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Abstract

This paper introduces a method able to track in real-time
a 3D elastic deformable objects which undergo fractures,
using the point cloud data provided by an RGB-D sensor.
Our framework relies on a prior visual segmentation of the
object in the image. The segmented point cloud is regis-
tered by non-rigidly fitting the mesh, based on the Finite
Element Method to physically model elasticity, and on ge-
ometrical point-to-point correspondences to compute exter-
nal forces exerted on the mesh. Fractures are handled by
processing the stress tensors computed on the mesh of the
FEM model, in order to detect fracturable nodes. Local
remeshing around fracturable nodes is then performed to
propagate the fracture. The real-time performance of the
system is demonstrated on real data involving various de-
formations and fractures.

1. Introduction
Tracking non-rigid objects has aroused much interest in

recent years in the computer vision, computer graphics and

robotics communities, addressing various applications in

fields such as augmented reality, medical imaging, robotic

manipulation, by handling a huge variety of objects: tissues,

paper, rubber, viscous fluids, cables, food, organs, etc.

This study comes within the scope of the RoDyMan

project2, consisting in a unified framework for robotic dy-

namic manipulation of deformable objects, as shown by the

demonstration scenario in Fig. 1.

A particularly novel challenge lies in dealing with frac-

tures of deformable objects, and in designing a model of

both deformations and fractures, and fitting it with vision

and range data. This registration problem also involves crit-

ical real-time concerns, which are especially required for

2http://www.rodyman.eu/ The research leading to these results has been

supported by the RoDyMan project, which has received funding from the

European Research Council (FP7 IDEAS) under Advanced Grant agree-

ment number 320992. The authors are solely responsible for its content. It

does not represent the opinion of the European Community and the Com-

munity is not responsible for any use that might be made of the information

contained therein.

instance for robotic dynamic manipulation. Although some

recent studies have proposed efficient techniques to han-

dle 3D objects which undergo isometric or elastic deforma-

tions, to our knowledge there exists no real-time 3D vision

system which considers topological changes undergone by

the objects, such as fractures. The aim of this paper is thus

to propose, based on the method suggested in [18], a real-

time tracking system able to handle elastic objects which

may get fractured, using data provided by an RGB-D sen-

sor. To cope with elastic deformations and fractures, our ap-

proach involves a physical modeling of the considered ob-

ject, by relying on a Finite Element Method (FEM) model,

with an implementation running in real-time. Our whole

system is indeed able to run at around 30 frames per sec-

onds. The remainder of the paper is organized as follows.

Some works related to ours are presented in Sect. 2 and the

system is outlined in Sect. 2.5. In Sect. 3 the physical de-

formation and fracture model of the object is introduced,

Sect. 4 explains how the point cloud data is processed and

matched with this model to perform registration. Finally,

some experimental results are presented in Sect. 5.

Figure 1: Artistic views of the RoDyMan robotic platform and the

pizza making process.

2. Related works and motivations
In the literature, the various approaches proposed to reg-

ister deformable objects, using range and vision data, could

be classified according to the underlying model of the con-

sidered object and its physical realism.

2.1. Registration using implicit physical modeling

Based on implicit physical models, approaches in [11,

2, 19] use a 1D parametric curve or 2D splines models (B-

splines, Radial Basis Functions) to track deformable objects
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in monocular images. This class of methods relies on the

minimization of an energy function involving an external

energy term related to some image features, and an inter-

nal energy term regularizing curvature, bending or twisting,

compelling the model to vary smoothly. With point cloud

data, methods in [10, 24] employ an RGB-D sensor to reg-

ister the acquired point cloud to a surface mesh by mini-

mizing an error function accounting for geometric or direct

depth and color errors, and a stretching penalty function for

the mesh. By means of a NURBS parametrization [10] or

an optimized GPU implementation [24], real-time perfor-

mance can be achieved.

