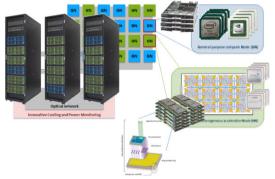


MANGO: Exploring manycore architectures for QoS-aware HPC

PEGPUM Workshop, January 24, 2017, Stockholm

Alessandro Cilardo

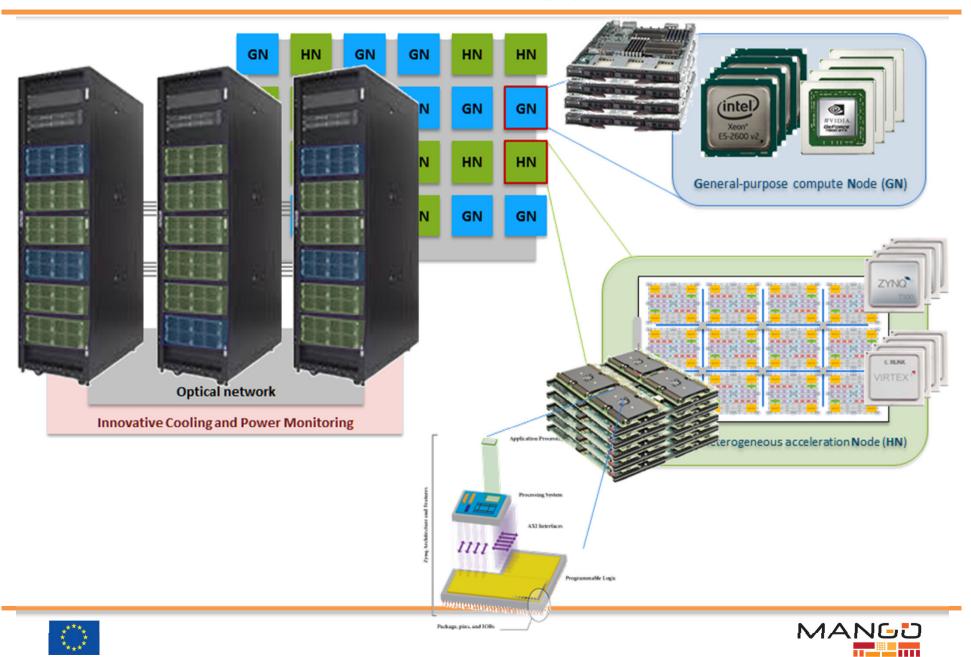
CeRICT/University of Naples Federico II

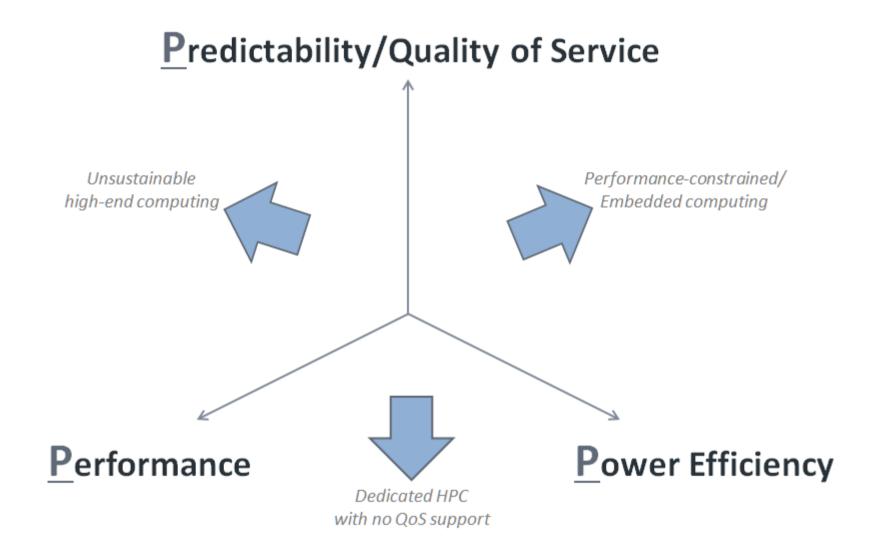


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 671668

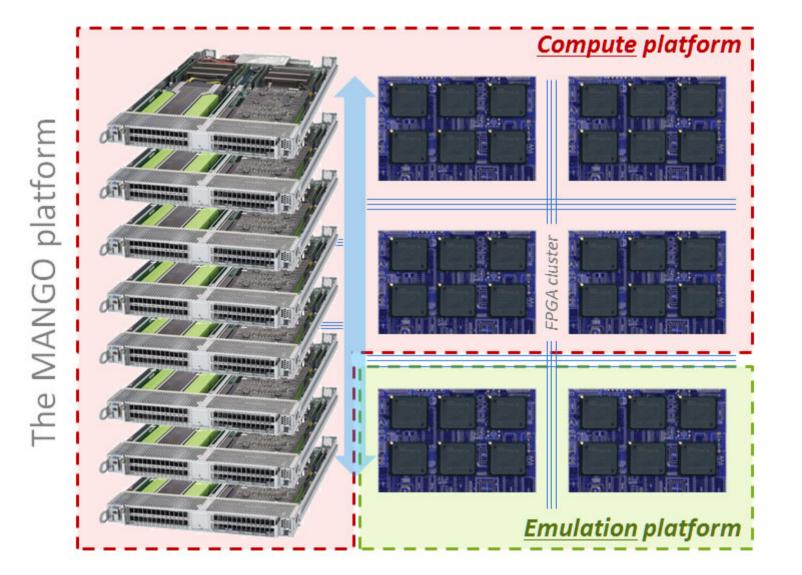
The MANGO project and consortium

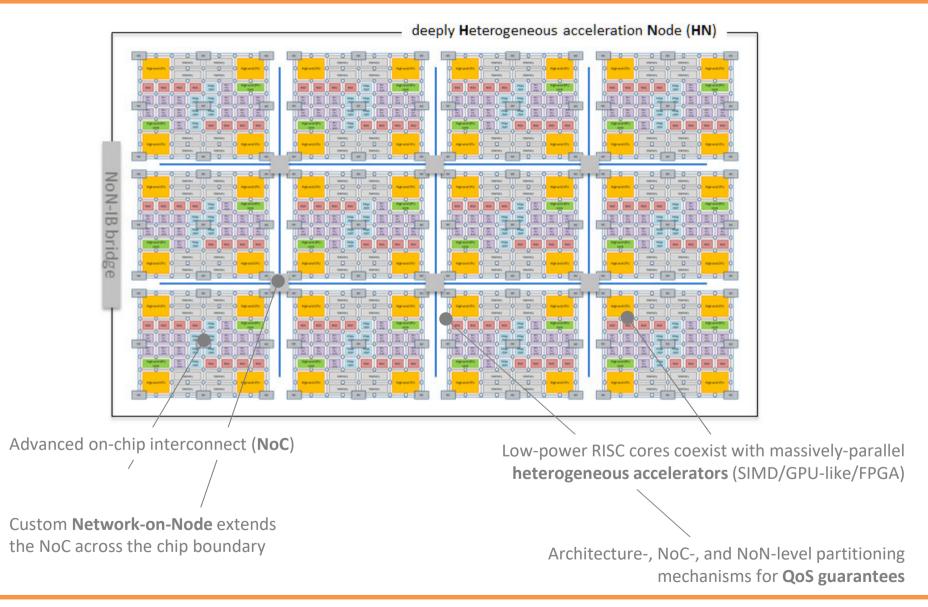
- MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems
- started Oct. 2015, budget ≈ 6M€
- One of the 19 large projects selected for exploring innovative HPC solutions (H2020-FETHPC 2014 call)
- Universitat Politècnica de València (SPAIN)
- CeRICT / University of Naples (ITALY)
- Politecnico di Milano (ITALY)
- Zagreb University (CROATIA)
- Pro Design GmbH (GERMANY)
- Thales Communication & Security (FRANCE)
- EPFL (SWITZERLAND)
- Philips Medical Systems (NETHERLAND)
- Eaton Industries SAS (FRANCE)



