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Robots with Flexible Joints 

• Standard assumption underlying robot kinematics, dynamics, and 
control design: manipulators consisting of rigid bodies (links and 
joints), ok for slow motion and small interacting forces 

• Mechanical flexibility 
o Compliant transmission elements 
o Use of lightweight materials and slender design 

 
 

• Static and dynamic deflections 
• Performance degradation 

 
• Flexible joints (concentrated) 
• Flexible links (distributed) 
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Joint Flexibility 
 

• Common in current industrial robots when motion 
transmission/reduction elements are used 
o Belts 
o Long shafts 
o Cables 
o Harmonic drives 
o Cycloidal gears 

• Intrinsic flexibility 
o Time-varying displacement between position of actuator and 

that of driven link 
o Oscillatory behavior (small magnitude, high frequency) 
o Possible instability when in contact with environment 
o  
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Dynamic Modeling 
 

• Robot with flexible joints ≡ Open kinematic chain having N + 1 rigid 
bodies (base + N links), interconnected by N (revolute or prismatic) 
joints undergoing deflection, and actuated by N electrical drives 

Assumptions 

A1. Joint deflections are small, so that flexibility effects are limited to 
the domain of linear elasticity 

A2. Actuators’ rotors are modeled as uniform bodies having their 
center of mass on the rotation axis 

A3. Each motor is located on the robot arm in a position preceding 
the driven link 

 
• 2N frames attached to 2N moving rigid bodies 

o N link frames Li 
o N motor frames Ri 
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• 2N generalized coordinates 

𝚯𝚯 =  �𝒒𝒒𝜽𝜽�  ∈  ℝ2𝑁𝑁 

 

o Model independent of reduction ratios 
o Position variables with similar dynamic range 
o Robot kinematics only a function of link variables 𝒒𝒒 

 
• Motor directly placed on i-th joint axis 
�̇�𝜃𝑚𝑚,𝑖𝑖 = 𝑛𝑛𝑖𝑖  �̇�𝜃𝑖𝑖  

• Deflection at i-th joint 
𝛿𝛿𝑖𝑖 = 𝑞𝑞𝑖𝑖 − 𝜃𝜃𝑖𝑖 

• Torque transmitted to i-th link 
𝜏𝜏𝐽𝐽,𝑖𝑖 = 𝐾𝐾𝑖𝑖(𝜃𝜃𝑖𝑖 − 𝑞𝑞𝑖𝑖) 
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Lagrangian approach 
ℒ =  𝒯𝒯�𝚯𝚯, �̇�𝚯� −  𝒰𝒰(𝚯𝚯) 

Potential energy 

𝒰𝒰(𝚯𝚯) =  𝒰𝒰grav(𝒒𝒒) + 𝒰𝒰elas(𝒒𝒒 −  𝜽𝜽)  

• Gravity (independent of 𝜽𝜽, see A2) 
𝒰𝒰grav =  𝒰𝒰grav,link(𝒒𝒒) +  𝒰𝒰grav,motor(𝒒𝒒) 
 

• Joint elasticity (see A1) 

𝒰𝒰elas =
1
2

(𝒒𝒒 − 𝜽𝜽)T𝐊𝐊(𝒒𝒒 − 𝜽𝜽) 

𝐊𝐊 = diag(𝐾𝐾1, … ,𝐾𝐾𝑁𝑁) 
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Kinetic energy 

• Links 

𝒯𝒯link =
1
2

 �̇�𝒒T𝐌𝐌L(𝒒𝒒)�̇�𝒒 

• Rotors 

𝒯𝒯rotor =  �𝒯𝒯rotor𝑖𝑖

𝑁𝑁

𝑖𝑖=1

=  ��
1
2
𝑚𝑚𝑟𝑟𝑖𝑖𝒗𝒗𝑟𝑟𝑖𝑖

T 𝒗𝒗𝑟𝑟𝑖𝑖 +
1
2

𝝎𝝎𝑅𝑅𝑖𝑖
𝑟𝑟𝑖𝑖
T  𝐈𝐈𝑅𝑅𝑖𝑖

𝑟𝑟𝑖𝑖  𝝎𝝎𝑅𝑅𝑖𝑖
𝑟𝑟𝑖𝑖�

𝑁𝑁

𝑖𝑖=1

 

 
o Rotor inertia matrix (see A2) 

𝐈𝐈𝑅𝑅𝑖𝑖
𝑟𝑟𝑖𝑖 = diag �𝐼𝐼𝑟𝑟𝑖𝑖𝑥𝑥𝑥𝑥 , 𝐼𝐼𝑟𝑟𝑖𝑖𝑦𝑦𝑦𝑦 , 𝐼𝐼𝑟𝑟𝑖𝑖𝑧𝑧𝑧𝑧� 

 
o Angular velocity (see A3) 

𝝎𝝎𝑅𝑅𝑖𝑖
𝑟𝑟𝑖𝑖 =  ∑ 𝐉𝐉𝑟𝑟𝑖𝑖,𝑗𝑗(𝒒𝒒)𝑖𝑖−1

𝑗𝑗=1 �̇�𝑞𝑗𝑗 +  �
0
0
�̇�𝜃𝑚𝑚,𝑖𝑖

� 

 

 

𝒯𝒯rotor =
1
2
�̇�𝒒T[𝐌𝐌R(𝒒𝒒) + 𝐒𝐒(𝒒𝒒)𝐁𝐁−1𝐒𝐒T(𝒒𝒒)] �̇�𝒒 + �̇�𝒒T𝐒𝐒(𝒒𝒒)�̇�𝛉 +

1
2
�̇�𝛉T𝐁𝐁�̇�𝛉 

 
o 𝐁𝐁: constant diagonal inertia matrix collecting rotors inertial 

components 𝐼𝐼𝑟𝑟𝑖𝑖𝑧𝑧𝑧𝑧  around their spinning axes 

o 𝐌𝐌R(𝒒𝒒): rotor masses (and, possibly, rotor inertial components 
along the other principal axes) 

o 𝐒𝐒(𝒒𝒒): inertial couplings between rotors and previous links 
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Planar robot with two revolute flexible joints and motors mounted directly 
on joint axes 

