ROBOT INTERACTION CONTROL Prof. Bruno Siciliano

Robots with Flexible Joints

e Standard assumption underlying robot kinematics, dynamics, and
control design: manipulators consisting of rigid bodies (links and
joints), ok for slow motion and small interacting forces

e Mechanical flexibility

o Compliant transmission elements
o Use of lightweight materials and slender design

4

e Static and dynamic deflections
e Performance degradation

e Flexible joints (concentrated)
e Flexible links (distributed)
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Joint Flexibility

e Common in current industrial robots when motion
transmission/reduction elements are used
o Belts
o Long shafts
o Cables
o Harmonic drives

O Cycloidal Gears i e cbn
e |Intrinsic flexibility
o Time-varying displacement between position of actuator and
that of driven link
o Oscillatory behavior (small magnitude, high frequency)
o Possible instability when in contact with environment
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Dynamic Modeling

e Robot with flexible joints = Open kinematic chain having N + 1 rigid
bodies (base + N links), interconnected by N (revolute or prismatic)
joints undergoing deflection, and actuated by N electrical drives

Assumptions

Al. Joint deflections are small, so that flexibility effects are limited to
the domain of linear elasticity

A2. Actuators’ rotors are modeled as uniform bodies having their
center of mass on the rotation axis

A3. Each motor is located on the robot arm in a position preceding
the driven link

e 2N frames attached to 2N moving rigid bodies
o N link frames L;
o N motor frames R;

Motor 1

World
frame

Joint N

Link O
base

Joint1 Motor 2
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e 2N generalized coordinates

0= (%)

o Model independent of reduction ratios
o Position variables with similar dynamic range
o Robot kinematics only a function of link variables q

e Motor directly placed on i-th joint axis
9m,i =N 9i

e Deflection at i-th joint
6; = q; — 0

e Torque transmitted to i-th link
770 = Ki(6; — q;)
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Lagrangian approach
L=7(0,0)— U©)

Potential energy
U) = ugrav(q) + uelas(q — 0)
e Gravity (independent of 0, see A2)

ugrav = ugrav,link(q) + ugrav,motor(q)

e Joint elasticity (see Al)

1
Uelas = E (q - B)TK(q - 0)
K= diag(Kl, ey KN)




ROBOT INTERACTION CONTROL Prof. Bruno Siciliano

Kinetic energy

e Links

1, .
Tiink = 5 qg"M.(9)q

e Rotors
N

N

1 1

— — T Ri T Riy R

g}otor - zg}otori - z<§mrivrivri +E Wy, Irl- wri)
i=1 i=1

o Rotor inertia matrix (see A2)

Rilri = diag (Irixx’l’"iyy’lrizz)

o Angular velocity (see A3)

0
Rin‘i = ;;]i ]Ti,j(q) q] + (O )

Qm,i

1, _ o 1.,
Trotor = EqT[MR(q) +S(@B STl g+ q"S(q)0 + EBTBB

o B: constant diagonal inertia matrix collecting rotors inertial
components I, around their spinning axes
ZZ

o Mg(q): rotor masses (and, possibly, rotor inertial components
along the other principal axes)
o S(q): inertial couplings between rotors and previous links
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Planar robot with two revolute flexible joints and motors mounted directly

on joint axes

e Kinetic energy

1 . 1 .
71'“0tor1 = =1 91271,1 = =1 n%912

2 T2z 2 T2z
1 _ 1 _ : 2
:TI"OtOI‘Z — Emrz l%qlz + EITZZZ (ql + Hm,z)
1 2.2 1 . 2 e 2 N2
= Emrzl1 q1 + Elrzzz(ql + 21,4, 6, + 13 63)
b I, ni 0 G (0 Irzzzn2>
0 I n3 0 0
MR = (mrz l% O) SB~1ST = (Irzzz O)
0 0 0 0

o S and My constant
o If second motor mounted remotely on first joint, or close to

second joint but with spinning axis orthogonal to joint axis,
thenS =0
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e General expression of S (see A3)

S(q)
/0 Si, S13(q2) $14(q2,q3) - Sin (G2, -, qn-1)
0 0 S23 S24(q3) v San (g3, - qn-1)
0 O 0 S34 San(qar - qn-1)
0 0 0 0 Sy_an-1  Snv-—2n(qn-1)
\O 0 0 0 0 SN-1,N /
0 O 0 0 0 0

e Total kinetic energy

1. .
T = EG)TM(G))G)

