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Abstract—This invited presentation describes the contents of a
research programme aimed at the definition of new components
for FPGA-based cryptographic computing. The text describes
the state of the art and the context of the proposed research,
the methodology, as well as the current preliminary results, with
particular emphasis on the ongoing development of an FPGA-
based homomorphic encryption accelerator.

I. INTRODUCTION

This invited presentation describes the contents of a re-
search programme currently being carried out by the author
aimed at the definition of new components for FPGA-based
cryptographic computing. In fact, an increasing number of
applications are requiring hardware-accelerated cryptographic
operations [1]. Current trends in computing architectures
offer a variety of solutions, ranging from general-purpose
multi/many-core processors to Graphics Processing Units
(GPUs) and Field-Programmable Gate Arrays (FPGAs). In par-
ticular, many previous works in the technical literature suggest
that FPGAs can provide an ideal mix of high-performance,
power-efficiency, and flexibility for several classes of applica-
tions. In fact, FPGAs offer to general applications a number
of advantages compared to both programmable processors and
traditional Application Specific Integrated Circuits (ASICs),
embracing disparate areas from high-level design and software-
like programming [2], [3], [5], [8] to application-specific test-
ing [11]. However, cryptographic processing is an application
domain that appears to be particularly well-suited for dedicated
circuit-level acceleration [12] mostly because cryptographic
algorithms have peculiar characteristics, like integer computa-
tion, bit-level manipulations, special data movement patterns,
etc., that can be directly translated to a dedicated hardware
architecture far more efficiently than software processing on
general-purpose platforms. Consequently, special FPGA-based
circuits and complex systems have been demonstrated in a
variety of cryptographic applications with the aim of improving
time performance with large workloads [4], [6], [7] as well as
for cryptanalytic purposes [9], [10], [13], [14]. In both cases,
one additional advantage FPGAs provide is the possibility
to customize the system based on specific instances of the
parameters, e.g. a particular numeric value of a cryptographic
key without modifying the system at the physical level.

In particular, as a prominent case study, the project will
target a current hot-topic in cryptographic research, i.e. ho-
momorphic encryption (HE). In its full form, HE allows
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an arbitrary funtion to be computed directly on encrypted
data, without disclosing the confidential data being processed.
Hence, such computation can be delegated to an untrusted
third party without it gaining any knowledge of the plaintext.
Clearly, such scenario is particularly desirable in Cloud Com-
puting, where security is a major concern. More specifically,
homomorphic encryption can act as an enabling cryptographic
tool for a number of different application scenarios, including:
multiparty computation, where several parties are interested in
computing a common, public function on their inputs while
keeping their individual inputs private; financial applications,
where both the data and the function to be computed on the
data is private and proprietary, e.g. data about corporations,
their stock price or their performance is often relevant to
making investment decisions, and functions which do such
computations may be proprietary, based on predictive models
for stock price performance identified by financial analysts
as part of their business; medical applications, where highly
confidential medical records of patients are encrypted by
the healthcare providers before being uploaded to a cloud
system doing computation on the encrypted data on behalf
of the patient for monitoring, alerting, etc; electronic voting
provided over the Internet, where voters can participate from
any location letting the voting authorities to calculate the tally
without decrypting any of the individual ballots.

The first fully homomorphic encryption (FHE) scheme
was presented in 2009 by the breakthrough work of Craig
Gentry. Since the introduction of Gentry’s scheme, based on
a few properties of ideal lattices, various alternative solutions
have been proposed, the most relevant being the van Dijk,
Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the
integers, and the Brakerski and Vaikuntanathan’s scheme [15]
based on the Learning with Errors (LWE) and Ring Learning
with Errors (RLWE) problems [16].

Despite its great potential, homomorphic encryption suffers
from a high computational cost, both in terms of time and
memory occupancy, which currently prevents its practical use
in real-world settings. The main concerns are the very large
size of public keys and ciphertexts, the impressively high
computing time for encrypting a single bit, as well as the
fact that after every few operations on the ciphertext, a re-
encryption operation is needed in order to lower the noise to
acceptable levels.

The project described in this presentation aims at mitigating
these limitations by introducing new solutions for hardware-
accelerated homomorphic encryption. The text describes the



state of the art and the context of proposed research in
Section II, the methodology in Section III, as well as current
state and preliminary results in Section IV, with particular
emphasis on the ongoing development of an FPGA-based FFT
accelerator specifically conceived for homomorphic encryp-
tion.