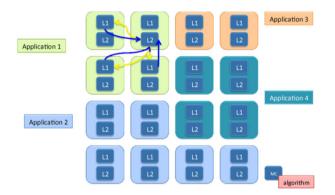


MANGO: the big picture


MANGO: exploring the PPP design space

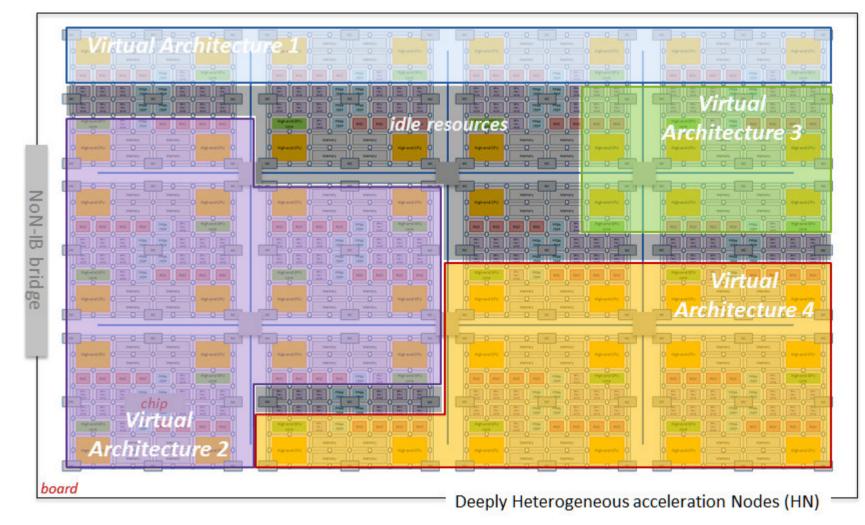

The MANGO platform

Deeply Heterogeneous acceleration Node (HN)



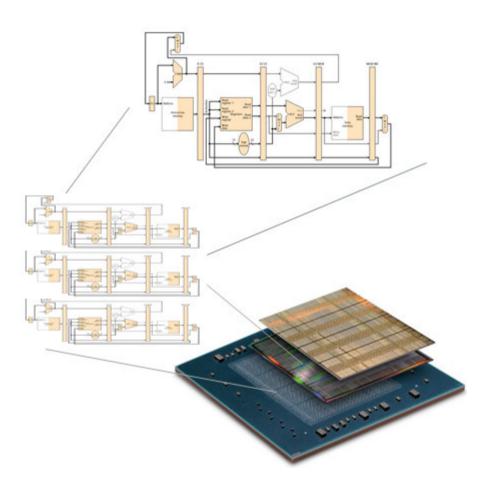
Heterogeneous Nodes: interconnect

- Builds on an advanced NoC developed by UPV
 - PEAK (Partition-Enabled Architecture for Kilocores) architecture
- Provides:
 - Built-in partitionability
 - On-the-fly reconfigurability
 - Co-development of interconnect and memory hierarchy
 - QoS capabilities
 - Adaptive routing



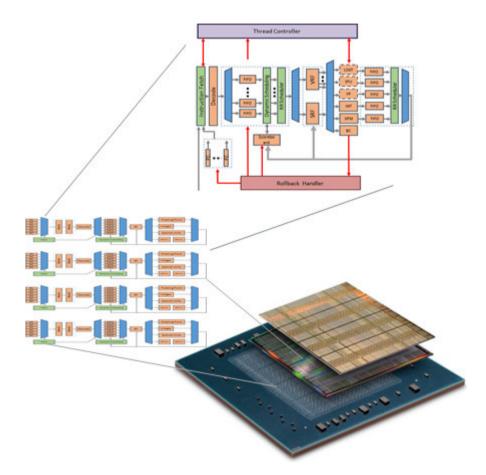
Heterogeneous Nodes: virtualization support

• HN: fine-grained partitioning capabilities



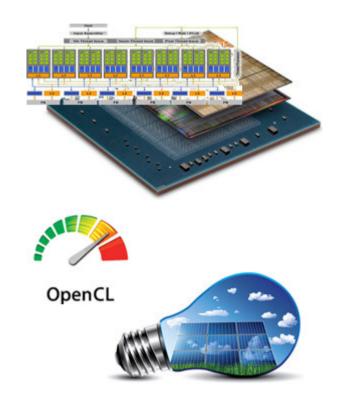
The MANGO **RISC** general-purpose core

- MIPS architecture
- Compatible with GCC compiler
- Out-of-order datapath planned for future development
- Fully integrated in PEAK



