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Abstract This paper presents the experimental evaluation of a new data mapping
technique for the GPU shared memory, called Adaptive Modular Mapping (AMM).
The evaluated technique aims to remap data across the shared memory physical
banks, so as to increase parallel accesses, resulting in appreciable gains in terms
of performance. Unless previous techniques described in literature, AMM does not
increase shared memory size as a side effect of the conflict-avoidance technique. The
paper also presents the experimental set-up used for the validation of the proposed
memory mapping methodology.

1 Introduction

Exascale scientific and high-performance computing (HPC) are considered es-
sential in many areas [25] and are today embracing a wealth of different ap-
plications [4, 3, 2]. During the last years, HPC architectures have been increas-
ingly moving to heterogeneous systems. In fact, it is now common to integrate
in the same HPC system manycore CPUs, accelerators like Graphics Processing
Units (GPUs), and even Field-Programmable Gate Arrays (FPGAs) devices, which
were traditionally used only for implementing highly specialized circuit-level solu-
tions [6, 7, 11, 5, 10]. In this context, GPUs are gaining importance and are now
being used for a variety of domains and applications [21]. FPGAs also provide a so-
lution for building customized computing platforms, although they pose non-trivial
challenges, mostly involving complexity, high-level design as well as suitable pro-
gramming models, which are somewhat mitigated by GPUs [31, 16]. In current
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computing technologies, a major component of the power consumption and perfor-
mance degradation is due to data movement rather than mere processing, which is
indeed a widely studied subject in a number of different contexts [26]. This work
thus addresses the impact on performance of memory optimization techniques for
heterogeneous architectures, particularly GPUs. The emphasis is on the multi-bank
organization of the on-chip GPU shared memory, where the whole shared address-
ing space is partitioned in a cyclic way and is potentially subject to an access con-
flict problem [14]. In particular, the paper focuses on the experimental evaluation
of a new data mapping approach called Adaptive Modular Mapping (AMM) which
differs from other works [19, 28, 23, 20] in that it does not involve an increase of the
shared memory size, which in some cases can decrease performance as a side ef-
fect. The evaluation of the AMM technique highlights a significant gain in terms of
performance, as confirmed by an experimental set-up used for performing measures
on a physical GPU-based platform.

The paper is structured as follows. Section 2 discusses the background and the
motivation of this work. Section 3 recapitulates the approach adopted for data parti-
tioning. Section 4 shows the set-up used for the experimental evaluation. Section 5
concludes the paper with some final remarks.

2 Background

Memory access has traditionally been an important optimization problem for par-
allel systems [13, 15], and in many classes of systems it may significantly impact
perfomance, along with the interconnection subsystem [17, 18, 12]. In particular,
memory access latency is often an important factor determining the overall system
performance. Many solutions have been proposed to face this problem on parallel
architectures, e.g. the design of a hierarchical memory system, the introduction of
shared scratchpad memories, and the increase of thread-level parallelism to hide
memory latency.

Most of these features are present on Graphical Processor Units (GPUs) that
represent today a major shift in high-performance computing architectures focusing
on increasing the execution throughput of parallel applications. In fact, on modern
GPU architectures like the NVIDIA Kepler or the newest Maxwell, the memory
system is designed in a hierarchical fashion, as shown in Figure 1.
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Fig. 1 GPU NVIDIA Kepler
Memory Hierarchy.
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In this way, parallel processing elements access simultaneously several indepen-
dent memory banks through complex interconnects. This potentially provides an
opportunity for improving the memory bandwidth available to the application. In
fact, even if the DRAM latency is too high, it can be hidden by running thousands
of threads.

Another way to improve system performance is to use scratchpad shared mem-
ories. For performance purposes, the on-chip shared memory of a GPU device is
normally divided in 32 banks, which can be accessed in a parallel way from all the
threads in a warp. Data allocated to the shared memory are cyclically distributed
over the banks.

Figure 2 shows an example of data mapping on shared memory. In this example
the data are 4 byte-word index and, for simplicity, we show only four banks.

