
Improving Deep Learning with a customizable
GPU-like FPGA-based accelerator

Mirko Gagliardi, Edoardo Fusella, Alessandro Cilardo
Department of Electrical Engineering and Information Technologies, University of Naples Federico II

via Claudio 21, 80125 Napoli, Italy, Email: mirko.gagliardi@unina.it

Abstract—An ever increasing number of challenging appli-
cations are being approached using Deep Learning, obtaining
impressive results in a variety of different domains. However,
state-of-the-art accuracy requires deep neural networks with a
larger number of layers and a huge number of different filters
with millions of weights. GPU- and FPGA-based architectures
have been proposed as a possible solution for facing this enormous
demand of computing resources. In this paper, we investigate the
adoption of different architectural features, i.e. SIMD paradigm,
multithreading, and non-coherent on-chip memory for Deep
Learning oriented FPGA-based accelerator designs. Experimental
results on a Xilinx Virtex-7 FPGA show that the SIMD paradigm
and multithreading can lead to an improvement in the execution
time up to 5× and 3.5×, respectively. A further enhancement up
to 1.75× can be obtained using a non-coherent on-chip memory.

I. INTRODUCTION AND RELATED WORK

The emerging wave of the Big Data [1] is paving the way
for the widespread adoption of Deep Learning techniques in
diverse application domains including image recognition [2],
sound processing [3], medical systems [4], gaming [5], and
others. However, despite the huge potential of Deep Learn-
ing, most of these algorithms rely on a large number of
performance-hungry convolutions limiting the usability of
these techniques. In addition, Deep Neural Networks (DNNs)
require a training phase that is a very compute intensive
task. For instance, training a popular architecture like, e.g.
GoogLeNet [6], can easily take several days on a standard
GPU. Because of these requirements, the applicability of Deep
Learning is becoming increasingly performance- or power-
constrained.

Not surprisingly, the industry and academia are continu-
ously introducing new architectures dictating the evolution of
Deep Learning techniques. First-generation solutions consist of
large-scale distributed systems comprised of tens of thousands
of CPU cores [7]. However, the growing demand for high-
parallel energy-efficient architectures has led to an increasing
interest in GPUs and FPGAs [8], [9], [10]. For example,
many entries in the annual ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [11] use GPUs and FPGAs
to implement DNNs. FPGAs are an attractive alternative and
provide an intermediate point between Application-Specific
Integrated Circuits (ASIC) and standard GPUs, enabling higher
efficiency even compared to high-end GPUs [12]. In addition,
the higher flexibility allows their use in different compute

problems. There is thus a tradeoff between power-hungry high-
performance GPUs and energy-efficient application-specific
solutions.

In this paper we investigate the adoption of different archi-
tectural features, i.e. SIMD paradigm, multithreading, and non-
coherent on-chip memory for Deep Learning oriented FPGA-
based accelerator designs. We designed and implemented a
customizable GPU-like SIMD architecture as a solution to sup-
port architecture-level exploration for Deep Learning oriented
systems. Architectural customization plays a key role, as it
enables unprecedented levels of resource-efficiency compared
to GPUs. The accelerator was synthesized into a Xilinx Virtex-
7 2000T XC7V2000T FPGA chip. Experimental results show
that such a customization leads to significant improvements
over non-customized architectures.

II. GPU-LIKE ARCHITECTURE

This work relies on an experimental platform, called nu+,
providing a parameterizable GPU-like architecture inspired by
modern GPUs, yet exposing full customization capabilities
for architectural exploration. The heart of the platform is a
RISC in-order core oriented to highly data-parallel kernels
with a lightweight control infrastructure, shown in Figure 1.
Most of its resources are dedicated to computation-intensive
operations on massive datasets. Such accelerator blends to-
gether a hardware multithreading paradigm with a vector
processor model. Each hardware thread has private internal
resources such as PC, register file, and control registers along
with a private memory stack, although all threads share the
same compute units, L1 cache and an on-chip non-coherent
memory. The thread control unit implements an interleaved
multithreading scheduling in a fine-grain way. An internal
round robin arbiter issues instructions for different threads
in a fair mode after every cycle with a low architectural
impact. Execution datapaths and register files are designed to
exploit data-level parallelism. The architecture implements an
instruction set containing instructions that operate on arrays
of data. Computational units are organized in hardware vector
lanes, with each scalar operator being instantiated N times.
Dually, each thread is equipped with a vectorial register file,
where each register can store up to N scalar data in order
to satisfy the execution pipeline data throughput. Such a data
parallelism allows each thread to perform SIMD operations on
N independent data simultaneously.