• Kinetic energy 

𝒯𝒯rotor1 =
1
2
𝐼𝐼𝑟𝑟1𝑧𝑧𝑧𝑧 �̇�𝜃𝑚𝑚,1

2 =  
1
2
𝐼𝐼𝑟𝑟1𝑧𝑧𝑧𝑧𝑛𝑛1

2�̇�𝜃12 

𝒯𝒯rotor2 =
1
2
𝑚𝑚𝑟𝑟2𝑙𝑙1

2�̇�𝑞12 +
1
2
𝐼𝐼𝑟𝑟2𝑧𝑧𝑧𝑧��̇�𝑞1 + �̇�𝜃𝑚𝑚,2�

2
 

=
1
2
𝑚𝑚𝑟𝑟2𝑙𝑙1

2�̇�𝑞12 +
1
2
𝐼𝐼𝑟𝑟2𝑧𝑧𝑧𝑧��̇�𝑞1

2 + 2𝑛𝑛2�̇�𝑞1�̇�𝜃2 + 𝑛𝑛22 �̇�𝜃22� 

𝐁𝐁 =  �
𝐼𝐼𝑟𝑟1𝑧𝑧𝑧𝑧𝑛𝑛1

2 0
0 𝐼𝐼𝑟𝑟2𝑧𝑧𝑧𝑧𝑛𝑛2

2�         𝐒𝐒 =   �
0 𝐼𝐼𝑟𝑟2𝑧𝑧𝑧𝑧𝑛𝑛2
0 0

� 

      𝐌𝐌R =  �𝑚𝑚𝑟𝑟2𝑙𝑙1
2 0

0 0
�         𝐒𝐒𝐁𝐁−1𝐒𝐒T = �

𝐼𝐼𝑟𝑟2𝑧𝑧𝑧𝑧 0
0 0

�         

 
o 𝐒𝐒 and 𝐌𝐌R constant 
o If second motor mounted remotely on first joint, or close to 

second joint but with spinning axis orthogonal to joint axis, 
then 𝐒𝐒 = 𝐎𝐎 
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• General expression of 𝐒𝐒 (see A3) 

𝐒𝐒(𝒒𝒒)

=  

⎝

⎜
⎜
⎜
⎛

0 𝑆𝑆12
0 0
0 0

    
𝑆𝑆13(𝑞𝑞2) 𝑆𝑆14(𝑞𝑞2, 𝑞𝑞3)
𝑆𝑆23 𝑆𝑆24(𝑞𝑞3)
0 𝑆𝑆34

    
…        …
…        …
…        …

           
𝑆𝑆1𝑁𝑁(𝑞𝑞2, … , 𝑞𝑞𝑁𝑁−1)
𝑆𝑆2𝑁𝑁(𝑞𝑞3, … , 𝑞𝑞𝑁𝑁−1)
𝑆𝑆3𝑁𝑁(𝑞𝑞4, … , 𝑞𝑞𝑁𝑁−1)

⋮   ⋮
0   0
0   0

         
   ⋮              ⋱
   0              …
   0             …

          
     ⋱ ⋮
     0 𝑆𝑆𝑁𝑁−2,𝑁𝑁−1
     0 0

          
⋮

𝑆𝑆𝑁𝑁−2,𝑁𝑁(𝑞𝑞𝑁𝑁−1)
𝑆𝑆𝑁𝑁−1,𝑁𝑁

0   0            0            …                0        0                       0             ⎠

⎟
⎟
⎟
⎞

 

 
 

• Total kinetic energy 

𝒯𝒯 =
1
2
�̇�𝚯Tℳ(𝚯𝚯)�̇�𝚯 

=  
1
2
��̇�𝒒T   �̇�𝜽T� �

𝐌𝐌(𝒒𝒒) 𝐒𝐒(𝒒𝒒)
𝐒𝐒T(𝒒𝒒) 𝐁𝐁 � ��̇�𝒒

�̇�𝜽
� 

 
                                  𝐌𝐌(𝒒𝒒) = 𝐌𝐌𝐋𝐋(𝒒𝒒) + 𝐌𝐌𝐑𝐑(𝒒𝒒) + 𝐒𝐒(𝒒𝒒)𝐁𝐁−1𝐒𝐒T(𝒒𝒒) 

 
o  ℳ depends only on 𝒒𝒒 
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Complete dynamic model (N link eqs + N motor eqs) 

�
𝐌𝐌(𝒒𝒒) 𝐒𝐒(𝒒𝒒)
𝐒𝐒T(𝒒𝒒) 𝐁𝐁

� ��̈�𝒒
�̈�𝜽
� +  �𝒄𝒄

(𝒒𝒒, �̇�𝒒) + 𝒄𝒄1�𝒒𝒒, �̇�𝒒, �̇�𝜽�
𝒄𝒄2(𝒒𝒒, �̇�𝒒)

� 

+ �𝒈𝒈
(𝒒𝒒) + 𝐊𝐊(𝒒𝒒 − 𝜽𝜽)
𝐊𝐊(𝜽𝜽 − 𝒒𝒒) � =  �𝟎𝟎𝝉𝝉�  𝝉𝝉J = 𝑲𝑲(𝜽𝜽 − 𝒒𝒒) 

 Additional terms for energy-dissipating effects on right-hand side 

�
−𝐅𝐅𝒒𝒒�̇�𝒒 − 𝑫𝑫(�̇�𝒒 −  �̇�𝜽)
−𝐅𝐅𝜽𝜽�̇�𝜽 − 𝑫𝑫(�̇�𝜽 −  �̇�𝒒)

� 

 
• In case of contact with environment, additional term for N link eqs 
𝜏𝜏ext = 𝐉𝐉T(𝒒𝒒)𝐅𝐅 
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Model properties 
• All elements in the velocity-dependent terms are independent of 

motor positions, to be computed via Christoffel symbols 

𝑐𝑐tot,𝑖𝑖�𝚯𝚯, �̇�𝚯� =
1
2
�̇�𝚯T �

𝜕𝜕ℳ𝑖𝑖

𝜕𝜕𝚯𝚯
+ �

𝜕𝜕ℳ𝑖𝑖

𝜕𝜕𝚯𝚯
�
T

−   
𝜕𝜕ℳ𝑖𝑖

𝜕𝜕𝚯𝚯𝑖𝑖
� �̇�𝚯 

 
o 𝒄𝒄1 and 𝒄𝒄2 arise only in the presence of configuration-

dependent 𝐒𝐒(𝒒𝒒) 
o 𝒄𝒄1 does not contain quadratic velocity terms in �̇�𝒒 or �̇�𝜽, but 

only mixed quadratic terms �̇�𝜃𝑖𝑖�̇�𝑞𝑗𝑗 
• Same properties as for rigid case 

o Linearity in terms of suitable set of dynamic parameters, 
including joint stiffnesses and motor inertias (useful for model 
identification and adaptive control) 

o Coriolis and centrifugal terms can be factorized as 
𝒄𝒄𝑡𝑡𝑡𝑡𝑡𝑡�𝚯𝚯, �̇�𝚯� =  𝓒𝓒�𝚯𝚯, �̇�𝚯��̇�𝚯 so that �̇�𝓜 − 2𝓒𝓒 is skew-symmetric 
(useful for control) 

o For robots having only revolute joints, the gradient of 𝒈𝒈(𝒒𝒒) is 
globally bounded in norm by a constant 

