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Abstract—This paper presents the experimental evaluation of
data mapping techniques in the shared memory of an embedded
GPU. The evaluated technique, previously presented in the liter-
ature in other contexts, aims at partitioning an array across the
shared memory physical banks, so as to increase parallel accesses,
resulting in appreciable gains in terms of both performance and
energy efficiency. The paper presents the experimental setup
used for characterizing physically the behaviour of the platform,
allowing a validation and a closer understanding of the evaluated
memory mapping technique.

I. INTRODUCTION

Because of the end of Dennard Scaling, since the early
2000s manufacturers have been forced to explore new architec-
tural paradigms, including multi- and many-core solutions as
well as Graphics Processing Units (GPUs), now being used for
a variety of applications including the embedded domain [1]. In
addition, Field-Programmable Gate Arrays (FPGAs) also pro-
vide a solution for building customized computing platforms,
although they pose non-trivial challenges mostly involving
complexity, high-level design as well as interplay with suitable
programming models [2], [7], [8], [12], somewhat mitigated by
GPUs. A crucial aspect of recent GPU and FPGA architectures
is their power-efficiency, i.e., the rate of computation that can
be delivered by a system for every watt of power consumed,
measured in GFLOPS-per-Watt, today considered a primary
performance metric for the scalability of computing platforms.

An interesting observation is that in current computing
technologies a major component of power consumption is due
to data movement rather than mere processing, which is indeed
a widely studied subject in a number of different contexts [11],
[5] In particular, looking at today’s GPUs, the power contribu-
tion of data movement compared to processing can be as high
as 85%. This work thus addresses the impact on performance
and energy efficiency of memory optimization techniques for
heterogeneous architectures, particularly GPUs, in an embed-
ded setting. In particular, the paper focuses on the experimental
evaluation of data mapping approaches previously developed in
the area of non-uniform memory architectures and transferred
to the case of GPUs. The emphasis is on the multi-bank orga-
nization of the on-chip GPU shared memory, where the whole
shared addressing space is partitioned in a cyclic way and is
potentially subject to an access conflict problem. We evaluate
a data layout transformation impacting access patterns, which
enables a significant gain in terms of both performance and
energy efficiency, as confirmed by an experimental set-up used
for performing measures on a physical embedded platform.

The paper is structured as follows. Section II discusses
the background and the motivation of this work. Section III

recapitulates the approach adopted for data partitioning. Sec-
tion IV shows the set-up used for the experimental evaluation.
Section V concludes the paper with some final remarks.

II. BACKGROUND

Memory mapping has traditionally been an important opti-
mization problem for high-performance parallel systems [11].
Today, these issues are increasingly affecting a much wider
range of platforms. In fact, many medium/high-end embedded
systems are now based on parallel compute architectures while,
at the opposite end of the spectrum, large datacenters currently
play a central role for popular cloud-based applications, with
a whole range of new disparate challenges, from architecture
optimization to security as well as workflow management
and validation [19], [17], [29], [32]. Although here we are
fundamentally interested in the embedded architecture level,
all such platforms are characterized by inherently the same
issue concerning the memory infrastructure organization, i.e.
the fact that, at the low-level, they are based on non-uniform
memory access (NUMA) which, depending on the application
access patterns, may be critical to the overall performance. In
fact, the NUMA model reflects a scenario where multiple in-
dependent processing cores/nodes with local memory modules
are connected by some form of interconnect, causing the access
time to depend on the location relative to the processor placing
the access operation [6]. A closely related concept, distributed
shared memory (DSM), is a form of memory architecture
where physically separate memories can be addressed as one
logically shared address space. DSM systems combine the best
features of shared-memory and distributed-memory machines.
They support the convenient shared-memory programming
model on scalable distributed-memory hardware, exposing a
simpler abstraction for data passing to the application pro-
grammer. Furthermore, many distributed parallel applications
execute in phases, where each computation phase is preceded
by a data-exchange phase. The time needed for the data-
exchange phase is often dictated by the throughput limitations
of the communication system. Distributed shared memory
algorithms typically move data on demand as they are being
accessed, eliminating the data-exchange phase, spreading the
communication load over a longer period of time, and allowing
for a greater degree of concurrency. Also, the total amount of
memory may be increased proportionally, reducing paging and
swapping activity [26], [31]. However, although many DSM
systems have been proposed and implemented (see Bal et
al. [16], Bershad et al. [20], Chase et al. [21], Dasgupta et
al. [22], Fleisch and Popek [23], Li and Hudak [26], Minnich
and Farber [27], and Kirk L. Johnson et al. [33]), achieving
good performance on DSM systems for a sizable class of
applications has proven to be a major challenge [15]. One of