Fig. 2 Shared Memory Data
Mapping. The figure shows a
possible 2-way bank conflict
if a thread would access Bank
4 and fetch value ”3” and
another thread would access
Bank 4 and fetch value ”7”.
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The access mode can affect the performance of a kernel. In fact, allowing all the
threads in a warp to fetch data in parallel from this multi-bank memory can lead to
great performance improvements, but it requires explicit, bank-aware organization
of the data layout. In particular, in the case where two or more threads in the same
warp try to access different words stored in the same bank, the interconnection net-
work is no more able to provide the required data to all the threads in parallel. This
situation, called bank conflict, is a major problem related to the use of the on-chip
shared memory. In particular, if two threads try to access different words stored in
the same bank, we have a 2-way bank conflict, as shown in Figure 2. If three threads
try to access different words stored in the same bank, a 3-way bank conflict occurs,



4 Innocenzo Mungiello, Francesco De Rosa

and so on. The worst case involves all 32 threads in a warp trying to access different
words stored in the same bank, causing a 32-way bank conflict. Whenever a conflict
occurs, it is resolved by serializing the accesses in time. As an example, the se-
rialization in a 2-way scenario leads to double latency, decreasing the performance
considerably and increasing power consumption, especially if the kernel uses shared
memory intensively [27].

2.1 Related Works

Several techniques are presented to solve bank conflicts and reduce memory access
latency [8, 29]. The simplest one is Memory Padding, presented by NVIDIA in [1,
24, 9]. This technique solves bank conflicts in many cases by simply using an extra
empty column of shared memory. While effective and simple, this technique has
the disadvantage of wasting shared memory and this can cause problems in certain
situations.

A.H. Khan et al. [22] analyze the Matrix Transpose problem and provided a
solution very close to AMM techinque for that particular kernel. S. Gao et al. [19]
present a framework for automatic bank conflict analysis and optimization. Kim et
al. [23] present CuMAPz, a tool to compare the memory performance of a CUDA
program and help programmers to optimize them. Sung et al. [28] propose DL, a
practical GPU data layout transformation system that solves both problems. Grun
et al. [20] present APEX, an approach that extracts, analyzes, and clusters the most
active access patterns in the application, and aggressively customizes the memory
architecture to match the needs of the application. Z. Wang et al. [30] use a machine-
learning approach to transform data layout and improve performance.

3 Data Layout Transformation

Heterogeneous platforms provide some form of customizability that can be ex-
ploited to improve performance. GPUs offer a certain degree of freedom enabling
the application developer to tailor the bank mapping on the application access pat-
tern. Some applications need access patterns yielding bank conflicts. A naive pattern
is shown in Figure 3 where 4 threads access a 4-bank memory in lock-step in such a
way that a 25% efficiency is obtained. From the developer point of view a 4x4 ma-
trix accessed with a 4-location strided pattern leads to this behaviour. The simplest
way to correct such an access pattern is the Memory Padding technique described
in Section 2.1. The resulting bank mapping will be as shown in Figure 3 where,
for example, each green cell indicates a concurrent access. In this case the padding
technique provides a conflict-free access pattern which improves memory efficiency
but also causes a wasted memory problem, as pointed out by the 4 unused red cells,
which could under-perform the naive one. In particular, the padding technique can
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lead to a performance problem in scenarios exhibiting the scratchpad shared mem-
ory as the limiting factor, because the number of threads simultaneously eligible
to work depends on the memory size. Nvidia CUDA exposes a thread-group based
programming model where the whole computation will be completed by several
groups of threads simultaneously running. The thread groups are scheduled on the
basis of the available resources. Since the padding technique causes more memory
to be allocated, a smaller number of threads can be simultaneously eligible to run.
These conditions cause decreasing performance although some or all of the bank
conflicts are solved. The proposed technique prevents wasting memory by allocat-
ing minimal memory, as needed to satisfy the maximum number of threads. The
resulting mapping scheme outperforms the padding and the uncorrected ones under
the following condition:

cond 1 The scratchpad shared memory is a limiting factor;
cond 2 Memory Padding leads to a smaller number of eligible threads to run simul-

taneously;

Fig. 3 Padding application.
In this case the technique
solves all conflicts, but there
are empty memory cells
highlighted in red.
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3.1 Adaptive Modular Mapping

Under the above described conditions, the proposed technique performs a modu-
lar remapping of shared memory accesses based on the matrix width, which solves
some or all bank conflicts and avoids increased memory size unlike padding tech-
niques. The proposed technique involves the resolution of a linear programming
model (Model 4 below) with the aim of extracting new mapping schemes avoiding
bank conflicts.
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Model 4 N IT stands for number of iterations, N TH stands for number of threads and N B stands
for number of banks. xi jk means thread j accesses bank k at i-iteration. This is an NP-Hard problem
and the simplest feasible solution is selected.