• If 𝐊𝐊 → ∞, then 𝜽𝜽  𝒒𝒒 while 𝝉𝝉J  𝝉𝝉 (collapsing into standard model 
of fully rigid robots, including links and motors) 
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Reduced model 
• In case of large reduction ratios (ni ~ 100‒150), energy contributions 

due to inertial couplings between motors and links can be neglected 
 

A4. Angular velocity of rotors due only to their own spinning 

𝝎𝝎𝑅𝑅𝑖𝑖
𝑟𝑟𝑖𝑖 = �0   0   �̇�𝜃𝑚𝑚,𝑖𝑖�

T       𝑖𝑖 = 1, … ,𝑁𝑁 
 
𝐌𝐌(𝒒𝒒)�̈�𝒒 + 𝒄𝒄(𝒒𝒒, �̇�𝒒) + 𝒈𝒈(𝒒𝒒) + 𝐊𝐊(𝒒𝒒 − 𝜽𝜽) = 𝟎𝟎  

 𝐁𝐁�̈�𝜽 + 𝐊𝐊(𝜽𝜽 − 𝒒𝒒) = 𝝉𝝉 

𝐌𝐌(𝒒𝒒) = 𝐌𝐌𝐿𝐿(𝒒𝒒) + 𝐌𝐌𝑅𝑅(𝒒𝒒) 

 

o The link and motor equations are dynamically coupled through 
the elastic torque 𝝉𝝉J 

o The motor equations are fully linear 
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Singular perturbation model 
• Large but finite joint stiffness  two-time-scale dynamic behavior 

𝐊𝐊 =
1
𝜖𝜖2
𝐊𝐊� =

1
𝜖𝜖2

diag�𝐾𝐾�1, … ,𝐾𝐾�N�               
1
𝜖𝜖2

≫ 1 

 
o Slow subsystem 
𝐌𝐌(𝒒𝒒)�̈�𝒒 + 𝒄𝒄(𝒒𝒒, �̇�𝒒) + 𝒈𝒈(𝒒𝒒) = 𝝉𝝉𝐉𝐉 
 

o Fast subsystem (differentiating joint torque twice) 
𝜖𝜖2�̈�𝝉J = 𝐊𝐊�  �𝐁𝐁−1𝝉𝝉 − [𝐁𝐁−1 + 𝐌𝐌−1(𝒒𝒒)]𝝉𝝉J

+ 𝐌𝐌−1(𝒒𝒒)[𝒄𝒄(𝒒𝒒, �̇�𝒒) + 𝒈𝒈(𝒒𝒒)]� 
 

𝜖𝜖2�̈�𝝉J =  𝜖𝜖2
d2𝝉𝝉J
d𝑡𝑡2

=  
d2𝝉𝝉J
d𝜎𝜎2

      𝜎𝜎 = 𝑡𝑡/𝜖𝜖 

  

• Composite control 
𝝉𝝉 =  𝝉𝝉𝒔𝒔(𝒒𝒒, �̇�𝒒, 𝑡𝑡) + 𝜖𝜖𝝉𝝉f(𝒒𝒒, �̇�𝒒, 𝝉𝝉𝑱𝑱, �̇�𝝉𝑱𝑱) 
 
o Slow action 𝝉𝝉𝒔𝒔 designed when neglecting joint elasticity 
o Fast action 𝝉𝝉f for locally stabilizing fast flexible dynamics 

around suitable manifold in state space 
 

• If 𝜖𝜖 = 0  equivalent rigid robot model 
[𝐌𝐌(𝒒𝒒) + 𝐁𝐁]�̈�𝒒 + 𝒄𝒄(𝒒𝒒, �̇�𝒒) + 𝒈𝒈(𝒒𝒒) =  𝝉𝝉𝒔𝒔 
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Computed Torque 
 

• Rigid robots: straightforward algebraic computation by replacing 
desired motion of generalized coordinates in the dynamic model 
o Planned motion with continuously differentiable desired 

velocity 
• Robots with flexible joints: desired motion of link variables available 

from kinematic inversion of desired motion of end-effector pose 
o Additional derivatives are needed 

Reduced model 
• Link equations for desired link motion 
𝐌𝐌(𝒒𝒒d)�̈�𝒒d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) + 𝐊𝐊𝒒𝒒d = 𝐊𝐊𝜽𝜽d 

 𝒏𝒏(𝒒𝒒, �̇�𝒒) = 𝒄𝒄(𝒒𝒒, �̇�𝒒) + 𝒈𝒈(𝒒𝒒) 
o Desired motor variables can be computed  

• Time differentiation … 

𝐌𝐌(𝒒𝒒d)𝒒𝒒d
[3] + �̇�𝐌(𝒒𝒒d)�̈�𝒒d + �̇�𝒏(𝒒𝒒d, �̇�𝒒d) + 𝑲𝑲�̇�𝒒d = 𝑲𝑲�̇�𝜽d  

o Desired motor velocities can be computed 
• Time differentiation … 

𝐌𝐌(𝒒𝒒d)𝒒𝒒d
[4] + 2�̇�𝐌(𝒒𝒒d)𝒒𝒒d

[3] + �̈�𝒏(𝒒𝒒d, �̇�𝒒d) 
+��̈�𝐌(𝒒𝒒d) + 𝑲𝑲��̈�𝒒d = 𝑲𝑲�̈�𝜽d 

 
o Desired motor accelerations can be computed 

  



ROBOT INTERACTION CONTROL Prof. Bruno Siciliano 
 

 14 of 29 
 

• Nominal torque 
𝝉𝝉d = [𝐌𝐌(𝒒𝒒d) + 𝐁𝐁]�̈�𝒒d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) 