=30 o w6

M(q) = M(q) + Mr(q) + S(q)B~'S™(q)

o M dependsonlyon q
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Complete dynamic model (N link eqs + N motor eqs)

(M(q) S(tl)) (ii) N (C(Q:Q)+51(Qrél» 9))

ST(q) B 0 C2 (q; q)
9@ +K@-6)\ _ (0 B
+< K(6 — q) )_(’t) 7= KO -q)

Additional terms for energy-dissipating effects on right-hand side

(—qu —-D(q - 9))
—F,0 —D(0 — §)

e In case of contact with environment, additional term for N link egs
Text = ]T(q)F
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Model properties

e All elements in the velocity-dependent terms are independent of
motor positions, to be computed via Christoffel symbols
1. [om; ompnT oM.
(0,0) =-0T [—— ( ‘) - —|©
Crot (0, ©) [ 90 '\ 90 30,

2

o ¢4 and ¢, arise only in the presence of configuration-
dependent S(q)
o ¢, does not contain quadratic velocity terms in ¢ or 8, but
only mixed quadratic terms éiq,-
e Same properties as for rigid case
o Linearity in terms of suitable set of dynamic parameters,
including joint stiffnesses and motor inertias (useful for model
identification and adaptive control)
o Coriolis and centrifugal terms can be factorized as
C0t(0,0) = €(0,0)0 so that M — 2€ is skew-symmetric
(useful for control)
o For robots having only revolute joints, the gradient of g(q) is
globally bounded in norm by a constant
e IfK — oo, then & 2 q while T; 2 7 (collapsing into standard model
of fully rigid robots, including links and motors)

10 29
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Reduced model

e |n case of large reduction ratios (n; ~ 100-150), energy contributions
due to inertial couplings between motors and links can be neglected

A4. Angular velocity of rotors due only to their own spinning

Riwri - (0 0 ém,i)T i=1,..,N
M(q)4 +c(q,q) +9g(q) +K(g—0) =0
BO+KO—-q) =1

M(q) = M, (q) + Mr(q)

o The link and motor equations are dynamically coupled through
the elastic torque T

o The motor equations are fully linear

11 -7 29
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Singular perturbation model

e Large but finite joint stiffness = two-time-scale dynamic behavior

1. 1, 1
K=—K= E—Zdlag(Kl, o KN) > 1

o Slow subsystem
M(q)g +c(q.q) +9(q) =1
o Fast subsystem (differentiating joint torque twice)
e?t; =K{B 't - [B™1 + M~ (g@)]7;
+ M~ (q)[c(q, @) + g9()]}

2 dz'l'] _ dZT]
dt? do?

€T =€ o=t/e

e Composite control
T = TS(CI; (I» t) + ETf(q' q’ T]’ T])

o Slow action 74 designed when neglecting joint elasticity
o Fast action 7 for locally stabilizing fast flexible dynamics
around suitable manifold in state space

e If e = 0 = equivalent rigid robot model
[M(q) + Blg +c(q,9) + 9(q) = 75

12 <1729
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Computed Torque

e Rigid robots: straightforward algebraic computation by replacing
desired motion of generalized coordinates in the dynamic model
o Planned motion with continuously differentiable desired
velocity
e Robots with flexible joints: desired motion of link variables available
from kinematic inversion of desired motion of end-effector pose
o Additional derivatives are needed

Reduced model
e Link equations for desired link motion
M(q4)dq +n(qq4,94) + Kqq = KOy

n(q,q) =c(q,q) + 9(q)
o Desired motor variables can be computed

e Time differentiation ...
M(‘Id)q([f] +M(qq)dq +n(qq, qq) + Kqq = K64
o Desired motor velocities can be computed
e Time differentiation ...

