

Progetti Speciali ReLUIS 2014

RS2 – Simulazioni di Terremoti ed Effetti Near-Source

Coordinatore Prof. Roberto Paolucci Politecnico di Milano

Kick-off meeting Department of Physics - University of Napoli, Monte Sant'Angelo Napoli, March 27, 2014

Unità di Ricerca	Responsabile	Budget (k€) 2014
Politecnico di Milano	Roberto Paolucci	25
Università di Napoli	Gaetano Festa	15
Università di Pavia	Carlo Lai	10
INGV Milano	Francesca Pacor	10
		60

Data di decorrenza: 1 febbraio 2014

Competenza temporale delle attività: 1 febbraio – 31 dicembre 2014

Motivazioni progetto

- moto sismico nel near-source scarsamente documentato da dati accelerometrici che coprano la varietà di condizioni di sito, sorgente, direttività, etc
- rarissimi i casi in cui si abbiano a disposizione dati near-source da reti accelerometriche dense per vincolare la variabilità spaziale del moto
- strumenti di simulazione numerica ormai ben collaudati, ma con limiti computazionali da risolvere (alta frequenza, non linearità)
- "sdoganare" gli accelerogrammi sintetici come efficace alternativa agli accelerogrammi reali per applicazioni ingegneristiche

Magnitude 10 100 Distance [km]

structures

Obiettivi progetto (nell'arco del triennio) – (a)

- affinare gli strumenti di calcolo di accelerogrammi sintetici in condizioni nearsource, sia con approcci deterministici che stocastici, validandoli sulla base delle osservazioni dai terremoti dell'Aquila (in continuità con quanto sviluppato in RS2 del progetto 2010-2013) e dell'Emilia, e mostrandone le potenziali applicazioni in analisi di rischio sismico a scala territoriale;
- 2) produrre una base di dati accelerometrici reali, pienamente caratterizzata in termini di meta-dati per gli effetti near-source (componenti normali e parallele alla faglia, diverse metriche di distanza, condizioni di direttività, condizioni di sito), associandola, nel corso del progetto, anche ad accelerogrammi sintetici, a coprire in particolare quelle condizioni non ancora ben documentate dai dati reali;
- elaborare i dati a disposizione per fornire strumenti predittivi del moto sismico specifici per condizioni near-source, per quanto riguarda in particolare le forme spettrali e la loro dipendenza dalle caratteristiche della faglia (componenti normali vs parallele, periodi dominanti del moto impulsivo, componenti verticali vs orizzontali, velocità e spostamento di picco, fattori di amplificazione sismica di sito in condizioni near-source);

Obiettivi progetto (nell'arco del triennio)- (b)

- studiare, sulla base dei risultati delle simulazioni numeriche e/o dei dati disponibili da reti accelerometriche dense, la coerenza spaziale del moto sismico in condizioni near-source;
- 5) valutare le potenzialità d'uso degli accelerogrammi sintetici da simulazioni numeriche, sia in termini di risposta sismica di strutture estese (ponti, condotte interrate), sia in termini di analisi di stabilità di pendii, validando i risultati con approcci più tradizionali di definizione dell'input sismico;
- 6) tradurre i risultati del progetto in indicazioni normative o pre-normative, in particolare per quanto riguarda gli effetti near-source su: (i) forme degli spettri elastici di progetto; (ii) fattori correttivi per gli effetti di sito; (iii) formule aggiornate per il calcolo di velocità e spostamento di picco in funzione delle ordinate spettrali di medio periodo; (iv) componenti verticali del moto e rapporto V/H.
- 7) sviluppare documenti pre-normativi per l'inclusione degli effetti near-source negli scenari di progetto per le costruzioni.

the complexity of the geological and morphological environment

the frequency range of the seismic excitation and of resulting ground motion

6

The Spectral Element Code SPEED

Download

http://mox.polimi.it/it/progetti/speed/SPEED/Home.html

Project Publications Applications

SPectral Elements in Elastodynamics with Discontinuous Galerkin

Project Home People

Publications Applications Web Repository

DIPARTIMENTO DI

E AMBIENTALE

INGEGNERIA CIVILE

SPEED SPectral Elements in Elastodynamics with Discontinuous Galerkin

SPEED is an open-source code for the simulation of seismic wave propagation in three-dimensional complex media.