The proposed GPU-like architecture has an n-way set-
associative write-back L1 cache strictly coupled with a light

D
E
C

O
D

E

IN
S
T
R

U
C

T
IO

N
 C

A
C

H
E

INSTRUCTION FETCH

D
Y

N
A

M
IC

 S
C

H
E
D

U
L
E
R

R
R

 S
C

H
E
D

U
L
E
R

THREAD SCHEDULER

FIFO

FIFO

FIFO

SCOREBOARD

THREAD CONTROLLER

lo
a

d
/s

to
re

 m
is

s

P
C T

H
R

E
A

D
 S

E
L
E
C

T
O

R

P
C

P
C

Register File

L
o

a
d

/S
to

re
U

n
it

S
P

M

W
ri

te
b

a
c
k

THREAD POOL

THREAD INFO

ACTIVE THREAD MASK

S
T
A

T
U

S

S
T
A

T
U

S

S
T
A

T
U

S

Fig. 1. Simplified overview of the developed GPU-like accelerator. This figure highlights both data and thread level parallelism. Beside memory configuration
parameters, this architecture has different customization levels, such as the number of hardware lanes and the number of hardware threads implemented.

cache controller which implements a simple valid/invalid co-
herence mechanism. Such cache controller handles misses
and memory transactions and it also provides both request
serialization and merging mechanisms in order to correctly
manage concurrent requests from different threads. The cache
line width matches the internal hardware lanes capability, thus
a read memory request loads N scalar data from main memory
and stores them into a vectorial register at once, minimizing
requests and exploiting the internal parallelism of the GPU-like
accelerator.

As in general purpose platforms, the performance of custom
accelerators is also critically dependent on data movement
and memory accesses. In that respect, hardware coherence
mechanisms introduce both architectural and data manage-
ment overheads, which are not always necessary in some
applications. Many modern parallel architectures utilize fast
non-coherent on-chip memories, called scratchpad memories
(SPMs). Since NVIDIA Fermi family, GPUs are equipped with
this kind of memories, that are intensively used to facilitate
communication across threads and to store partial outputs or
temporary data that are not requested to be synchronized back
into main memory.

The nu+ core supports such kind of high-throughput non-
coherent scratchpad memory, which is divided in a parameter-
ized number of banks based on a user-configurable mapping
function in order to support multiple memory accesses. The
scratchpad memory is organized in multiple independently-
accessible memory banks providing a high data access paral-
lelism. Therefore, if all memory accesses request data mapped
to different banks, they can be handled in parallel. However,
when multiple requests are made for data within the same
bank, conflicts occur and a resolution logic handles and
serializes each request resulting in a significantly performance
loss. In fact, whenever an n-way conflict is detected, such a
serialization logic notifies to the GPU-like accelerator control
logic that the memory is not able to receive any further request,
then it splits the conflicting requests into n conflict-free sub-
requests issued serially in the next n cycles.

The implemented architecture comes with a toolchain based
on the LLVM project and includes a custom version of the
Clang frontend and a native nu+ backend. The Clang front-
end allows users to compile traditional C/C++ source code
in a fast way and with a low memory usage. On the other
hand, the toolchain is deeply customized for exploiting the
core internal data parallelism and reaching the maximum
throughput. The compiler has a complete vision of the SIMD
nature of the datapath. It supports custom vector types, thus
standard arithmetic and bitwise operators are available for
both scalar and vector operations. Furthermore, the custom
version of Clang supports ad-hoc builtin functions that are
required to fully exploit target specific features, such as thread
synchronization and special SIMD operations.

Combining a non-coherent on-chip memory approach, high
data parallelism, and a fine-grain thread control, this GPU-
like accelerator provides a significant speed-up in compute-
intensive and data demanding workloads.

III. CONVOLUTION ALGORITHM

Deep Learning is a class of machine learning algorithms
using convolutional neural networks (CNN) which are inspired
by the behavior of optic nerves. Deep Learning gives state-of-
the-art accuracy for many computer vision tasks, such as image
classification and image search engine in data centers.