M(qq)ql) + 2M(qq)q + it(qq, 4q)
+[M(qq) + K|gq = K84

o Desired motor accelerations can be computed

13 1729
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e Nominal torque
74 = [M(qq) + Blg4q + 1(qq, 94)
+ BK'[M(qa)qy" +2M(q0)qg’
+M(qa)qq + 1(qq, 4a)]

N

: _ \'9M;(q) .
M(qa(0)] = Z o \qzqd(t)qd(t)e?

e; : i-th unit vector
M; : i-th column of M(q)

o qq(t) admits continuously differentiable jerk

e Recursive numerical Newton-Euler algorithm
o Forward recursion of motion variables up to 4t differential
order
o Backward recursion of second time derivatives of forces and
moments

14 1729
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Complete model

e Link equations for desired link motion (constant S)

M(qa)dq + S04 + n(qq, qq) + Kqq = KOy
o Desired motor variables cannot be directly computed

e Exploiting upper triangular structure of S ...

o N-th equation is independent of éd
My (qa)da + 0704 + ny(qq, 4a) + Kndan = KnBan
Oan = fn(4a,94,94)

After double differentiation

éd,N =fv (qd: da;--- q‘[f])

o (N-1)-th equation ...
My_1(qa)dq + Sn-1,n0an
+ny-1(94,9a) + Kn-19an-1 = Kn-164n-1
Oan-1 = fn-1 (Qd» dds - q([14])

After double differentiation

éd,N—l = fn-1 (Qd' A - qé6])

o Proceeding backward ...
Hd,l = fl (qu qdi vy qSZN])

[2(N+1)]

éd,l = f1” (qdr qdr =g )

15 1729
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e Nominal torque
7q = [M(qq) + S"ldq + n(qq4, qa)
+ (B + S)Bd (qd; qd, . q([jZ(N-l-l)])

o qq(t) admits continuously differentiable (2N+1)-th derivative

16 29
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Presence of dissipative terms
e Inclusion of spring damping in reduced model

M(qq)dq + n(qq,qq) + (D + F;)qq + Kqq = DOy + K64y

e Time differentiation ...
Déd + Kéd = W3
wa = M(qa)qy’ + [M(ga) + D + Fgldq
+1(qq, qq) + Kqq

o First-order linear asymptotically stable dynamical system
(internal dynamics) with state 84 and forcing signal wq(t), to
be solved for given initial condition 8 4(0)
e Nominal torque
Tq = M(qq)§q + n(qq, 4a) + Fqqq + BOg + Fgl4

o qd(t) admits continuously differentiable acceleration

e Similar procedure for complete model with spring damping
o Smoothness requirement on q4(t) dramatically reduced

17 <729
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Regulation Control

e Controlling motion of robot with flexible joints to constant q4
64 = qqa+K'g(qq)
T4 = 9(qq)

Single flexible joint example

e Dynamic model with viscous friction on motor and link side + spring
damping
Mi+D(G— 0)+K(q—6)+F,g=0
BO+D(0— q)+KO—q)+F0=r1

18 29
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e Laplace transforms
Q(S) . MSZ + (D + Fq)S + K Motor velocity output

= Magnitude (dB)
7(s) den(s) 0

60

o Presence of antiresonance/

i

resonance Mo 10°
Frequency (rad/s)
Phase (deg)
100
50
0
=50
—100 !
10! 10°
Frequency (rad/s)
D K Link velocity outpu!
q(S) — S + Magnitude (dB) y output
7(s)  den(s) %
60
40
o Presence of resonance o e
. Frequency (rad/s)
o High-frequency lag of Phase (deg)
(0}
270 oo
-200 1
=300
10! 10
Frequency (rad/s)

den(s) = {MBs3+ [M(D + Fy) + B(D + ;)] s*
+|(M +B)K + (F, + Fg)D + F,Fq| s
+(F, + Fg)K}s
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e Neglecting all dissipative effects (D = F; = Fg = 0, i.e. worst case)
0(s) B Ms? + K
7(s) ~ [MBs? + (M + B)K]s?

o Double pole at origin

no diss

o Pair of imaginary poles
o Pair of imaginary zeros at locked frequency (6 = 0)

(1)1: M

lower than that of pole pair
o To achieve enough damping in closed-loop system, bandwidth
shall be limited to one third of w;

|
7(s) ~ [MBs? + (M + B)K]s?

o No zeros

no diss

20 29
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e Feedback control using link position and link velocity

T=1Ug— (Kp'qq + KD,qc'[) Uqg = Kp4Qq
o Closed-loop poles unstable no matter how gains are chosen

e Feedback control using motor position and link velocity ... unstable!