II. STATE OF THE ART

Recent trends show that FPGA devices may potentially
provide a key role for datacenters and high-performance com-
puting [17], [18], matching the raise of cloud computing,
now emerged as an important paradigm shift for disparate
applications [19], [20], [24]. On one hand, this calls for new
methods to allow general developers to access the potential
of hardware acceleration through software-like programming
approaches [2], [5], [17], [8], [25]. On the other hand, this may
give FPGAs a key role for accelerating cloud processing for
compute-intensive tasks like security-related operations. In a
future scenario, this potential may perfectly fit the computing
demand of homomorphic encryption, which is currently limited
by its prohibitive requirements in practical settings.

While several traditional cryptographic primitives support
non-complete sets of homomorphic operations, only in 2009 a
work by Gentry [21] showed a fully homomorphic encryption
scheme. A first implementation of a variant of Gentry’s scheme
was proposed by Gentry and Halevi [22], while more recent
software implementations include [23] and [26]. As of writing
this paper, there are also a number of open-source software
implementations including hcrypt [27] and HElib [28]. The
acceleration of the homomorphic primitives has been already
explored since its introduction. For example, [29] presents
a GPU implementation based on an NVIDIA GTX 690.
[30] compares a solution based on an Altera Stratix V FPGA
with an NVIDIA Tesla C2050 GPU, and shows that the FPGA
reaches around a 2X performance improvement with lower
power comsumption. [33] proposes an ASIC implementation
of long-operand multiplication. A hardware implementation
of the cryptographic primitives of the Gentry-Halevi FHE
scheme is presented by the same authors [35]. The design
includes optimizations previously introduced in [29] to reduce
the number of FFT computations.

Most existing implementations focus on optimizing the
most time consuming operations used by the various en-
cryption schemes: multiplication and modular reduction. Such
operations are performed on very large operands, in the order
of millions of bits, and can benefit from better asymptotic
algorithms. For example, the work in [36], based on the FHE
scheme presented in [38], [39] and implemented on a Xilinx
Virtex-7 FPGA, proposes an FFT-based long-integer multiplier
along with a Barrett reduction module, reaching a considerable
speedup compared to existing software solutions.

III. METHODOLOGY

The objective of the project is to define the architecture
of an FPGA-based accelerator building on previous research
results in the area of cryptography-related operations [32],
[31] and computer arithmetic [34] and retargeting them to
the specific area of reconfigurable hardware technologies. The
starting point of the project is the efficient implementation of

the Schönhage-Strassen algorithm (SSA) for the multiplication
of large integers, exploiting the properties of the Discrete
Fourier Transform over integers, which pays off for operands
of at least 100, 000 bits. The most time consuming operation in
the SSA is the computation of the FFT (and IFFT). By using
the divide et conquer approach of the Cooley-Tukey scheme,
it can be executed in an O(N · logN) time, where N is the
number of points on which the transform is computed. Instead
of a classic binary recursive splitting approach relying on a
radix-2 transform, the project uses higher order transforms as
the basic block for FFT, namely Radix-16 and Radix-64 FFT,
since they can be efficiently computed (choosing an adequate
finite field) by using only shifts and additions/subtractions.

Each FFT based multiplier will contain one Radix-64 FFT
and one Radix-16 FFT. A 64K-point FFT will be computed in
three subsequent stages; the first two requiring 1024 Radix-
64 FFTs each, the last using 4096 Radix-64 FFTs. Each
stage can be efficiently parallelized, according to the available
Processing Elements (PEs) that will be implemented on the
FPGA part of the system. The resulting execution time for an
FFT is TFFT = (1024/M) · TFFT64 + (1024/M) · TFFT64 +
(4096/M) ·TFFT16, where M is the number of PEs, TFFT64

and TFFT16 are the times required by, respectively, Radix-64
and Radix-16 FFTs. The ultra-large result of the multiplication
operation (∼ 2 Mbits) then needs to be reduced by a modulus,
which depends on the cryptographic primitive and key. We rely
on Barrett modular reduction, since it ensures less overhead
for single multiplications compared to other approaches like
Montgomery reduction.

The overall activity leading to the long-term objectives of
the project is structured in three phases:

• Phase 1 aims to develop a dedicated HE accel-
erator based on next-generation heterogeneous plat-
forms. The activity will rely on the experimental
FPGA-based heterogeneous platform, enabling inno-
vative architecture-level approaches such as direct
inter-accelerator communication and shared virtual
memory. At a higher level, the solution will rely
on a hybrid approach, exploiting the heterogeneous
resources available on the platform by distributing
the computation workload between general-purpose
cores and application specific Processing Elements
(PEs) implemented on the FPGA as well as relying on
dedicated solutions for communication between het-
erogeneous elements. The array of PEs implemented
on the FPGA part will provide a complete set of
functional units tuned for the HE primitive, and will
be replicated in a highly scalable fashion to maximize
performance under a given hardware resource budget.
Figure 1 shows the high-level structure of the imple-
mented system. The Data Switch is used mainly by
the FFT multiplier for reading operands from memory
using a butterfly pattern. A scratchpad memory, made
up of FPGA SRAM blocks, is used to buffer at least
a full single operand (∼ 1 Mbit). The SRAM-based
solution allows the fastest memory accesses for our
application not only because it resides on chip, but also
because the FFT has a non-sequential access pattern
(butterfly accesses) which does not match the opti-
mized sequential accesses supported by DDR DRAM.