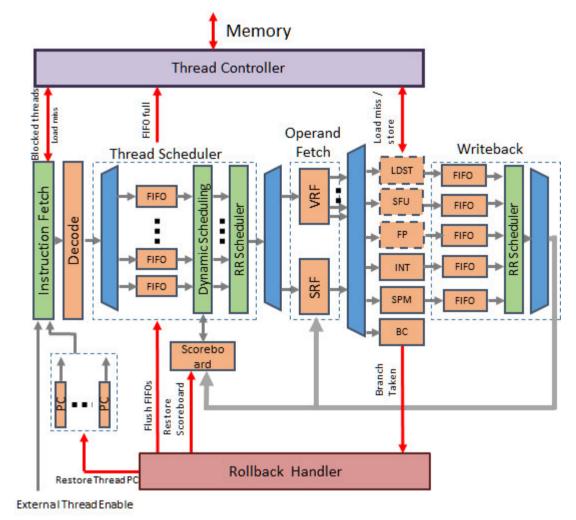
The MANGO GPU-like accelerator

- *v*+ (or *Nu*+) GPU-like core
- Open source, softwareprogrammable HDL design
- Fits both MANGO perspectives:
 - FPGA-based emulation
 - FPGA-based computation:
 provides a parametrized,
 programmable overlay


 \mathcal{V} + (pronounce: nu:plas) GPU-like core

The MANGO GPU-like accelerator

- Match recent trends
 - also including FPGA and SoC manufacturers
- Enable higher power-efficiency
- Provide an effective answer to programmability issues
 - support for high-level languages and models, like OpenCL
- MANGO: pursue *deep customization* of GPU-like cores
 - driven by applications
 - tailor architecture to specific workloads



Nu+ current microarchitecture

- You can configure:
 - Number of cores
 - Number of Threads
 - Number of hw lanes
 - Number of registers per Thread
 - Cache set-size
 - Number of ways
 - Number of 32-bit words in each line
 - SPM parameters:
 - Number/size of banks
 - Type of partitioning
 - Etc..
- Also developed an LLVM compiler backend and initial programming tools

Nu+ Scratch-Pad Memory

A. Cilardo, M. Gagliardi, C. Donnarumma, "A Configurable Shared Scratchpad Memory for GPU-like Processors", *Procs. of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Springer*, pp 3-14, 2016

Nu+ Scratch-Pad Memory: evaluation

- kernels from benchmark suites (PolyBench)
- rewrote each of those kernels to increase the kernel memory access parallelism
- Used first an ad-hoc cycle-accurate emulator
- repeated the experiment for different *remapping functions* identified for the specific kernel as well as for a variable number of banks

Cyclic mapping				E	Block r	nappin	g	Generalized Cyclic mapping					
Bank0 I	Bank1	Bank2	Bank3	Bank0	Bank1	Bank2	Bank3	Bank0	Bank1	Bank2	Bank3		
0x00	0x04	0x08	0x0c	0x00	0x10	0x20	0x30	0x00	0x04	0x08	0x0c		
0×10	0x14	0x18	0x1c	0x04	0x14	0x24	0x34	0x1c	0x10	0x14	0×18		
0x20	0x24	0x28	0x2c	0x08	0x18	0x28	0x38	0×28	0x2c	0x20	0x24		
0x30	0x34	0x38	0x3c	0x0c	0x1c	0x2c	0x3c	0x34	0x38	0x3c	0x30		

A. Cilardo, M. Gagliardi, C. Donnarumma, "A Configurable Shared Scratchpad Memory for GPU-like Processors", *Procs. of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Springer*, pp 3-14, 2016

Nu+ Scratch-Pad Memory: evaluation

- Results:
 - Matrix
 Multiplication
 - 5 \times 5 Mean Filter
- Number of conflicts got by varying:
 - Number of lanes
 - Number of banks
 - Mapping strategy

Lanes	Banks		Remap	pping fac	ctor		Lanes	Banks	Remapping factor					
		No Remap	1	2	4	8	Louireo		No Remap	1	2	4	8	
4	16	262146	131072	262146	262146	262146		16	109230	91756	109230	109230	109230	
	32	262146	0	0	131072	262146		32	109230	32768	65538	91756	109230	
	64	262146	0	0	0	0	16	64	109230	0	0	32768	65538	
	128	262146	0	0	0	0		128	109230	0	0	0	0	
	256	131072	0	0	0	0		256	91756	0	0	0	0	
	512	0	0	0	0	0		512	65538	0	0	0	0	
	1024	0	0	0	0	0		1024	32768	0	0	0	0	
8	16	183505	131073	183505	183505	183505		16	61696	58256	61696	61696	61696	
	32	183505	0	65536	131073	183505		32	59768	32769	45878	54615	59768	
	64	183505	0	0	0	65536		64	59768	0	16384	32769	45878	
	128	183505	0	0	0	0	32	128	59768	0	0	0	16384	
	256	131073	0	0	0	0		256	54615	0	0	0	0	
	512	65536	0	0	0	0		512	45878	0	0	0	0	
	1024	0	0	0	0	0		1024	32769	0	0	0	0	