+ 𝐁𝐁𝐊𝐊−1[𝐌𝐌(𝒒𝒒d)𝒒𝒒d
[4] + 2�̇�𝐌(𝒒𝒒d)𝒒𝒒d

[3] 
+ �̈�𝐌(𝒒𝒒d)�̈�𝒒d +  �̈�𝒏(𝒒𝒒d, �̇�𝒒d)] 

�̇�𝐌[𝒒𝒒d(𝑡𝑡)] =  �
𝜕𝜕𝐌𝐌𝑖𝑖(𝒒𝒒)
𝜕𝜕𝒒𝒒

�
𝒒𝒒=𝒒𝒒d(𝑡𝑡)

�̇�𝒒d(𝑡𝑡)𝒆𝒆𝑖𝑖T
𝑁𝑁

𝑖𝑖=1

 

        𝒆𝒆𝑖𝑖  : i-th unit vector 

        𝐌𝐌𝑖𝑖  : i-th column of 𝐌𝐌(𝒒𝒒)  

o 𝒒𝒒d(𝑡𝑡) admits continuously differentiable jerk 
 

• Recursive numerical Newton-Euler algorithm 
o Forward recursion of motion variables up to 4th differential 

order 
o Backward recursion of second time derivatives of forces and 

moments 
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Complete model 
• Link equations for desired link motion (constant 𝐒𝐒) 
𝐌𝐌(𝒒𝒒d)�̈�𝒒d + 𝐒𝐒�̈�𝜽d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) + 𝐊𝐊𝒒𝒒d = 𝐊𝐊𝜽𝜽d 
o Desired motor variables cannot be directly computed  

 
• Exploiting upper triangular structure of 𝐒𝐒 … 

 
o N-th equation is independent of �̈�𝜃d 
𝐌𝐌𝑁𝑁
T(𝒒𝒒d)�̈�𝒒d + 𝟎𝟎T�̈�𝜽d + 𝑛𝑛𝑁𝑁(𝒒𝒒d, �̇�𝒒d) + 𝐾𝐾𝑁𝑁𝑞𝑞d,𝑁𝑁 = 𝐾𝐾𝑁𝑁𝜃𝜃d,𝑁𝑁 

𝜃𝜃d,𝑁𝑁 =  𝑓𝑓𝑁𝑁(𝒒𝒒d, �̇�𝒒d, �̈�𝒒d) 
 
After double differentiation 

�̈�𝜃d,𝑁𝑁 = 𝑓𝑓𝑁𝑁′′ �𝒒𝒒d, �̇�𝒒d, . . . ,𝒒𝒒d
[4]� 

 
o (N‒1)-th equation … 
𝐌𝐌𝑁𝑁−1
T (𝒒𝒒d)�̈�𝒒d + 𝑆𝑆𝑁𝑁−1,𝑁𝑁�̈�𝜃d,𝑁𝑁 

+ 𝑛𝑛𝑁𝑁−1(𝒒𝒒d, �̇�𝒒d) + 𝐾𝐾𝑁𝑁−1𝑞𝑞d,𝑁𝑁−1 = 𝐾𝐾𝑁𝑁−1𝜃𝜃d,𝑁𝑁−1 

𝜃𝜃d,𝑁𝑁−1 = 𝑓𝑓𝑁𝑁−1 �𝑞𝑞d, �̇�𝑞d, … , 𝑞𝑞d
[4]� 

 
After double differentiation 

�̈�𝜃d,𝑁𝑁−1 = 𝑓𝑓𝑁𝑁−1′′ �𝑞𝑞d, �̇�𝑞d, … , 𝑞𝑞d
[6]� 

 
o Proceeding backward … 

𝜃𝜃d,1 = 𝑓𝑓1 �𝒒𝒒d, �̇�𝒒d, … ,𝒒𝒒d
[2𝑁𝑁]� 

�̈�𝜃d,1 = 𝑓𝑓1′′ �𝒒𝒒d, �̇�𝒒d, … ,𝒒𝒒d
[2(𝑁𝑁+1)]� 
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• Nominal torque 
𝝉𝝉d = [𝐌𝐌(𝒒𝒒d) + 𝐒𝐒T]�̈�𝒒d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) 

+ (𝐁𝐁 + 𝐒𝐒)�̈�𝜽d �𝒒𝒒d, �̇�𝒒d, … ,𝒒𝒒d
[2(𝑁𝑁+1)]� 

 
o 𝒒𝒒d(𝑡𝑡) admits continuously differentiable (2N+1)-th derivative 
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Presence of dissipative terms 
• Inclusion of spring damping in reduced model 
𝐌𝐌(𝒒𝒒d)�̈�𝒒d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) + �𝐃𝐃 + 𝐅𝐅𝑞𝑞��̇�𝒒d + 𝐊𝐊𝒒𝒒d = 𝐃𝐃�̇�𝜽d + 𝐊𝐊𝜽𝜽d 
 

• Time differentiation … 
𝑫𝑫�̈�𝜽d + 𝐊𝐊�̇�𝜽𝑑𝑑 =  𝒘𝒘d 

         𝒘𝒘d = 𝐌𝐌(𝒒𝒒d)𝒒𝒒d
[3] +  ��̇�𝐌(𝒒𝒒d) + 𝐃𝐃 + 𝐅𝐅q��̈�𝒒d 

+ �̇�𝒏(𝒒𝒒d, �̇�𝒒d) + 𝐊𝐊�̇�𝒒d 
 
o First-order linear asymptotically stable dynamical system 

(internal dynamics) with state �̇�𝜽d and forcing signal 𝒘𝒘d(𝑡𝑡), to 
be solved for given initial condition �̇�𝜽d(0) 

• Nominal torque 
𝝉𝝉d = 𝐌𝐌(𝒒𝒒d)�̈�𝒒d + 𝒏𝒏(𝒒𝒒d, �̇�𝒒d) + 𝑭𝑭q�̇�𝒒d + 𝐁𝐁�̈�𝛉d + 𝑭𝑭𝜃𝜃�̇�𝜽d 
 
o qd(t) admits continuously differentiable acceleration 

 
• Similar procedure for complete model with spring damping 

o Smoothness requirement on 𝒒𝒒d(𝑡𝑡) dramatically reduced 
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Regulation Control 
 

