% to 28% depending on the type of resources, while
most of the hardware is used for processing. The selective
coherence support proposed here incurs a marginal additional
cost compared to the baseline version, as low as 13% for LUTs
and 6% for FFs.

V. CONCLUSIONS

Hardware-managed coherence is an important feature for
emerging large-scale manycore accelerators. The design pro-
posed here provides a lightweight, scalable solution for selec-
tive coherence, enabling significant improvements in terms of
network load, execution time, and power consumption.
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