A. Cilardo, M. Gagliardi, C. Donnarumma, "A Configurable Shared Scratchpad Memory for GPU-like Processors", *Procs. of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Springer*, pp 3-14, 2016

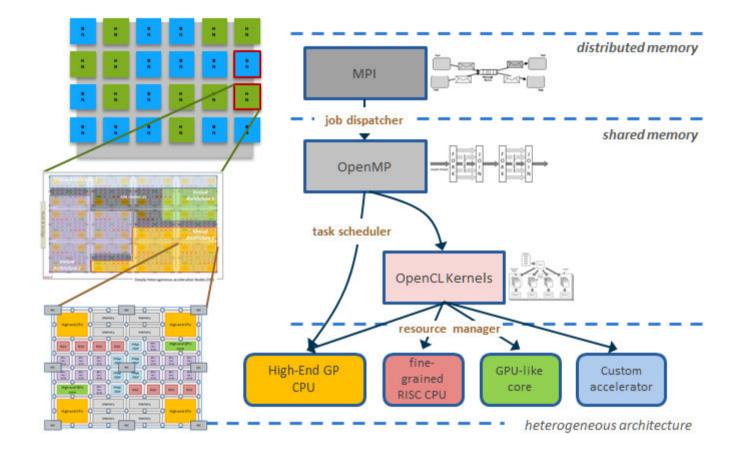
The Nu+ long-term objectives

- Develop a whole ecosystem of customizable FPGA-based overlay solutions
 - parameterized hardware cores
 - toolchain
 - software libraries
 - ambitious applications from the scientific computing and big data domains
- Ideally matches emerging compute technologies
 - TFLOPS-grade FPGAs + highend CPUs
 - e.g. new Intel MCP solutions

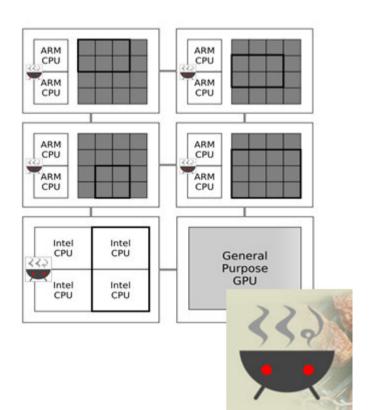
The Nu+ GPU-like accelerator

integrated in the H2020-FETHPC-2014 European Project MANGO: *exploring Manycore Architectures for Next-GeneratiOn HPC systems*, project ID: 671668

chosen to participate in the Intel "Hardware Accelerator Research Program" (Nov 2016)


- More details at http://nuplus.hol.es (temporary address, will be changed)
- Contacts: Alessandro Cilardo, acilardo@unina.it