• Controlling motion of robot with flexible joints to constant 𝒒𝒒d 
𝜽𝜽d =  𝒒𝒒d + 𝐊𝐊−1𝒈𝒈(𝒒𝒒d) 
𝝉𝝉d =  𝒈𝒈(𝒒𝒒d) 

Single flexible joint example 

 

• Dynamic model with viscous friction on motor and link side + spring 
damping 
𝑀𝑀�̈�𝑞 + 𝐷𝐷��̇�𝑞 −  �̇�𝜃� + 𝐾𝐾(𝑞𝑞 − 𝜃𝜃) + 𝐹𝐹𝑞𝑞�̇�𝑞 =  0 
𝐵𝐵�̈�𝜃 + 𝐷𝐷��̇�𝜃 −  �̇�𝑞� + 𝐾𝐾(𝜃𝜃 − 𝑞𝑞) + 𝐹𝐹𝜃𝜃�̇�𝜃 = 𝜏𝜏 
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• Laplace transforms 
𝜃𝜃(𝑠𝑠)
𝜏𝜏(𝑠𝑠)

=  
𝑀𝑀𝑠𝑠2 + �𝐷𝐷 + 𝐹𝐹𝑞𝑞�𝑠𝑠 + 𝐾𝐾

den(𝑠𝑠)
 

 
o Presence of antiresonance/ 

resonance 
 
 
 
 
 
 
𝑞𝑞(𝑠𝑠)
𝜏𝜏(𝑠𝑠)

=  
𝐷𝐷𝑠𝑠 + 𝐾𝐾
den(𝑠𝑠)

 

  

o Presence of resonance 
o High-frequency lag of 

270⁰ 

 

 
 
 
den(𝑠𝑠) =  �𝑀𝑀𝐵𝐵𝑠𝑠3 + �𝑀𝑀(𝐷𝐷 + 𝐹𝐹𝜃𝜃) + 𝐵𝐵�𝐷𝐷 + 𝐹𝐹𝑞𝑞�� 𝑠𝑠2 
                    + �(𝑀𝑀 + 𝐵𝐵)𝐾𝐾 + �𝐹𝐹𝑞𝑞 + 𝐹𝐹𝜃𝜃�𝐷𝐷 + 𝐹𝐹𝑞𝑞𝐹𝐹𝜃𝜃� 𝑠𝑠 
                    +�𝐹𝐹𝑞𝑞 + 𝐹𝐹𝜃𝜃�𝐾𝐾� 𝑠𝑠 
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• Neglecting all dissipative effects (𝐷𝐷 = 𝐹𝐹𝑞𝑞 = 𝐹𝐹𝜃𝜃 = 0, i.e. worst case) 
𝜃𝜃(𝑠𝑠)
𝜏𝜏(𝑠𝑠)�

no diss
=  

𝑀𝑀𝑠𝑠2 + 𝐾𝐾
[𝑀𝑀𝐵𝐵𝑠𝑠2 + (𝑀𝑀 + 𝐵𝐵)𝐾𝐾]s2

 

o Double pole at origin 
o Pair of imaginary poles 
o Pair of imaginary zeros at locked frequency (𝜃𝜃 ≡  0) 

𝜔𝜔1 =  �
𝐾𝐾
𝑀𝑀

 

lower than that of pole pair 
o To achieve enough damping in closed-loop system, bandwidth 

shall be limited to one third of ωl 

𝑞𝑞(𝑠𝑠)
𝜏𝜏(𝑠𝑠)�

no diss
=  

𝐾𝐾
[𝑀𝑀𝐵𝐵𝑠𝑠2 + (𝑀𝑀 + 𝐵𝐵)𝐾𝐾]s2

 

o No zeros 
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• Feedback control using link position and link velocity 
𝜏𝜏 = 𝑢𝑢𝑞𝑞 − �𝐾𝐾𝑃𝑃,𝑞𝑞𝑞𝑞 + 𝐾𝐾𝐷𝐷,𝑞𝑞�̇�𝑞�                      𝑢𝑢𝑞𝑞 = 𝐾𝐾𝑃𝑃,𝑞𝑞𝑞𝑞d 
   
o Closed-loop poles unstable no matter how gains are chosen 

 
• Feedback control using motor position and link velocity … unstable! 

 
• Feedback control using link position (optical encoder on load shaft) 

and motor velocity (tachometer integrated in DC motor) 
𝜏𝜏 = 𝑢𝑢𝑞𝑞 − �𝐾𝐾𝑃𝑃,𝑞𝑞𝑞𝑞 + 𝐾𝐾𝐷𝐷,𝑚𝑚�̇�𝜃� 
 
o Closed-loop characteristic equation 
𝐵𝐵𝑀𝑀𝑠𝑠4 + 𝑀𝑀𝐾𝐾𝐷𝐷,𝑚𝑚𝑠𝑠3 + (𝐵𝐵 + 𝑀𝑀)𝐾𝐾𝑠𝑠2 + 𝐾𝐾𝐾𝐾𝐷𝐷,𝑚𝑚𝑠𝑠 + 𝐾𝐾𝐾𝐾𝑃𝑃,𝑞𝑞 = 0 
 
Asymptotic stability iff 𝐾𝐾𝐷𝐷,𝑚𝑚  ˃ 0 and 0 ˂ 𝐾𝐾𝑃𝑃,𝑞𝑞 ˂ 𝐾𝐾 (proportional  
gain should not override spring stiffness) 
 

• Feedback control using motor position and motor velocity 
𝜏𝜏 = 𝑢𝑢𝜃𝜃 −  �𝐾𝐾𝑃𝑃,𝑚𝑚𝜃𝜃 + 𝐾𝐾𝐷𝐷,𝑚𝑚�̇�𝜃�                  𝑢𝑢𝜃𝜃 = 𝐾𝐾𝑃𝑃,𝑚𝑚𝜃𝜃d = 𝐾𝐾𝑃𝑃,𝑚𝑚𝑞𝑞d 
  
o Asymptotic stability iff KP,m ˃ 0 and KD,m ˃ 0  

 
• Other partial state feedback combinations … 

o Strain gauge on transmission shaft  direct measure of elastic 
torque 𝜏𝜏J = 𝐾𝐾(𝜃𝜃 − 𝑞𝑞) for control use 
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PD control using only motor variables 
• General multilink case in absence of gravity (𝜽𝜽d  =  𝒒𝒒d)  
𝝉𝝉 = 𝑲𝑲𝑃𝑃(𝜽𝜽d − 𝜽𝜽) −𝑲𝑲𝐷𝐷�̇�𝜽 
 