SPEED is jointly developed by MOX (The Laboratory for Modeling and Scientific Computing) of the Department of Mathematics and Department of Civil and Environmental Engineering (DICA) at Politecnico di Milano.

SPEED is a discontinuous Galerkin spectral element code that incorporates the open-source libraries METIS and MPI for the parallel computation (mesh partitioning and message passing). It has been designed with the aim of simulating large-scale seismic events, allowing the evaluation of

the typically multi-scale wave propagation problems in its complexity, from far-field to near-field and from near-field to soil-structure interaction effects.

The main features of the code are:

- Naturally oriented to large scale applications;
- Native parallel implementation;
- Scalable approach: subdomain grids are generated independently with possibly variable granularity and spectral approximation degree;
- Externally created unstructured meshes (e.g.: CUBIT);
- Complex constitutive models including visco-elastic, visco-plastic and non-linear constitutive models:
- Handling the partitioning and load balancing of the computational domain by incorporating the METIS software library;
- Post-processing output in GID and VTK format

Mazzieri I. et al. (2013) SPEED-Spectral Elements in Elastodynamics with Discontinous Galerkin: a non-conforming approach for 3D multi-scale problems, Int. J. Num. Meth. Eng., 95 (12), DOI: 10.1002/nme.4532

vises electio, and

SPEED

Ilario Mazzieri

Politecnico di Milano

Alberto Ferroni

Politecnico di Milano

Dipartimento di Matematica

Aarcati (PoliMi)

PhD Student

XOM.

Post-Doc

Dipartimento

Matematica

MOX.

Dipartimento di Matematica

Roberto Paolucci Full Professor Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano

Marco Stupazzini Seismic Engineer at Munich RE

Chiara Smerzini Post-doc Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano

Roberto Guidotti Post-doc Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano

INGEGNERIA CIVILE E AMBIENTALE

Web Repository

DIPARTIMENTO DI

M®X

People

Home

Download

Flowchart for scenario simulations by SPEED

Step 1: input data

Tools (suggested): CAD, Rhinoceros, ArcGIS

1.1) Identification of active faults (literature overview geologic/seismic evidences):

- location;
- focal mechanism;
- size;
- Mmax.

1.2) Digital Elevation Model (DEM): available at http://srtm.csi.cgiar.org/ - 90m resolution

1.3) Geologic, geophysical and geotechnical model:

- 3D structure;
- velocity profiles;
- deep crustal model.

Roberto Paolucci

Tools (suggested): CUBIT

2.1) geometry and mesh design (1:3 refinement scheme for conforming model or non-conforming model)

2.2) auxiliary (independent) mesh for "Not Honoring" Procedure

2.3) auxiliary (independent)

mesh for kinematic finite

fault model

Step 3: source input creation

Tools: Matlab toolbox

Automatic generation of fault rupture scenarios breaking any arbitrary portion of the seismogenic structure/s implemented in the mesh (as in Step 1)

x: along strike

- For a given fault (M_{max}) , define:
- Moment magnitude: $M_W(M0)$
- position of rupture area w.r.t. FO: L0, W0
- slip distribution *s*(*x*,*y*) (SRCMOD database included:

http://www.seismo.ethz.ch/srcmod/)

- hypocenter location w.r.t. FO and focal depth: X_{hy} , Y_{hy} , D
- rupture length and width: L, W
- rake angle (λ), rupture velocity (V_R), rise time (τ)

Roberto Paolucci

Step 3: source input creation

Features for seismic input

t Kinematic modeling of an extended seismic source

Expected times required to compute a typical scenario simulation

INPUT DATA + MESH: ~ 5 days (if input data – particularly the 3D soil model - are easily available and given in a suitable format)