2.2. Registration using explicit physical modeling

Instead, another formulation of the problem relies on

physics-based deformable models to perform registration,

by modeling more explicitly elasticity. With respect to

implicit methods, other sorts (such as non-linear elastic-

ity) and magnitudes of deformations can be treated, infer-

ring more consistently shape and/or volumetric regulariza-

tion. Statistically, the solution can be determined, by set-

ting internal and external forces equal or, equivalently, min-

imizing energy functions. Physics-based methods include

discrete mass-spring-damper systems [12, 5, 20], or more

explicit approaches relying on the Finite Element Method

(FEM), based on continuum mechanics. In [20], based on

mass-spring-damper systems, 3D-3D correspondences, de-

termined through a probabilistic inference, enable the com-

putation of the external forces applied to the mesh. First at-

tempts for registration employing the FEM for 3D surfaces

in [3, 13] used linear elasticity FEM models. Haouchine et
al. [9] uses a linear tetrahedral co-rotational FEM model,

coping with larger elastic deformations, external forces be-

ing related to correspondences between tracked 3D feature

points mapped to the 3D mesh by means of a stereo camera

system.

2.3. Handling topological changes

As methods dealing with topological changes of a 3D

deformable object, we can mention 3D reconstruction meth-

ods [22, 23], based on the TransforMesh system to address

mesh evolution and topological changes. However these

are model-free methods and reconstruct a single mesh at

each time step [23] or are not suited for real-time applica-

tions [22]. Instead, the goal is here to continuously esti-

mate the rigid transformations, the deformations and split-

ting topological change (or fractures) undergone by the ob-

ject, modeled by a known mesh, in real-time.

2.4. Motivations and contributions

Since our system would attempt to handle elastic volu-

metric strains and fractures, a realistic mechanical model,

based on the FEM, has been adopted. The recent suitabil-

ity of these physical models for real-time applications, as

demonstrated by promising approaches [20, 9], has con-

firmed our choice. In contrast to [22, 23], fractures could

this way be modeled physically, using linear elastic fracture

mechanics, through the internal forces acting on the object.

We assume the prior knowledge of a consistent mesh (which

could be automatically reconstructed offline) and of the ma-

terial properties (through the Young modulus, the Poisson

ratio, and a fracture threshold), which could be estimated

offline. With respect to related approaches [10, 20, 9, 24],

our main contribution has been to integrate the fracture

model, along with being able to track large deformations,

and handling these tasks in real time (30 fps), making our

solution the first real-time vision tracking system able to

deal with deformations and fractures of a non-rigid objects,

using a RGB-D sensor.

2.5. Overview of the system

Our tracking system can be outlined as follows: Input :

the 3D volumetric mesh of the object, a given RGB-D data,

and assuming a fair registration at the previous time step.

1. Visual segmentation of the considered object, with a

graph cut-based approach ensuring temporal coher-

ence.

2. Using the resulting segmented point cloud, compute

external linear elastic forces exerted on the vertices of

the mesh.

3. Compute elastic stresses and internal forces, based on

a tetrahedral linear co-rotational FEM model.

4. Numerical resolution of mechanical equations to com-

pute the deformations.

5. Detect fracturable nodes in the mesh.

6. Split the fracturable nodes and perform local remesh-

ing around them according to the fracture plane.

3. Modeling deformations and fracture: an
FEM approach

Since we deal with objects which may undergo elastic

deformations, a major issue lies in the definition of a rele-

vant physical model. The Finite Element Method (FEM) [4]

provides a realistic physical model, by relying on con-

tinuum mechanics, instead of finite differences for mass-

spring systems for instance. It consists in tessellating the

deformable object into a mesh made of elements. We rely

here on a volumetric linear FEM approach with tetrahedral

elements. The deformation field ue over an element e is
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then approximated as a continuous interpolation of the dis-

placements ûe of its four vertices, through a polynomial ba-

sis function contained in the 3× 12 matrixNe(x):

ue(x) = Ne(x)ûe, (1)

with being ûe = xe − xe,0, xe and xe,0 respectively the

deformed and initial world coordinates of the vertices of e.