CNN employs a feedforward process for recognition and a
backward path for training. Consequently a typical CNN is
composed of multiple computation layers, and the output y is
the sum of multiple different convolutions between the input
x and the filter k:

y[n] = x[n] · k[n] =
∑
k

x[n] · k[n− k]

Our work focuses on the exploration of different architec-
tural features in a custom GPU-like accelerator targeted at
convolution operations. In fact, these account for over 90%

of the processing in CNNs for both inference/testing and
training [13].

The pseudo code of a convolution with a K × K filter
with no stride, bi-dimensional input and output matrices,
respectively of N × N and M × M where M = N − K,
can be written as in the following listing:

f o r (row = 0 ; row < M; row ++)
f o r (c o l = 0 ; c o l < M; c o l ++)

f o r (krow = 0 ; krow < K; krow ++)
f o r (k c o l = 0 ; k c o l < K; k c o l ++)

y [row] [c o l] += k [krow] [k c o l] ∗
x [row + krow] [c o l + k c o l] ;

This scalar single-thread version of the convolution algo-
rithm has been adapted to our target architecture exploiting
both thread and data level parallelism. Output matrix row
calculations are equally spanned across all threads, i.e., for
each thread, the outer loop starts with the thread ID (thid)
and increments by the number of threads (thnumb). On the
other hand, both input and output matrices are organized in
target specific vector types, becoming vectors of vectors. Such
an organization results in a distribution of the M column
partial results on the M hardware lanes; each thread calculates
M partial results every cycle. The vectorization makes the
second cycle unnecessary. The inner cycle, however, scrolls
the input matrix in the scalar version. This can be replaced by
a vectorial shift operation supported by the target architecture
on the input row, which shifts each scalar element inside the
hardware vector by n positions. The resulting pseudo code of
the algorithm optimized for a GPU-like accelerator, can be
written as in the following listing:

f o r (row = t h i d ; row < M; row += thnumb)
f o r (krow = 0 ; krow < K; krow ++)

f o r (k c o l = 0 ; k c o l < K; k c o l ++) {
y [row] += k [krow] [k c o l] ∗

x [row + krow] ;
x [row + krow] = x [row+krow] << 1 ;

}

IV. EVALUATION

We carried out our experiments on a proFPGA MB-4M
FPGA board by ProDesign, equipped with one Xilinx Virtex-7
2000T XC7V2000T FPGA. The GPU-like accelerator has been
developed in SystemVerilog hardware description language
(HDL) and synthesized using the Vivado design suite provided
by Xilinx. The design has been validated with the Verilator
RTL simulator tool [14] and with an in-house event-driven
cycle-accurate emulator. Finally, the convolution algorithm was
written in C and compiled using our toolchain.

The convolutions were performed on 16× 16, 32× 32, and
64× 64 input images with filter kernels of size between 3× 3
and 7× 7. We first carried out a set of experiments to assess
speedup over a naive scalar single-thread implementation and
estimate the performance boost of the SIMD paradigm. Fig-
ure 2 depicts the results. By sweeping the size of the input
image from 16×16 to 64×64, we observe a great increase in

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

0

1

2

3

4

5

32×32 64×6416×16

filter sizes:
3×3

7×7
5×5

imput sizes

Fig. 2. Speedup over naive scalar single-thread implementation on 16× 16,
32×32, and 64×64 input images with 3×3, 5×5, and 7×7 filter kernels.

the effective acceleration (up to 5×). This is due to the higher
number of multiply-add operations that need to be performed.
Unsurprisingly, small input images with filter kernels of size
7 × 7 have a reduced speedup due to the unbalanced sizes
of the images and the filter causing a suboptimal use of the
hardware lanes.

Then, in a second set of experiments we evaluated the
benefits of using multithreading. Figure 3 shows the speedup
over a single-thread implementation. Two threads ensure a
speedup between 1.3× and 2×, while a higher number of
threads leads to better performance (up to 3.5×). However,
this trend is not constant since in case of small images and/or
small filters, a higher number of threads may be useless. This
is because hardware multithreading involves some overhead
for handling the different stacks (one for each thread) and for
thread scheduling and synchronization. For instance, in case
of a 16 × 16 input image and filters with a size of 3 × 3
and 7× 7, the optimum number of threads is respectively two
and six. This is because convolutions performed on a 16× 16
input image with filter kernels of size 7× 7 require 2.6 more
arithmetic operations than in case of 3× 3 filters.