13

RUN SPEED

Roberto Paolucci

RUN (SUPER-COMPUTER): ~ 4-5 hours for tens of million nodes (512 MPI, FERMI)

 ~ 2 hours on a standard laptop – 4 labs (CPU @ 2.8 GHz, RAM 8 Gb)

The PoliMi-MunichRE contract

Munich RE 萋

14

Hybrid method, embedded in the post-processing toolbox, to generate **broadband ground motion shaking maps** usable over a wide range of periods for engineering aims

Physics-based waveforms provided by **SPEED at LF** ($f < f_{l}$) are combined with the synthetic accelerograms computed through the stochastic approach of Sabetta & Pugliese (1996, **SP96**) at **High Frequency** ($f > f_{h}$), by using matching filters

GROUND SHAKING MAPS: results are collected on a regular (~ 600 m) of observation points at ground surface and saved in the following format:

Long	Lat	PGD	PGV	PGA	PSA 0.3s	PSA 1.0s	PSA 3.0s	PSA 5.0s
(E)	(N)	(cm)	(cm)	(cm/s/s)	(cm/s/s)	(cm/s/s)	(cm/s/s)	(cm/s/s)

For each groud motion parameter, the geometric mean of horizontal component is provided

Web repository of seismic scenarios

Roberto Paolucci

Web repository of seismic scenarios

Nogara Selection of the target seismic fault (e.g. Mirandola fault)

Legnago

Lendinara

Rovigo

SLIP ORIGIN	SCENARIO ID	MW	L [KM]	W [КМ]	HYPO LAT [DEGREES]	HYPO LON [DEGREES]	HYPO DEPTH [KM]	RAKE ANGLE [DEGREES]	RUPTURE VELOCITY [KM/S]	RISE TIME [S]	BROADBAND	SCENARIO PARAMETERS	SCENARIO FILE	RASTI	R	Argenta
	E00101	6	32000	20000	44.851	11.086	-10200	90	2800	0.7	False	Download File param	Download File scen	PGD 💌	VIEW MAP	
	E00103		000	6000	44.822588	11.094198	-12771.1513	90	2500	0.6	False	Download File param	Download File scen	PGD 💌	VIEW MAP	1
	n of t scena	ine ari	• tai 0 	rge:	⁷⁰⁷⁸	10.982199	-7628.8504	90	2500	0.6	False	Download File param	Download File scen	PGD 💌	VIEW MAP	I
	E00105	5.5	6000	5000	44.862875	10.937637	-10200.0009	90	2500	0.6	False	Download File param	Download File scen	PGD 💌	VIEW MAP	I
	E00106	6	12000	7000	44.85323	11.058344	-10200.0009	100	2800	0.7	False	Download File param	Download File scen	PGD 💌	VIEW MAP	0

Web repository of seismic scenarios

Roberto Paolucci

Wellington, New Zealand (from Google Earth)

POLITECNICO DI MILANO

Roberto Paolucci

Spectral Element Model

Wellington, New Zealand. Topography exported in Cubit. In yellow is represented the Wellington - Lower Hutt basin; superimposed are the coast line and the Wellington fault line.

The 3D hexahedral mesh of the area, the mesh covers an area of approximately 50 x 80 x 45 km and is composed by around 350,000 hexahedra. Around 200,000 elements are in the Wellington-Lower Hutt basin.

Roberto Paolucci

Kinematic Source Model:

Main Active Faults in Wellington

Main active faults in Wellington (source: GNS web site) and their representation in the numerical model. The model includes, from West to East, the Ohariu, the Wellington and the Wairarapa faults (superimposed red lines).

Roberto Paolucci

Scenario Properties:

Selected scenario with MAGNITUDE of *7.0*, length and width of *40000* and *2000* m, rupture velocity of *2700* m/s, rise time of *0.5* second and rake angle of *180* degree.