3.1. Modeling elastic deformations

In order to model deformations and elasticity, we resort

to the infinitesimal strain theory to compute the Cauchy’s

linear strain tensor εe within the tetrahedron. It can be lin-

early expressed with respect to ûe, using Voigt notations

since εe is symmetric:

εe = Leûe, (2)

with Le a constant 6× 12 matrix. We then rely on Hooke’s

law linear elasticity theory for a continuous isotropic mate-

rial, which lead us to write the infinitesimal stress tensor σe

in the element as:

σe = Ceεe = CeLeûe, (3)

where Ce is a 6 × 6 symmetric matrix depending on two

elastic parameters of the material, the Young modulus E
and the Poisson ratio ν. By deriving the strain energy in e,
the internal elastic forces fe exerted on the four vertices of

e of the mesh can be linearly related to their displacements

ûe:

fe = Keûe = VeL
T
e σe. (4)

Although it is insensitive to translation transformations,

the model, by using an infinitesimal approximation of the

strain tensor, is however inaccurate when modeling large

rotations of the elements, leading for instance to non-zero

summations of the forces. A work-around consists in the

co-rotational approach [6], used for registration purposes

in [9], which is a good compromise between the ability to

model large linear elastic deformations and computational

efficiency. Since the displacement of an element can be de-

composed into a rigid transformation and a pure deforma-

tion, the idea is to extract the rotation matrix Re related to

the rigid transformation. Then the stiffness matrix can be

warped with respect to this rotation, so as to accommodate

rotation transformations, giving:

fe = ReKeû
r
e = ReKe(R

−1
e xe − xe,0), (5)

with being ûr
e = R−1

e xe − xe,0, withR
−1
e xe the deformed

coordinates of the vertices of e back rotated to the unrotated
frame, the forces Keû

r
e being then re-rotated to the current

deformed element through the multiplication byRe. In this

way, the overall forces on the whole mesh can be summed

to zero, while computational efficiency is ensured sinceKe

can be computed in advance, in contrast to non-linear FEM

approaches.

3.2. Modeling fractures

In the computer graphics community, various systems

modeling fractures have been proposed. The detection

of fractures or cracks in 3D object simulations has been

initially achieved using mass-spring systems [16], by re-

moving springs whose lengths exceed a certain threshold.

Based on the FEM, [17] proposed a physically consistent

method using the linear elastic fracture theory [1], through

the computation, for given strains, of tensile forces under-

gone by the nodes. A fracture is then propagated from

each detected fracturable node (or crack tip) by subdi-

viding the neighboring tetrahedra according to a fracture

plane. In a similar manner, [15, 14] have suggested a more

computationally efficient solution by resorting to element

wise stresses, the fracture being propagated along element

boundaries. Although improvements have been achieved

from these widespread approaches, for both fracture de-

tection and propagation [8], we propose here an approach

based on [17]. One reason, as justified hereafter in sec-

tion 3.2.2, is to be able to continuously cope properly with

the provided noisy point cloud data. Another reason is to

preserve real-time performances.

3.2.1 Detecting fractures

Detecting fractures in the mesh is performed in a similar

way to [17], by decomposing the internal forces exerted on

the nodes into tensile and compressive forces, with the dif-

ference that [17] relies on a standard linear FEM method.

For this purpose, the stress tensor σe undergone by a

tetrahedra is separated into a tensile and a compressive com-

ponents. Here, using a co-rotational approach and based on

(5) and (3), we compute σe as:

σe = CeLeû
r
e = CeLeR

−1
e xe − xe,0. (6)

Then, as in [17], the three eigenvalues vi(σe) and eigen-

vectors ni(σe) of σe are computed, the positive eigenval-

ues ones corresponding to tensile stresses whereas negative

ones to compressive stresses. Tensile and compressive ten-

sors can be then defined as:

σ+
e =

∑
i

max(0, vi(σe))m(ni(σe)) (7)