e Feedback control using link position (optical encoder on load shaft)
and motor velocity (tachometer integrated in DC motor)

T=1Ug— (Kp'qq + KD'mH')

o Closed-loop characteristic equation
BMs* + MKp ;,s° + (B + M)Ks* + KKp ;us + KKp g = 0

Asymptotic stability iff Kp ,, >0and 0 < Kp ;, < K (proportional
gain should not override spring stiffness)

e Feedback control using motor position and motor velocity
T=1Ug — (KP,me + KD,mH) Ug = KP,de = KP,de

o Asymptotic stability iff Kpy >0and Kpm >0
e Other partial state feedback combinations ...

o Strain gauge on transmission shaft 2 direct measure of elastic
torque 7; = K(6 — q) for control use

21 <729
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PD control using only motor variables

e General multilink case in absence of gravity (83 = q4)
t=Kp(04—0)— K0

e |yapunov argument
1., : 1 -
V= EG M(O)O + E(q —60)'K(qg —0)
1
+ E(ed —0)TKp(04—60) >0
o Time derivative along trajectories of closed-loop system

V=-0TK;0 <0

o La Salle’s theorem is applied
o Inclusion of dissipative terms (viscous friction and spring
damping) would render V even more negative semi-definite

22 <129
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PD control with constant gravity compensation
e |nview of A2, for robots with revolute joints (flexible or not)
‘ dg(q)
dq
lg(q) —g(@)ll < allgy — qzll  vq1,q, € RY

<a Vqe RN

A5. The lowest joint stiffness is larger than the upper bound on the
gradient of gravity forces
min;=;,  nK; >«

e Addition of constant gravity compensation

T=Kp(0g—60) —Kp6 + g(qa) 04 =qq +K 'g(qq)
e Sufficient condition for global asymptotic stability

(=940 =04,q=6=0)

e (5 )
min [\_K K+Kp)] 7 ¢

o Fulfilled by increasing smallest proportional gain

e (qq,0y) satisfies equilibrium

K(q—6)+g(q) =0

K0 —q) —Kp(0g—6) —g(qq) =0

and is the unique solution

K(q —q4) —K(O@ —04) = g(q4) — 9(q)

—K(q—qq) + K+Kp)(0@—-04) =0
e Lyapunov argument

Vgl =V+ ugrav(q) - ugrav(qd) —(q - qd)Tg(qd)

1 g -1
—59 (94K g(qq) 2 0
Vgr = —0TKp0 <0
e The better K and §(q4), the closer the equilibrium to desired one

23 129
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PD control with online gravity compensation

Gravity-biased modification of measured motor position 8
(approximate cancellation of gravity during motion)
6=0-K"g(qq)

Feedback control using only motor variables
T=Kp(64—6) —Kp0 +g(6)

leading to correct gravity compensation at steady state
64:= 04—K'g(qq) = qq 9(64) = 9(qa)
Lyapunov argument

~ 1
VgZ =V+ ugrav(q) - ugrav(e) - EgT(qd)K_lg(qd) =0

Smoother time course and noticeable reduction of positional
transient errors, with no additional control effort in terms of peak
and average torques

Possible refinement of control, using quasi-static estimate q(0) of
measured q

T=Kp(0, —0) —Kp0 + g(q(0))

These control laws realize a compliance control in the joint space
with only motor measurements
o Can be extended to operational space control via Jacobian
transpose

24 <729
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Full-state feedback

e [f joint torgue sensors are available, a convenient control design for

reduced model including spring damping can be derived
e Motor equation using T} = K(6 — q)
BO+1+DK =1
e Feedback control
T = BB;'u+ (I — BB;')(7; + DK™ 11))
gives
BoO + 1+ DK 'y =u
o The apparent motor inertia can be reduced to desired,
arbitrary small value By, with clear benefits in terms of
vibration damping
e Choice of auxiliary input
u=Kpp(0q—0) —Kpe0+ g(qq)
leads to state feedback control
T= Kp(8q —0) — K0 + Kr|g(qq) — 19
—Kst5+ 9(qq)