• Lyapunov argument 

𝑉𝑉 =  
1
2
�̇�𝚯T𝓜𝓜(𝚯𝚯)�̇�𝚯 +  

1
2

(𝒒𝒒 − 𝜽𝜽)T𝐊𝐊(𝒒𝒒 − 𝜽𝜽) 

+ 
1
2

(𝜽𝜽d − 𝜽𝜽)T𝐊𝐊𝑃𝑃(𝜽𝜽d − 𝜽𝜽) ≥ 0 

 
o Time derivative along trajectories of closed-loop system 
�̇�𝑉 =  −�̇�𝜽T𝐊𝐊𝐷𝐷�̇�𝜽 ≤ 0 
 

o La Salle’s theorem is applied 
o Inclusion of dissipative terms (viscous friction and spring 

damping) would render �̇�𝑉 even more negative semi-definite 
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PD control with constant gravity compensation 
• In view of A2, for robots with revolute joints (flexible or not) 

�
𝜕𝜕𝒈𝒈(𝒒𝒒)
𝜕𝜕𝒒𝒒

� ≤ 𝛼𝛼        ∀𝒒𝒒 ∈  ℝ𝑁𝑁 

‖𝒈𝒈(𝒒𝒒1) − 𝒈𝒈(𝒒𝒒2)‖ ≤ 𝛼𝛼‖𝒒𝒒1 − 𝒒𝒒2‖        ∀𝒒𝒒1,𝒒𝒒2 ∈ ℝ𝑁𝑁 
    

A5. The lowest joint stiffness is larger than the upper bound on the 
gradient of gravity forces 
min𝑖𝑖=1,…,𝑁𝑁𝐾𝐾𝑖𝑖 > 𝛼𝛼 
 

• Addition of constant gravity compensation 
𝝉𝝉 = 𝑲𝑲𝑃𝑃(𝜽𝜽d − 𝜽𝜽) − 𝑲𝑲𝐷𝐷�̇�𝜽 + 𝒈𝒈(𝒒𝒒d)                 𝜽𝜽d = 𝒒𝒒𝑑𝑑 + 𝐊𝐊−1𝒈𝒈(𝒒𝒒d) 

• Sufficient condition for global asymptotic stability 
(𝒒𝒒 = 𝒒𝒒d,𝜽𝜽 = 𝜽𝜽d, �̇�𝒒 = �̇�𝜽 = 𝟎𝟎) 

𝜆𝜆min ��
𝐊𝐊 −𝐊𝐊
−𝐊𝐊 𝐊𝐊 + 𝐊𝐊𝑃𝑃

�� > 𝛼𝛼 

o Fulfilled by increasing smallest proportional gain 
• (𝒒𝒒d,𝜽𝜽d) satisfies equilibrium 
𝐊𝐊(𝒒𝒒 − 𝜽𝜽) + 𝒈𝒈(𝒒𝒒) = 𝟎𝟎 
𝐊𝐊(𝜽𝜽 − 𝒒𝒒) − 𝐊𝐊𝑃𝑃(𝜽𝜽d − 𝜽𝜽) − 𝒈𝒈(𝒒𝒒d) = 𝟎𝟎 
and is the unique solution 
𝐊𝐊(𝒒𝒒 − 𝒒𝒒d) − 𝐊𝐊(𝜽𝜽 − 𝜽𝜽d) = 𝒈𝒈(𝒒𝒒d) − 𝒈𝒈(𝒒𝒒) 
−𝐊𝐊(𝒒𝒒 − 𝒒𝒒d) + (𝐊𝐊 + 𝐊𝐊𝑃𝑃)(𝜽𝜽 − 𝜽𝜽d) = 𝟎𝟎 

• Lyapunov argument 
𝑉𝑉g1 = 𝑉𝑉 +  𝒰𝒰grav(𝒒𝒒) −  𝒰𝒰grav(𝒒𝒒d) − (𝒒𝒒 − 𝒒𝒒d)T𝒈𝒈(𝒒𝒒d) 

−
1
2
𝒈𝒈T(𝒒𝒒d)𝐊𝐊−1𝒈𝒈(𝒒𝒒d) ≥ 0 

�̇�𝑉g1 =  −�̇�𝜽T𝐊𝐊𝐷𝐷�̇�𝜽 ≤ 0  
• The better 𝐊𝐊�  and 𝒈𝒈�(𝒒𝒒d), the closer the equilibrium to desired one   
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PD control with online gravity compensation 
• Gravity-biased modification of measured motor position 𝜽𝜽 

(approximate cancellation of gravity during motion) 
𝜽𝜽� = 𝜽𝜽 − 𝐊𝐊−1𝒈𝒈(𝒒𝒒d) 

• Feedback control using only motor variables 
𝝉𝝉 = 𝐊𝐊𝑃𝑃(𝜽𝜽d − 𝜽𝜽) − 𝐊𝐊𝐷𝐷�̇�𝜽 + 𝒈𝒈(𝜽𝜽�) 
leading to correct gravity compensation at steady state 
𝜽𝜽�d ≔  𝜽𝜽d − 𝐊𝐊−1𝒈𝒈(𝒒𝒒d) = 𝒒𝒒d                 𝒈𝒈�𝜽𝜽�d� = 𝒈𝒈(𝒒𝒒d)  

• Lyapunov argument 

𝑉𝑉g2 = 𝑉𝑉 +  𝒰𝒰grav(𝒒𝒒) −  𝒰𝒰grav�𝜽𝜽�� −
1
2
𝒈𝒈T(𝒒𝒒d)𝐊𝐊−1𝒈𝒈(𝒒𝒒d) ≥ 0 

• Smoother time course and noticeable reduction of positional 
transient errors, with no additional control effort in terms of peak 
and average torques 

• Possible refinement of control, using quasi-static estimate 𝒒𝒒�(𝜽𝜽) of 
measured 𝒒𝒒 
𝝉𝝉 = 𝐊𝐊𝑃𝑃(𝜽𝜽𝑑𝑑 − 𝜽𝜽) − 𝐊𝐊𝐷𝐷�̇�𝜽 + 𝒈𝒈(𝒒𝒒�(𝜽𝜽)) 
 