Fig. 1. CPU architecture vs. GPU architecture

the key problems in building an efficient software DSM system
is to reduce the amount of communication needed to keep the
distributed memories consistent. Often, the proposed solutions
result in a trade-off between performance and consistency
models, with the aim of enhancing the concurrency available in
the distributed shared memories [37]. Another problem is to
avoid access conflicts to physically different memory banks
from multiple threads/processes running concurrently. This
problem can impact greatly the performance of the system,
especially in distributed systems, since it causes serialized ac-
cesses and a significant interconnect overhead. A large number
of works addressed this problem, e.g. Das et al. [28] consid-
ered the star-template access on two specific host topologies,
tori and hypercubes, enabling conflict-free mappings using
an optimal or provably good number of memory modules.
Monchiero et al. [30] propose a mechanism for data allocation
on a distributed shared memory space, dynamically managed
by an on-chip hardware memory management unit. Sung et
al. [10] present automatic data layout transformation as an
effective compile-time performance optimization for memory-
bound structured grid applications.

A. Memory in heterogeneous parallel systems

As implied by the above introduction, traditional solutions
for memory mapping optimization in NUMA contexts such
as parallel computer/datacenters might play a key role also in
today’s embedded platforms. In fact, many of such computing
platforms are increasingly being provided with high-end GPU
and/or FPGA units, where parallel processing elements access
simultaneously several independent memory banks through
complex interconnects. This potentially provides an opportu-
nity for improving the memory bandwidth available to the
application, provided that one adopts suitable memory parti-
tioning strategies based on the actual access patterns [5]. In
particular, GPUs represent today a major paradigm shift in
computing architecture focusing on increasing the execution
throughput of parallel applications. A current representative
instance of this trend is the NVIDIA GeForce GTX680 graph-
ics processing unit (GPU) with 16384 threads, executing in
a large number of simple, in-order pipelines. As of 2012,
the ratio between many-core GPUs and multi-core CPUs for
peak floating-point calculation throughput was about 10 to
1 [4], mainly due to the differences in the fundamental design
philosophies between the two types of processors, as illustrated
in Figure 1. This approach is natively supported by the
Compute Unified Device Architecture (CUDA) programming
model, introduced by NVIDIA in 2007, and is reflected by
more recent programming models such as OpenCL (now at
version 2.0), OpenACC, C++ AMP and OpenMP 4.0.

For performance purposes, the on-chip shared memory of
a GPU device is normally divided in banks, which can be
accessed in a parallel way from all the threads in a warp. The
number of banks is strictly dependent on the architecture. As
an example, in an NVIDIA Kepler architecture the number
of banks is 32 and each bank has a word of 8 bytes. Data
allocated in the shared memory are cyclically distributed over
the banks in two ways:

• 4-byte access: Successive 4-byte words are mapped to
successive banks. The memory can be seen as made
of 32 banks, each 4-byte wide. If the data that we use
is 8 bytes wide, the access mode becomes an 8-byte
access.

• 8-byte access: Successive 8-byte words are mapped
to successive banks.

We can easily compute the bank where a data is mapped to,
as follows:

• (8B word index) mod 32;

• (4B word index) mod (32 · 2);

• (byte address) mod (32 · 8)

Figure 2 shows an example of data mapping on shared memory
with both modes. In this example the data are 4 byte-word
index and, for simplicity, we show only four banks.

.

Fig. 2. Comparing bank mode mappings. On the left-hand side we have a
4-byte access. On the right-hand side we have an 8-byte access.

The 4-byte access is the default mode. We
can change it by using the CUDA function
cudaDeviceSetSharedMemConfig(param) where
param can be:

cudaSharedMemBankSizeEightByte , or

cudaSharedMemBankSizeFourByte.