The results of the Adaptive Modular Mapping technique is shown in Figure 5.
Suppose a N-bank memory system and a total of M threads with a M-way conflict.

shared int shmem[M][N];

int index = threadIdx .x;

for ( int i = 0; i < N; i++)
shmem[index][i]=some value;

The Adaptive Modular Mapping is highlighted in the following code.

shared int shmem[M][N];

int index = threadIdx .x;

for ( int i = 0; i < N; i++)
shmem[index][(index+i)%N]=some value;

where:

• % stands for the modulo reduction operator;
• shmem with the CUDA shared keyword declares a memory shared among

all the threads of a block.
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Fig. 5 Adaptive Modular
Mapping application. In this
case the technique solves all
conflicts
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As shown above this technique requires a very little effort from the developer
point of view, while leading to minor memory requirements and consequently better
exploiting parallel computing resources. In particular, the % operator can be realized
efficiently by an AND operation when dexter is a power-of-two operand.

4 Experimental Evaluation

This section presents the set-up used to carry out the experimental evaluation of the
above optimization technique and collect performance data from a physical plat-
form. A suite of kernels has been properly selected to set a scenario where condi-
tions cond 1 and cond 2 described in Section 3 are met.

4.1 System Overview

The system includes a host PC running a WMware Virtual Machine with Ubuntu
14.04, with 4 cores, 8 GB of RAM ,and the JetPack 2.1 installed on it. In this envi-
ronment, NVIDIA Nsight Eclipse Edition is used to write CUDA code and, then, to
compile and remotely run it on a Jetson TK1 development board. Memory and Pro-
cessor frequency of the Jetson TK1 are fixed to 792MHz and 804MHz respectively
in order to avoid measurement errors.

4.2 Results

In this section experimental results are discussed. By using the system described
in Section 4.1 it was possible to evaluate the impact of the AMM technique on the
performance of the code. Five kernels are used to test the AMM technique. They are
summarized in Table 1.
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Kernel Suite Description
Transpose CUDA SDK All accesses in global memory are coalesced, there are bank con-

flicts, and arithmetic operations are low.
Convolution Col CUDA SDK All accesses in global memory are coalesced, there are bank con-

flicts, and arithmetic operations are low.
Lud Perimeter RODINIA All accesses in global memory are coalesced, there are bank con-

flicts, and arithmetic operations are low.
Foo 1 CUSTOM Ad-hoc implemented kernel to reproduce coalesced and un-

coalesced global memory access pattern on user choice.
Foo 2 CUSTOM Ad-hoc implemented kernel to reproduce intensive arithmetic oper-

ations.

Table 1 Kernels used to test the AMM technique

According to the different characteristics of the kernels, the results can be divided
in three classes listed below:

1. All global memory accesses are coalesced, so the memory latency to hide is
low. In this scenario the padding technique increases the naive kernels perfor-
mance despite fewer threads are simultaneously running. The AMM technique
outperforms both, as shown in Figure 6.

93.3

12.4 11.8

1.6 0.907 0.85 1.526 0.413 0.359

28.2

3.5 2.91

Fig. 6 Case 1 Results. The AMM technique decreases the execution time of all kernels.

2. Global memory accesses are un-coalesced, so the memory latency to hide is
high. In this scenario the padding technique decreases the naive kernel perfor-
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mance because fewer threads are simultaneously running. The AMM technique
outperforms both, as shown in Figure 7.

60.68

82.1

56.2

Fig. 7 Case 2 Results. The AMM technique decreases the execution time of the kernel.

3. All global memory accesses are coalesced, so the memory latency to hide is
low, but there is a high number of arithmetic instructions. In this scenario,
the padding technique decreases the naive kernel performance because fewer
threads are simultaneously running. The AMM technique in this case equals
the naive kernel performance as shown in Figure 8
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302

203 203

Fig. 8 Case 3 Results. In a compute intensive kernel, AMM technique equals naive performance.

5 Conclusions

GPUs have become extremely important for today HPC as they provide an effective
answer for many increasingly demanding applications. This work proposed an opti-
mization technique for GPU on-chip memory. The paper presented both the formal
model underpinning the technique and the experimental evaluation on a number of
kernels. The results pointed out the significant incidence that such techniques may
have on execution time.
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