• These control laws realize a compliance control in the joint space 
with only motor measurements 
o Can be extended to operational space control via Jacobian 

transpose 
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Full-state feedback 
• If joint torque sensors are available, a convenient control design for 

reduced model including spring damping can be derived 
• Motor equation using 𝝉𝝉J = 𝐊𝐊(𝜽𝜽 − 𝒒𝒒) 
𝐁𝐁�̈�𝜽 + 𝝉𝝉J + 𝐃𝐃𝐊𝐊−1�̇�𝝉J = 𝝉𝝉 

• Feedback control 
𝝉𝝉 = 𝐁𝐁𝐁𝐁𝜃𝜃−𝟏𝟏𝒖𝒖 + �𝑰𝑰 − 𝐁𝐁𝐁𝐁𝜃𝜃−1��𝝉𝝉J + 𝐃𝐃𝐊𝐊−1�̇�𝝉J�   
gives 
𝐁𝐁𝜃𝜃�̈�𝜽 + 𝝉𝝉J + 𝐃𝐃𝐊𝐊−1�̇�𝝉J = 𝒖𝒖 
o The apparent motor inertia can be reduced to desired, 

arbitrary small value 𝐁𝐁𝜃𝜃, with clear benefits in terms of 
vibration damping 

• Choice of auxiliary input 
𝒖𝒖 = 𝐊𝐊𝑃𝑃,𝜃𝜃(𝜽𝜽d − 𝜽𝜽) − 𝐊𝐊𝐷𝐷,𝜃𝜃�̇�𝜽+ 𝒈𝒈(𝒒𝒒d) 
leads to state feedback control 
𝝉𝝉 =  𝐊𝐊𝑃𝑃(𝜽𝜽d − 𝜽𝜽) − 𝐊𝐊𝐷𝐷�̇�𝜽 +  𝐊𝐊𝑇𝑇�𝒈𝒈(𝒒𝒒d) − 𝝉𝝉J� 

−𝐊𝐊𝑆𝑆�̇�𝝉𝐉𝐉 + 𝒈𝒈(𝒒𝒒d) 
 

𝐊𝐊𝑃𝑃 = 𝐁𝐁𝐁𝐁𝜃𝜃−1𝐊𝐊𝑃𝑃,𝜃𝜃 
𝐊𝐊𝐷𝐷 = 𝐁𝐁𝐁𝐁𝜃𝜃−1𝐊𝐊𝐷𝐷,𝜃𝜃 
𝐊𝐊𝑇𝑇 = 𝐁𝐁𝐁𝐁𝜃𝜃−1 − 𝐈𝐈 
𝐊𝐊𝑠𝑠 = �𝐁𝐁𝐁𝐁𝜃𝜃−1 − 𝐈𝐈�𝐃𝐃𝐊𝐊−𝟏𝟏 
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Trajectory Tracking 
 

• Controlling motion of robot with flexible joints to smooth reference 
trajectory 𝒒𝒒d(𝑡𝑡) 

Feedback linearization 
• Link equation of reduced model 
𝐌𝐌(𝒒𝒒)�̈�𝒒 + 𝒏𝒏(𝒒𝒒, �̇�𝒒) + 𝐊𝐊(𝒒𝒒 − 𝜽𝜽) = 𝟎𝟎 

• Time differentiation … 
𝐌𝐌(𝒒𝒒)𝒒𝒒[𝟑𝟑] + �̇�𝐌(𝒒𝒒)�̈�𝒒 + �̇�𝒏(𝒒𝒒, �̇�𝒒) + 𝐊𝐊��̇�𝒒 − �̇�𝜽� = 𝟎𝟎 

• Time differentiation … 
𝐌𝐌(𝒒𝒒)𝒒𝒒[𝟒𝟒] + 𝟐𝟐�̇�𝐌(𝒒𝒒)𝒒𝒒[𝟑𝟑] + �̈�𝐌(𝒒𝒒)�̈�𝒒 + �̈�𝒏(𝒒𝒒, �̇�𝒒) + 𝐊𝐊��̈�𝒒 − �̈�𝜽� = 𝟎𝟎 

• Motor equation of reduced model 
𝐁𝐁�̈�𝜽 + 𝐊𝐊(𝜽𝜽 −  𝒒𝒒) = 𝝉𝝉 
 
 
𝐌𝐌(𝒒𝒒)𝒒𝒒[4] + 2�̇�𝐌(𝒒𝒒)𝒒𝒒[𝟑𝟑] + �̈�𝑴(𝒒𝒒)�̈�𝒒 + �̈�𝒏(𝒒𝒒, �̇�𝒒) + 𝐊𝐊�̈�𝒒 =  
= 𝐊𝐊𝐁𝐁−𝟏𝟏[𝝉𝝉 − 𝐊𝐊(𝜽𝜽 − 𝒒𝒒)] 
 
o Last term 𝐊𝐊(𝜽𝜽 − 𝒒𝒒) can be replaced by 𝐌𝐌(𝒒𝒒)�̈�𝒒 + 𝒏𝒏(𝒒𝒒, �̇�𝒒) 

 
• Decoupling matrix 𝐀𝐀(𝒒𝒒) = 𝐌𝐌−1(𝒒𝒒)𝐊𝐊𝐁𝐁−1 is always nonsingular 

o Feedback linearizing control (relative degree 4N) 
𝝉𝝉 = 𝐁𝐁𝐊𝐊−1�𝐌𝐌(𝒒𝒒)𝒗𝒗 + 𝜶𝜶�𝒒𝒒, �̇�𝒒, �̈�𝒒,𝒒𝒒[𝟑𝟑]�� + 

+ [𝐌𝐌(𝒒𝒒) + 𝐁𝐁]�̈�𝒒 + 𝒏𝒏(𝒒𝒒, �̇�𝒒)  
 

  𝜶𝜶�𝒒𝒒, �̇�𝒒, �̈�𝒒,𝒒𝒒[3]� = �̈�𝐌(𝒒𝒒)�̈�𝒒 + 2�̇�𝐌(𝒒𝒒)𝒒𝒒[3] + �̈�𝒏(𝒒𝒒, �̇�𝒒) 
    