The access mode can affect the performance of a kernel. In
fact, allowing all the threads in a warp to fetch data in parallel
from this multi-bank memory can lead to great performance
improvements, but it requires explicit, bank-aware organization
of the data layout. There are three main mechanisms for shared
memory access which guarantee improved performance:

• Unicast: each thread in a warp tries to access a
different location stored in a different bank.

• Multicast: One or more groups of threads in a warp
try to access the same location stored in one of
the banks. The other threads perform a unicast-style
access.

• Broadcast: Every thread in a warp will access exactly
the same location, obviously stored in the same bank.



These three mechanisms are enabled by an interconnection
network which links each core of a Streaming Multiprocessor
to the shared memory. By using this interconnection network
and performing one of these access patterns, data can be
retrieved at low latency as they were stored in the registers.
If the pattern is different from those described above, shared
memory performance may easily decrease. In particular, in the
case where two or more threads in the same warp try to access
different words stored in the same bank, the interconnection
network is no more able to provide the required data to all
the threads in parallel. This situation, called bank conflict, is a
major problem related to the use of the on-chip shared memory.
In particular, if two threads try to access different words stored
in the same bank, we have a 2-way bank conflict. If three
threads try to access different words stored in the same bank, a
3-way bank conflict occurs, and so on. The worst case involves
all 32 threads in a warp trying to access different words stored
in the same bank, causing a 32-way bank conflict. Whenever
a conflict occurs, it is resolved by serializing the accesses in
time. As an example, the serialization in a 2-way scenario leads
to doubled latency and can increase the energy consumption
considerably.

III. DATA LAYOUT TRANSFORMATION

As already mentioned above, heterogeneous platforms pro-
vide some form of customizability that can be effectively
exploited to improve performance and power efficiency. While
FPGAs offer the possibility to jointly customize the memory
infrastructure architecture and the application task mapping,
by using one of several approaches in the literature [5], [14],
GPUs have still enough flexibility to expose the physical
shared memory bank structure to the programmer, enabling
bank mapping to be tailored on the application access patterns.
Here we shortly review a literature approach to data mapping
in parallel architectures [11], that can be effectively applied to
the case of the GPU shared memory, as shown in this paper.

The results presented here apply to affine static control
parts (SCoPs), i.e., code segments in performance-critical
loops where loop bounds, conditionals, and subscripts of
memory references are affine functions of the surrounding
loop iterators and of constant parameters possibly unknown at
compile-time. For each reference to an array A in the loop nest,
call memory access function a correspondence F associating
each element of A with a value of the iteration vector −→v ,
which is the vector having as elements the indices of the loop
nest containing the reference. Since the subscripts in SCoP
code are affine functions, F can always be expressed as F =
F ·−→v +−→c , where F is an integer matrix and −→c is a constant
displacement.

Furthermore, we need a mathematical formulation of the
bank mapping in the GPU shared memory. The cyclic scheme
described in the previous section can be seen as a spe-
cial case of an allocation expressed as a modular mapping
function σ

(−→
l
)
=M·−→l mod −→m, associating each index −→

l

of an array element having p components with the corre-
sponding bank [11]. M is a p × n integer matrix, −→m is p-
dimensional array of integer moduli1, and the modulo opera-

1In general, the set of banks may have a dimensionality equal to p, so
that σ returns a p-dimensional bank index. Modular mappings can change the
dimensionality of the data address.

tion is component-wise. We regard the physical banks making
up the GPU shared memory as a linear array, hence (p = 1).
Assume that we have a bi-dimensional array to allocate and let[

x
y

]
be the indices of its elements. The mapping problem

can thus be expressed as:

Bank(x, y) = M ·
[

x
y

]
mod−→m

where −→m is in fact mono-dimensional and coincides with
the number of available banks, denoted banks. The value of
this constant depends on the specific GPU architecture. For
instance, banks = 32 for the NVIDIA Kepler family.

An example of matrix M is:

Bank(x, y) = [ 1 N ] ·
[

x
y

]
mod banks

where N is equal to the size of the array along the x dimension.
Table I provides an example for a 52× 52 array, highlighting
the cyclic scheme followed by data allocation.