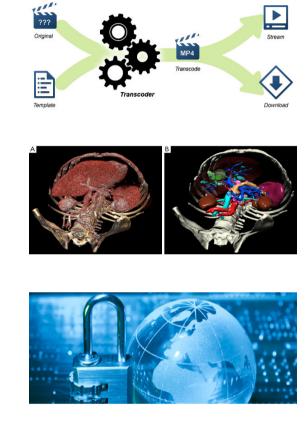
Back to MANGO: Programming challenges



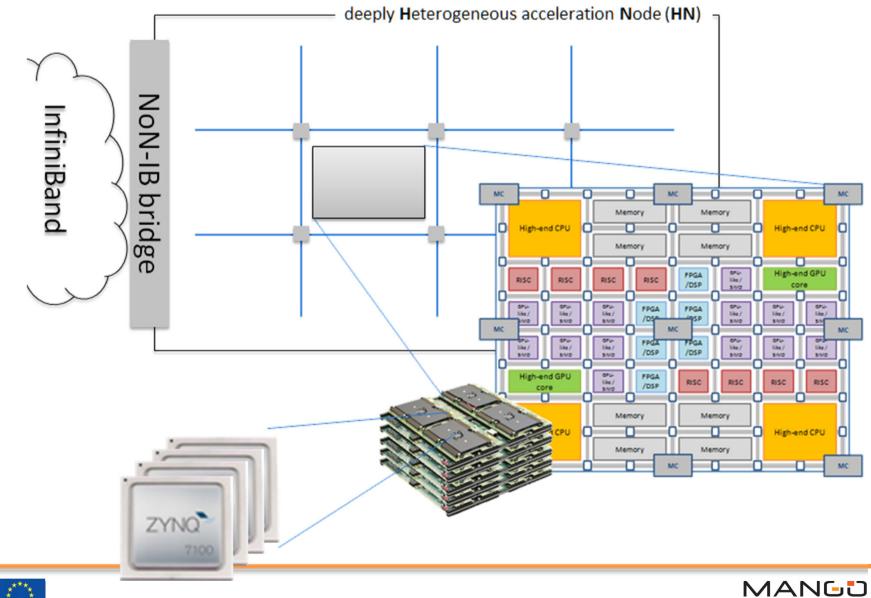
Run-time power and thermal management

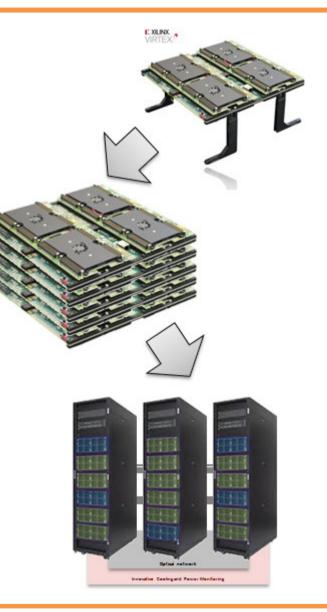
- Platform monitors and knobs
 - define which monitors and knobs to use, and what granularity
 - Hardware vs. Software
- Will take a proxy-based approach:
 - Identify performance counters
 - Determine models for each subsystem based on benchmarking
- Power models will be essential for the Run-Time Resource Manager
- MANGO will rely on Barbeque, developed by Politecnico di Milano
 - Extended to multi-node systems
 - Will rely on a hierarchical Master/Slave organization

Run-time power and thermal management


- Fine-grained monitoring of energy, temperature, and power in servers and racks (led by EPFL)
 - fast calculation of power/thermal figures of servers under highly dynamic workload behaviors
 - system-wide multi-objective optimization
 - hierarchical runtime manager, exploiting both OS and hypervisor levels to tune the system knobs
- Optimization of the mechanical cooling part
 - use two-phase cooling at rack level
 - novel passive thermosyphon (gravity-driven) cooling technology
 - microfluidic fuels cells combined with the liquid cooling technology

MANGO applications


- Chose applications with stringent QoS and high-performance requirements:
 - Video transcoding
 - Medical imaging
 - Sensor data processing
 - Security-related and cryptographic operations


MANGO Heterogeneous Nodes: prototyping

The MANGO platform roadmap

- Phase 1 Stand-alone single-board emulator
 - Pro-Design proFPGA quad V7
 Prototyping system
- Phase 2 Dedicated chassis
 - standard connectivity and form factor
- Phase 3 Rack assembly
 - rack collecting up to 16 blades
 - high-end CPUs, e.g. Intel Xeon chips, and GPUs +
 - 64 HN nodes

Stand-alone single-board emulator

- Pro-Design proFPGA quad V7 Prototyping system
 - Scalable up to 48 M ASIC gates capacity on one board
 - Modular with up to 4 x Xilinx Virtex XC7V2000T FPGAs, or Zynq-7000, or memory modules
 - Up to 4336 signals for I/O and inter
 FPGA connection
 - Up to 32 individually adjustable voltage regions
 - Up to 1.8 Gbps/12.5 Gbps point to point speed

Conclusions

• MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems

- Universitat Politècnica de València (SPAIN)
- CeRICT / University of Naples (ITALY)
- Politecnico di Milano (ITALY)
- Zagreb University (CROATIA)
- Pro Design GmbH (GERMANY)
- Thales Communication & Security (FRANCE)
- EPFL (SWITZERLAND)
- Philips Medical Systems (NETHERLAND)
- Eaton Industries SAS (FRANCE)