 𝒒𝒒[4] = 𝒗𝒗  (chains of 4 input‒output integrators from each 
                             new input 𝑣𝑣𝑖𝑖  to each link position output 𝑞𝑞𝑖𝑖) 
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• Measures needed to implement feedback linearizing control 
o Direct measures of link acceleration �̈�𝒒 and jerk 𝒒𝒒[3] are 

impossible to obtain with currently available sensors … 
multiple numerical differentiation of position measures in real 
time causes noise 

• Latest technology with joint torque sensors 
o Measures of motor position 𝜽𝜽 (and possibly its velocity �̇�𝜽), 

joint torque 𝝉𝝉J = 𝐊𝐊(𝜽𝜽 − 𝒒𝒒) and link position 𝒒𝒒 

 
                                                                    

• Equivalent state variables for robots with flexible joints 
�𝒒𝒒, �̇�𝒒, �̈�𝒒,𝒒𝒒[3]�        �𝒒𝒒,𝜽𝜽, �̇�𝒒, �̇�𝜽�        (𝒒𝒒, 𝝉𝝉𝐉𝐉, �̇�𝒒, �̇�𝝉𝐉𝐉)  
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• Instead of measuring link acceleration and jerk, compute them as 
�̈�𝒒 =  𝐌𝐌−1(𝒒𝒒)[𝐊𝐊(𝜽𝜽 − 𝒒𝒒) − 𝒏𝒏(𝒒𝒒, �̇�𝒒)] 

= 𝐌𝐌−1(𝒒𝒒)�𝝉𝝉J − 𝒏𝒏(𝒒𝒒, �̇�𝒒)� 
𝒒𝒒[3] = 𝐌𝐌−1�𝐊𝐊��̇�𝜽 − �̇�𝒒� − �̇�𝐌(𝒒𝒒)�̈�𝒒 − �̇�𝒏(𝒒𝒒, �̇�𝒒)� 

= 𝐌𝐌−1(𝒒𝒒)��̇�𝝉J − �̇�𝐌(𝒒𝒒)�̈�𝒒 − �̇�𝒏(𝒒𝒒, �̇�𝒒)� 
• Feedback linearizing control in terms of static state feedback law 
𝝉𝝉 =  𝝉𝝉(𝒒𝒒,𝜽𝜽, �̇�𝒒, �̇�𝜽,𝒗𝒗)   or   𝝉𝝉 = 𝝉𝝉�𝒒𝒒, 𝝉𝝉J, �̇�𝒒, �̇�𝝉J,𝒗𝒗�   

• Choice of new input 

𝒗𝒗 = 𝒒𝒒d
[4] + 𝐊𝐊3 �𝒒𝒒d

[𝟑𝟑] − 𝒒𝒒[𝟑𝟑]� + 𝐊𝐊2(�̈�𝒒d − �̈�𝒒)  

+ 𝐊𝐊1(�̇�𝒒d − �̇�𝒒) + 𝐊𝐊𝟎𝟎(𝒒𝒒d − 𝒒𝒒) 
 
o Reference trajectory 𝒒𝒒d(𝑡𝑡) at least three times continuously 

differentiable 
o Diagonal matrices 𝐊𝐊0,𝐊𝐊1,𝐊𝐊2,𝐊𝐊3 have scalar elements 𝐾𝐾⋅,𝑖𝑖  

such that 
𝑠𝑠4 + 𝐾𝐾3,𝑖𝑖𝑠𝑠3 + 𝐾𝐾2,𝑖𝑖𝑠𝑠2 + 𝐾𝐾1,𝑖𝑖𝑠𝑠 + 𝐾𝐾0,𝑖𝑖 ,       𝑖𝑖 = 1, … ,𝑁𝑁  
are Hurwitz polynomials  𝑒𝑒𝑖𝑖(𝑡𝑡) converges to zero in a global 
exponential way for any initial state 

• Compared to inverse dynamics for rigid robots, feedback linearizing 
control requires inversion of inertia matrix 𝐌𝐌(𝒒𝒒) and additional 
evaluation of derivatives of inertia matrix and other terms in 
dynamic model 

• In case of friction at motor or link side, third-order decoupled 
differential relation between new input 𝒗𝒗 and 𝒒𝒒 is obtained, leaving 
N-dimensional unobservable (asymptotically stable) dynamics in 
closed loop  only input‒output (not full-state) linearization and 
decoupling is achieved 

• For complete dynamic model … dynamic state feedback control is to 
be designed 
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Linear control 
• Given sufficiently smooth reference link trajectory 𝒒𝒒d(𝑡𝑡), with 

computed torque method it is always possible to associate: 
o Nominal torque 𝝉𝝉d(𝑡𝑡) needed for its exact reproduction 
o Reference evolution for all other state variables 𝜽𝜽d(𝑡𝑡) or 
𝝉𝝉J,d(𝑡𝑡) 

defining a sort of steady-state (though, time-varying) behavior for 
the system 

• Combination of model-based feedforward term with linear feedback 
term using trajectory errors (locally valid) 
 
𝝉𝝉 =  𝝉𝝉d + 𝐊𝐊𝑃𝑃,𝜃𝜃(𝜽𝜽d − 𝜽𝜽) + 𝐊𝐊𝐷𝐷,𝜃𝜃��̇�𝜽d − �̇�𝜽� 

+ 𝐊𝐊𝑃𝑃,𝜃𝜃(𝒒𝒒d − 𝒒𝒒) + 𝐊𝐊𝐷𝐷,𝜃𝜃(�̇�𝒒d − �̇�𝒒) 
 

𝝉𝝉 =  𝝉𝝉d + 𝐊𝐊𝑃𝑃,𝜃𝜃(𝜽𝜽d − 𝜽𝜽) + 𝐊𝐊𝐷𝐷,𝜃𝜃��̇�𝜽d − �̇�𝜽� 
+ 𝐊𝐊𝑃𝑃,𝐽𝐽�𝝉𝝉J,d − 𝝉𝝉J� + 𝐊𝐊𝐷𝐷,𝐽𝐽��̇�𝝉J,d − �̇�𝝉𝐉𝐉� 

 
o In absence of full-state measures, they can be combined with 

observer of unmeasurable quantities 
• Even simpler realization 
𝝉𝝉 =  𝝉𝝉d + 𝐊𝐊𝑃𝑃(𝜽𝜽d − 𝜽𝜽) + 𝐊𝐊𝐷𝐷��̇�𝜽d − �̇�𝜽� 
using only motor measures and relying on results obtained for 
regulation case 
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