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 51

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 19
1 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 · · · 7
2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 · · · 27
3 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 · · · 15
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...
51 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 · · · 15

TABLE I. MAPPING OF A 52 X 52 ARRAY

In essence, avoiding conflicts requires the threads of a
GPU warp to access all different banks. We associate each
thread with a bi-dimensional identifier (tx, ty). Based on
the formulation above, each thread (tx, ty) needs to access
element F (tx, ty) and hence bank Bank(F (tx, ty)). As we
are looking into a single warp, there is no need to introduce
block identifiers (as intended in CUDA). As an example, a
2 × 16 warp accessing the previous array clearly incurs bank
conflicts, as highlighted in the following Table II.

x/y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 51

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 19
1 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 · · · 7
2 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 · · · 27

TABLE II. EXAMPLE OF A CONFLICT

The repetition of the values 0, 1, 2, 3 causes here a 2-way
conflict. To avoid conflicts, no repetitions must occur in the
rectangular domain. Equivalently, the bank mapping function
corresponding to the memory reference in the threads must be
injective in the rectangular domain covered by the warp.

We consider the class of transformations to SCoP code
that change the memory access function by multiplying its
expression by a matrix T [3]:

T =

[
a b
c d

]
which also implies changing the layout in memory of the
locations concurrently accessed by the threads in a warp. A
new allocation can be defined as:

Bank(x, y) = [ 1 N ] ·
[

a b
c d

]
·
[

x
y

]
mod banks =



[ a+ c ·N b+ d ·N ] ·
[

x
y

]
mod banks

Matrix M can now be written as

M = [ a+ c ·N b+ d ·N ]

In case the transformation matrix T results in an injec-
tive function over the rectangular domain identified by the
dimension of a warp, the transformation ensures conflict-free
accesses. We relied on the formal treatment in [3] to check
whether a given transformation induced by T is injective.

Below we exemplify the procedure used to address the
problem of bank conflicts. We consider an algorithm perform-
ing matrix multiplication. In our quantitative experiments, we
choose 52×52 tile dimensions. Consequently, the code snippet
is as follows:

__shared__ double AS[2704];
__shared__ double BS[2704];

//Calculate the row index of the C element and A
int Row = blockIdx.x*blockDim.x+threadIdx.x;

//Calculate the column index of C an B
int Col = blockIdx.y*blockDim.y+threadIdx.y;

if ((Row < WIDTH) && (Col < WIDTH)){
double Cvalue = 0;
// each thread computes one element
// of the block sub-matrix

#pragma unroll
for (int k = 0; k < WIDTH; k++)

Cvalue += AS[(Row*WIDTH)+k]*BS[k*WIDTH+Col];
C[Row*WIDTH+Col] = Cvalue;

}

We can solve the problem by selecting a specific access
performed by a warp. In this case, as an example, we define
a warp of 32 × 1 threads2. Without applying any transforma-
tion, the accesses to matrix AS incur a 4-way conflict. For
example, locations AS[208]/AS[624], corresponding to it-
erations with k=0, Col=0, and Row=4/Row=12, respectively,
executed by concurrent threads in a warp, both access bank
208 mod 32 = 624 mod 32 = 16. For matrix BS, on the other
hand, we have a broadcast access, i.e., all 32 threads access at
same bank, with no conflict.

A transformation that can be used to solve the conflicts in
matrix AS for this warp is

T =

[
2 1
0 1

]
identified by enumerating feasible transformation solutions and
checking their injectivity by the formal procedure in [3]. This
transformation leads to a modified layout of matrix AS in
memory along with the transformed code below:

__shared__ double AS[2805];
__shared__ double BS[2704];

//Calculate the row index of the C element and A
int Row = blockIdx.y*blockDim.y+threadIdx.y;

//Calculate the column index of C an B
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < WIDTH) && (Col < WIDTH)){
double Cvalue = 0;

2We can actually define a block, not a warp. But if the block is composed
by only 32 threads, then, we are defining the shape of the warp too.