Finally, in the last set of experiments, we evaluated the
benefits of using the scratchpad memory. The results in terms
of speedup over an accelerator with a standard memory
subsystem are summarized in Figure 4. In case of smaller
filters, we observe better results since there is a lower need
to swap data between the scratchpad and the main memory.
In general, the achieved speedup scales up with the number of
threads up to 1.75×. This is due to the higher efficiency of the
scratchpad memory, which does not implement the coherence
functionalities of traditional cache memories, as well as the
lower number of cache misses when using the scratchpad
memory (up to 30%).

V. CONCLUSIONS

In this work, we investigated various architectural features
for the definition of an innovative GPU-like accelerator tar-
geted at Deep Learning. In particular, we evaluated how
those features impact the performance of convolutions, the
dominant operation in Deep Learning applications. Thread
level parallelism and SIMD operation achieve a great increase
in the acceleration efficiency reaching respectively a speed-up
of 3.5× and 5× over a scalar single-thread implementation of

E
x
ec

u
ti

o
n

 t
im

e
im

p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

E
x

ec
u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,0

1,5

2,0

2,5

3,0

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

E
x

ec
u

ti
o

n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,75

2,50

3,25

4,00

21

filter sizes:
3×3

7×7
5×5

threads
4 6 8

(a)

(b)

(c)

Fig. 3. Speedup over single-thread implementation when varying the number
of threads on 16× 16, 32× 32, and 64× 64 input images with 3× 3, 5× 5,
and 7× 7 filter kernels.

the convolution algorithm. The use of non-coherent on-chip
memory can further enhance performance to some extent, due
to the increased locality and lower number of cache misses.
In conclusions, the findings of our work may be particularly
impactful for driving the long-term evolution of current ac-
celerator architectures towards improved specialization and
workload-specific customizability.

ACKNOWLEDGMENTS

This work is supported by the European Commission
in the framework of the H2020-FETHPC-2014 project n.
671668 - MANGO: exploring Manycore Architectures for
Next-GeneratiOn HPC systems.

REFERENCES

[1] K. Kambatla et al., “Trends in big data analytics,” Journal of Parallel
and Distributed Computing, vol. 74, no. 7, pp. 2561–2573, 2014.

[2] K. He et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[3] J. Salamon and J. P. Bello, “Deep convolutional neural networks and
data augmentation for environmental sound classification,” IEEE Signal
Processing Letters, vol. 24, no. 3, pp. 279–283, 2017.

[4] A. Esteva et al., “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, p. 115, 2017.

[5] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7(a)

(b)

(c)

threads:
1

4
2

6
8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7

threads:
1

4
2

6
8

E
x
ec

u
ti

o
n
 t

im
e

im
p
ro

v
em

en
t

1,00

1,25

1,50

1,75

2,00

3×3
filter sizes

5×5 7×7

threads:
1

4
2

6
8

Fig. 4. The speedup achieved using scratchpad memory when varying the
number of threads on 16×16, 32×32, and 64×64 input images with 3×3,
5× 5, and 7× 7 filter kernels.

[6] C. Szegedy et al., “Going deeper with convolutions.” Cvpr, 2015.
[7] J. Dean et al., “Large scale distributed deep networks,” in Advances in

neural information processing systems, 2012, pp. 1223–1231.
[8] Y. Chen et al., “Dadiannao: A machine-learning supercomputer,” in

Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE Computer Society, 2014, pp. 609–622.

[9] C. Farabet et al., “Neuflow: A runtime reconfigurable dataflow proces-
sor for vision,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2011 IEEE Computer Society Conference on. IEEE, 2011,
pp. 109–116.

[10] C. Zhang et al., “Optimizing fpga-based accelerator design for
deep convolutional neural networks,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2015, pp. 161–170.

[11] O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp.
211–252, 2015.

[12] C. Murphy and Y. Fu, “Xilinx all programmable devices: A superior
platform for compute-intensive systems,” Xilinx White Paper, 2017.

[13] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[14] W. Snyder, P. Wasson, and D. Galbi, “Verilator-convert verilog code to
c++/systemc,” 2012.