Kr = BBy 'Kp g
Kp, = BB, 'Kpg
K; = BB;' — 1
K, = (BB;' —I)DK™1

25 129
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Trajectory Tracking

e Controlling motion of robot with flexible joints to smooth reference
trajectory q4(t)

Feedback linearization
e Link equation of reduced model
M(q)g +n(q,q) +K(qg—-6)=0
e Time differentiation ...
M(q)q® +M(q)g +n(q.9) +K(g—6)=0
e Time differentiation ...
M(q)q™* + 2M(q)qB + M(q)g +ii(q,¢) + K(§—6) =0
e Motor equation of reduced model
BO+KO—-q) =1

4

M(q)q™ + 2M(q)qB! + M(q)g +ii(q, ) + Kij =
= KB~![z — K(6 — q)]

o Lastterm K(8 — q) can be replaced by M(q)q + n(q, q)

e Decoupling matrix A(q) = M~1(q)KB™! is always nonsingular
o Feedback linearizing control (relative degree 4N)

T =BK![M(q)v + a(q,q,§,q3")] +
+ [M(q) + Blg + n(q,q)

a(q,q,4,9"") = M(q)g + 2M(q)q'® + ii(q, ¢)

4]

q[ = v (chains of 4 input—output integrators from each

new input v; to each link position output g;)

26 29
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e Measures needed to implement feedback linearizing control
o Direct measures of link acceleration g and jerk q[3] are
impossible to obtain with currently available sensors ...
multiple numerical differentiation of position measures in real
time causes noise
e Latest technology with joint torque sensors
o Measures of motor position 8 (and possibly its velocity ),
joint torque T; = K(6 — q) and link position q
Link
position

sensor Cross-roller Power converter
bearing unit

Joint- and motorcon-
troller board

Torque

sensor with

digital u .

interface dr?\r/énomc DLR robodrive
St it with safety brake

and position
sensor

Carbon fiber
robot link

e Equivalent state variables for robots with flexible joints
(0.4.4.9") (9.6,4.0) (q.7.4,%)

27 ' 29
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e Instead of measuring link acceleration and jerk, compute them as
g = M"(q)[K( - q) —n(q,q)]
=M~ ()| — n(q, q)]
q® =M [K(8 - q) - M(@)g — 1(q, 9]
=M (q)|t; — M(q)g — n(q,q)]
e Feedback linearizing control in terms of static state feedback law
t=1(q,0,4,0,v) or T=1(q,17,q1%,7)
e Choice of new input

v =g} +K; (a5 - a) + Ko (G — @)
+K1(qa — ) +Ko(qqa — @)

o Reference trajectory qq4(t) at least three times continuously
differentiable
o Diagonal matrices Ky, K, K3, K3 have scalar elements K ;
such that
s*+ Ky +Kys?+ Ky ;s+Kp;, i=1,..,N
are Hurwitz polynomials = e;(t) converges to zero in a global
exponential way for any initial state
e Compared to inverse dynamics for rigid robots, feedback linearizing
control requires inversion of inertia matrix M(q) and additional
evaluation of derivatives of inertia matrix and other terms in
dynamic model
e |n case of friction at motor or link side, third-order decoupled
differential relation between new input v and q is obtained, leaving
N-dimensional unobservable (asymptotically stable) dynamics in
closed loop = only input—output (not full-state) linearization and
decoupling is achieved
e For complete dynamic model ... dynamic state feedback control is to
be designed

28 29
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Linear control

e Given sufficiently smooth reference link trajectory q4(t), with
computed torque method it is always possible to associate:
o Nominal torque 74(t) needed for its exact reproduction
o Reference evolution for all other state variables 8 4(t) or

Tya(t)

defining a sort of steady-state (though, time-varying) behavior for
the system

e Combination of model-based feedforward term with linear feedback
term using trajectory errors (locally valid)

T= Tqt+ Kp‘g(ed - 0) + KD,B(éd - 0)
+Kpo(qa— @) +Kpp(qa — )

T=13+Kpy(0q—80)+Kpo(04—0)
+Kp (75,0 — 77) + Kp ; (714 — 7))

o In absence of full-state measures, they can be combined with
observer of unmeasurable quantities
e Even simpler realization
T=13+Kp(04—0)+ KD(éd — 9)
using only motor measures and relying on results obtained for
regulation case

29 <129
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