Fig. 1. Overview of the hardware-accelerated platform

The remaining components (Encryption, Decryption,
Re-encryption Support) contain functional units like
ALUs and coefficient tables, specific to the particular
primitive.

• Phase 2 will build on the outcome of Phase 1 and
will define the architecture of a programmable crypto-
graphic acceleration. This “GPU-like” heterogeneous
accelerator will be based on innovative mechanisms
like direct inter-accelerator communication and virtual
shared memory. It will be specifically targeted to
the acceleration of cryptographic processing through
a suitable mix of dedicated resources and firmware-
programmable compute units. The integer-based Ho-
momorphic Encryption will provide a compelling
case-study for our flexible cryptographic accelerator,
although the implementation of other standard primi-
tives will also be demonstrated.

• Phase 3 will demonstrate the approach in a real
setting. This phase will first develop low-level drivers
and software wrappers to access the functions of the
accelerator from software, which will be then used
to implement a crypto-device component embedded
in the open-source OpenSSL toolkit. The project will
also consider the integration with existing open-source
hypervisor solutions, based on the above low-level
library, possibly relying on the accelerator as a sort
of hardware-assisted virtualization support for the
execution of homomorphically encrypted applications.

IV. CURRENT STATE

This section briefly summarizes the current state of the
activity. As of writing this contribution, we have implemented
a first release of the FPGA-based accelerator focused on the
FFT computation. While we plan to demonstrate the system
on a high-end Altera Stratix V device, currently we are
equipped with entry-level Cyclone V boards. Because of this
constraint we took a distributed, i.e. multi-board, approach for
the implementation of the 64K-point FFT accelerator, based on
the use of several processing elements connected in a hyper-
cube topology. In fact, the distributed approach is well-suited
for FFT computing, because of the peculiar data exchange
pattern. Our current solution is similar to [30], although they
use a shared memory approach with local buffers, while we
adopted a distributed approach and introduced a few additional
optimizations not described in this contribution.

As we explained earlier, instead of a classic binary recur-
sive splitting approach (i.e. a radix-2 transform), the project
uses higher order transforms as the basic block for FFT.
The core computing element is the Radix-64/16 FFT unit,
computing the basic FFT blocks. We make an extensive use
of double buffering, since in our distributed scheme we need
often to concurrently compute and communicate. The associ-
ated memory infrastructure allows 8 read/write operations in
parallel with different access patterns for read and write in
order to efficiently support the FFT butterfly access pattern.
Additionally, we also need a bank of modular multipliers, for
twiddle factor multiplications, needed between two consecutive
FFT computation stages.

Currently most components of the above processing el-
ement have been finalized, particularly the Radix-64 unit,
the banked memory, and the modular multiplicators. By
synthesizing the design for an Altera’s Stratix V, namely a
5SGSMD8N3F45I4 device, we can pack four PEs in a single
device and we obtain an operating frequency of 180 MHz,
corresponding to an FFT execution time of TFFT ≈ 34.4µs.
The processing element is able to perform 8 multiplications
simultaneously (with the twiddle factors) and can be reused to
perform the component-wise multiplications, taking TMUL =
TC ·65536/(8·P ) ≈ 11.5µs. The resulting time for a complete
SSA multiplication is around 150µs.

We highlight that the developed FPGA accelerator is not
intended for a specific scheme, as it may support any variant
requiring operations on very large operands.

V. DEVELOPMENTS AND CONCLUSIONS

This presentation reviewed the main objectives and cur-
rent results of a research project currently being carried out
by the author aimed at the implementation of an FPGA-
based cryptographic accelerator to be used for supporting
homomorphic encryption. Current results focus on an efficient
FPGA-based implementation of large-operand FFT, showing
encouraging results in terms of execution time and resource
efficiency. On the long term, the work will contribute to
developing a high-end dedicated hardware accelerator relieving
Homomorphic Encryption form its main limitation, i.e. very
prohibitive requirements in terms of computing power.

ACKNOWLEDGMENTS

This presentation has been supported by the European
Commission in the framework of the H2020-FETHPC-2014
project n. 671668 - MANGO: exploring Manycore Architec-
tures for Next-GeneratiOn HPC systems.

Furthermore, the first-release design described above is
currently under evaluation for the 2015 Altera Innovate Europe
designer contest.

REFERENCES
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