// each thread computes one element
// of the block sub-matrix

#pragma unroll
for (int k = 0; k < WIDTH; k++)

Cvalue += AS[(Row*53)+k*2]*BS[k*WIDTH+Col];
C[Row*WIDTH+Col] = Cvalue;

}

This transformation completely clears the conflict problem.
As an example, the previous two accesses performed by iter-
ations with k=0, Col=0, and Row=4/Row=12 now become
AS[212]/AS[636], accessing banks 212 mod 32 = 20 and
636 mod 32 = 28, respectively, but the formally proved
injectivity condition ensures that this occurs for any thread
pair in the rectangular warp. Notice that the conflict-free
condition comes at the cost of stretching the memory region
covered by matrix AS, requiring interleaved placement of other
data structures for efficient utilization of the shared memory.
Furthermore, the number of arithmetic operations involved
in address computation might increase, making the trade-offs
with time and energy efficiency less obvious. The experimental
evaluation carried out in the next section provides some
insights about the overall benefit of the adopted technique.

IV. EXPERIMENTAL EVALUATION

In this section we present a set-up used to carry out the
experimental evaluation of the above optimization technique
and collect performance/power data from a physical platform.

A. System Overview

Fig. 3. Overview of the experimental environment

The diagram shown in Figure 3 is a schematic represen-
tation of our environment. We have a host PC running a
WMware Virtual Machine with Ubuntu 14.04 and the JetPack
installed on it. In this environment, we use NVIDIA Nsight
to write CUDA code and, then, to compile and remotely
run it on a Jetson TK1 development board. On the same
machine we have a Windows Operating System with Digilent
WaveForms application installed on it. We use this application
as a data logger. The data are collected by the Digilent Analog
Discovery suitably connected through Channel 1 wire probes
to the R5C11 resistor, available on the Jetson board in order
to control the power consumption of the overall platform, by
measuring the voltage across this resistor. Figure 4 shows the
real system used in our experimental setup.



Fig. 4. Experimental setup

B. Results

In this section we discuss the transformation results. By
using the system described in IV-A it was possible to evaluate
the impact of the transformation on power consumption and
execution time. Figure 5 shows the results collected using the
Analog Discovery.

Fig. 5. Power measurements

The instrument does not allow us to differentiate the
consumption, in terms of watt, of the two versions, as both
versions reach a value of around 0.80W . On the other hand,
we can appreciate that the execution time is drastically re-
duced. Figure 5 also shows that the optimized kernel takes
about 5 seconds, instead the non-optimized takes 6.5 sec-
onds. This means that the optimized kernel consumes around
0.80W × 5 s ≃ 4 J , instead the non-optimized consumes
around 0.80W ×6.5 s ≃ 5.2 J , totalling a difference of 1.2 J ,
i.e. a gain of 23%.

As mentioned in the previous section, the transformation
solves the conflict issue, but at the cost of increasing the
arithmetic operations to be performed and the amount of shared
memory to allocate. Table III shows the differences, in terms
of number of instructions executed by the two kernels. The
difference is 1040000 instructions, i.e. a 3.84% overhead. As
for the amount of memory to allocate, the optimized kernel re-
quires 808 bytes, or 3.73% more. In terms of performance per

Kernel Number of Instructions

MatMul 52 Optimized 28070952
MatMul 52 No Optimized 27030952

TABLE III. COMPARISON OF THE NUMBER OF INSTRUCTIONS

watt, the kernel executes 56243200 floating point operations
in double precision. So, for the non-optimized kernel we have
a value of 10.816 MFLOPS/watt (referred to the subset of the
GPU actually used), while the optimized one has a value of
14.0608 MFLOPS/watt, i.e. we have an increase of 30% with
this transformation.

V. CONCLUSIONS AND FUTURE WORK

GPUs have become extremely important for today’s HPC
and Cloud Computing as they provide an effective answer for
increasingly stringent energy constraints. This work presented
a practical experience centered around the evaluation of an
optimization technique for GPU on-chip memory. The exper-
imental results collected pointed out the significant incidence
that such techniques may have on both execution time and
energy efficiency. As a part of our future work, we plan to
build a complete heterogeneous platform pairing embedded
GPUs with FPGA units for a range of applications including
multimedia, testing, and security [25], [24], [34], allowing
an extensive evaluation of optimization techniques combining
special-purpose acceleration and software heterogeneous pro-
gramming.

The presentation of this work is supported by the European
Commission in the framework of the H2020-FETHPC-2014
project n. 671668 - MANGO: exploring Manycore Architec-
tures for Next-GeneratiOn HPC systems.
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