Fault model with strike angle of 58.2623° and dip of 90°

K-square self-similar slip distribution model proposed by Herrero and Bernard (1994)

Roberto Paolucci

Wellington-Lower Hutt Basin

From top to bottom: representation on Google Earth and bedrock model from data provided by R. Benites.

x Lx

From top to bottom: Basin model in Cubit having size 10x22x0.7 km and element size of 100 m. The bedrock surface is exploited according a Not-honoring technique.

Soil Profile

Properties of the Wellington Basin (adapted from Benites et al. 2005)

		Table	1
3D	Crustal	Model	Specification

Description	S-Wave Velocity (m/sec)	Density (kg/m³)
Soft Last Glacial sediments	300	2200
Stiff Last Interglacial sediments	330	2275
Poorly consolidated Waimea sediments	460	2359
Poorly consolidated Kororo Interglacial sediments	475	2365
Stiff Waimaunga Glacial sediments	610	2415
Stiff Brunswick Interglacial sediments	615	2417
Stiff weathered undifferentiated sediments	700	2421
Lithified, fractured basement rock (graywacke)	1500	2744

50°		
A	Bay	B
	20-3	13
	S	
2		

	z (m)	Vs (m/s)	Vp (m/s)	ρ (kg/m3)
	≤ 100	300	520	2200
	100 < ≤200	400	700	2300
Alluvial Basin	200 < ≤ 500	500	850	2400
	> 500	1000	1700	2400
Outcropping Bedrock	200 < ≤ 500	1500	2800	2400

Roberto Paolucci

G/G0 and damping curves applied to the alluvial basin (first 200m of soil layer)

Ground Motion MAPs

POLITECNICO DI MILANO

Roberto Paolucci

Ground Motion movie

Roberto Paolucci

Preliminary Results – Monitor #20170

7370

12307

12076

11374

8697⁸⁷¹² 1228. 19964

12 12283 12488 1 13383 11896

POLITECNICO DI MILANO

Roberto Paolucci

Preliminary Results – Monitor #11374

Preliminary Results – Monitor #7370

10²

EW

- Linear

7370

12307 12076

11374

POLITECNICO DI MILANO

Roberto Paolucci

Comparison with GMPEs - Nonlinear Analysis

PSA at selected periods: comparison with Cauzzi & Faccioli (2008)

Roberto Paolucci

POLITECNICO DI MILANO

60

Comparison with GMPEs - Nonlinear Analysis

PSA at selected periods: comparison with Cauzzi & Faccioli (2008)

60

T=5.0 s

50

40

Roberto Paolucci

Obiettivo 1: calcolo di accelerogrammi sintetici in n.s.

- ✓ 1a) costruzione di una prima versione del sito web che conterrà: (a) i codici utilizzati e i link per scaricarli (SPEED, Hisada, ... ? ...); (b) sintesi dei benchmark e casi studio trattati nel progetto (L'Aquila, Emilia); → da fare confluire successivamente in Synthesis
- 1b) routine comuni di pre-processing (costruzione dell'input in termini di spostamento sulla faglia per eccitazione broad-band) e post-processing (generazione di accelerogrammi broad-band con approccio ibrido deterministico+stocastico)
- 1c) nuova versione codice SPEED (con updates da parte di varie UR)
- 1d) benchmark di confronto tra i codici
- 1e) completamento simulazioni terremoto L'Aquila
- 1f) completamento simulazioni terremoto Emilia

Solution of the second structure of the second structu

mesh conforme

mesh non conforme

Roberto Paolucci

Solution of the second structure estese

Roberto Paolucci

POLITECNICO DI MILANO

36

$$d_g = 0.025 \cdot a_g \cdot S \cdot T_C \cdot T_D$$

 $\varepsilon = \log(\frac{PGD_{norm}}{PGD_{oss}})$ valori di PGD osservati dal database SIMBAD

Roberto Paolucci

Obiettivo 6: indicazioni normative

Le formule adottate nelle norme sono idonee ?

 $\boldsymbol{v}_g = 0.\,\mathbf{16}\,\cdot a_g\cdot S\cdot T_C$

3.2.5.2 Spostamento assoluto e relativo del terreno

Il valore dello spostamento assoluto orizzontale massimo del suolo (dg) può ottenersi utilizzando l'espressione 3.2.15.

Nel caso in cui sia necessario valutare gli effetti della variabilità spaziale del moto richiamati nel paragrafo precedente, il valore dello spostamento relativo tra due punti i e j caratterizzati dalle proprietà stratigrafiche del rispettivo sottosuolo ed il cui moto possa considerarsi indipendente, può essere stimato secondo l'espressione seguente:

$$d_{ijmax} = 1,25\sqrt{d_{gi}^2 + d_{gj}^2}$$
(3.2.18)

dove d_{gi} e d_{gi} sono gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo.

Il moto di due punti del terreno può considerarsi indipendente per punti posti a distanze notevoli, in relazione al tipo di sottosuolo; il moto è reso indipendente anche dalla presenza di forti variabilità orografiche tra i punti.

In assenza di forti discontinuità orografiche, lo spostamento relativo tra punti a distanza x si può valutare con l'espressione:

$$d_{ij}(x) = d_{ij0} + (d_{ijmax} - d_{ij0}) \left[1 - e^{-1.25(x/v_s)^{0.7}} \right], \qquad (3.2.19)$$

dove v_s è la velocità di propagazione delle onde di taglio in m/s ed_{ij0} , spostamento relativo tra due punti a piccola distanza, è dato dall'espressione

$$d_{ij0}(x) = 1,25 |d_{gi} - d_{gj}|$$
. (3.2.20)

Per punti a distanza inferiore a 20 m lo spostamento relativo, se i punti ricadono su sottosuoli differenti, è rappresentato da d_{ij0} ; se i punti ricadono su sottosuolo dello stesso tipo, lo spostamento relativo può essere stimato, anziché con l'espressione 3.2.19, con le espressioni

$$d_{ij}(x) = \frac{d_{ijmax}}{v_s} \cdot 2,3x \quad \text{per sottosuolo tipo D},$$

$$d_{ij}(x) = \frac{d_{ijmax}}{v_s} \cdot 3,0x \quad \text{per sottosuolo di tipo diverso da D}.$$
(3.2.21)

In assenza di forti discontinuità orografiche, lo spostamento relativo tra punti a distanza x si può valutare con l'espressione:

$$d_{ij}(x) = d_{ij0} + (d_{ijmax} - d_{ij0}) \left[1 - e^{-1.25(x/v_s)^{0.7}} \right], \qquad (3.2.19)$$

dove v_s è la velocità di propagazione delle onde di taglio in m/s ed_{ij0} , spostamento relativo tra due punti a piccola distanza, è dato dall'espressione

$$d_{ij0}(x) = 1,25 |d_{gi} - d_{gj}|$$
. (3.2.20)

Per punti a distanza inferiore a 20 m lo spostamento relativo, se i punti ricadono su sottosuoli differenti, è rappresentato da d_{ij0} ; se i punti ricadono su sottosuolo dello stesso tipo, lo spostamento relativo può essere stimato, anziché con l'espressione 3.2.19, con le espressioni

$$d_{ij}(x) = \frac{d_{ijmax}}{v_s} \cdot 2,3x \quad \text{per sottosuolo tipo D},$$

$$d_{ij}(x) = \frac{d_{ijmax}}{v_s} \cdot 3,0x \quad \text{per sottosuolo di tipo diverso da D}.$$
(3.2.21)

Rapporti spettrali V/H: effetto della magnitudo

$10 < d_f < 30 \text{ km}$

30 < d_c < 50

POLITECNICO DI MILANO

Roberto Paolucci

Obiettivo 6: indicazioni normative

Rapporti spettrali V/H: effetto del sito

Obiettivo 6: indicazioni normative

Rapporti spettrali V/H: confronto con EC8