σ−e =
∑
i

min(0, vi(σe)m(ni(σe)), (8)

with, for any vector a ∈ R
3

m(a) =

{
aaT

‖a‖ if ‖a‖ > 0

0 if ‖a‖ = 0.
(9)

Based on these tensile and compressive stresses, internal

forces exerted on the vertices of e can be decomposed as
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well, using (4):

f+e = VeL
T
e σ

+
e (10)

f−e = VeL
T
e σ
−
e . (11)

Let us first define X = {xj}nX

j=1 the set of vertices of the

mesh. Then for each node xj in the mesh, we can com-

pute, as in [17], the Separation Tensor ζj , using the sets

{f+e,j |j ∈ e}e and {f−e,j |j ∈ e}e respectively of tensile and

compressive forces exerted by the elements {e|j ∈ e} at-

tached to the node:

ζj =
1

2
(−m(f+j ) +

∑
fe,j∈{f+e,j |j∈e}e

m(fe,j)

+m(f−j )−
∑

fe,j∈{f−e,j |j∈e}e
m(fe,j)) (12)

with

f+j =
∑

fe,j∈{f+j |j∈e}e
fe,j and f−j =

∑
fe,j∈{f−j |j∈e}e

fe,j (13)

ζj is a tensor which enables to evaluate deformation imbal-

ance between tensile and compressive forces, while being

invariant to imbalance resulting in rigid motions. A fracture

at node xj is then detected if the largest positive eigenvalue

v+j of ζj is above a certain threshold corresponding to the

toughness of the material. The eigenvector nj correspond-

ing to v+j defines the normal to the fracture plane at node

xj .

3.2.2 Fracture propagation and remeshing

In order to propagate the fracture from the detected frac-

turable nodes, in the direction of the fracture plane, the

mesh around the considered node shall be modified. [17]

proposes to subdivide the elements which are attached to

the node and intersected by the fracture plane, according

to the orientation of the plane. Other neighboring elements

also need to be modified to maintain the consistency of the

mesh. However, such a remeshing process, which is proper

and suitable for simulations purposes since it manages to

maintain the orientation of the fracture, is computationally

costly and tends to generate an always growing number of

elements, what is not desirable in our case to keep real-time

performances. Also, for registration concerns, by changing

locally and drastically the resolution of the mesh, match-

ing the remeshed regions with the acquired point cloud,

which is of constant and homogeneous resolution, while be-

ing noisy, may lead to heterogeneous or unstable behaviors.

Another approach, suggested in [21, 15, 14], consists in

propagating the fracture along the boundaries of the neigh-

boring elements. This method, although it enables to keep

the resolution constant, tends to produce jumbled fracture

patterns and artifacts, which is also not desirable in our case

when coping with the noisy point cloud data.

We have instead opted here for a solution preserving the

mesh homogeneity and performing a neat fracture propaga-

tion. It is shown in Fig. 2. As in [17], the fracturable node

is first replicated, with the same positions. Then, within the

set of elements attached to the original fracturable node, the

ones which are not intersected by the given fracture plane

are determined and are reassigned to the original fracturable

node or to the replicated one, given on which side of the

plane they are located. This procedure appears coarse, af-

fects the volume of the model and tends to degenerate the

mesh. But it remains acceptable since we consider, in the

experimental scenarios proposed in Sect. 5, objects under-

going simple fracture events, so that element losses in the

mesh can be neglected.

� �

� �

� �

� �

��

�
�

�

�

�

Figure 2: Remeshing procedure, represented here in the 2D case

with triangles for simplicity. The fracturable node xj is replicated,

initially with the same position, providing a new vertex xf
j for the

mesh (it is here translated from xj for clarity). The intersected

elements are removed. The elements on the positive side of the

fracture plane (determined by its normal nj) assigned to xf
j and

the others remain attached to xj .

4. Registration with the point cloud data

The deformable registration problem consists in fitting

the point cloud data provided by an RGB-D sensor, with the

tetrahedral mesh. The basic idea is to derive external forces

exerted by the point cloud on the mesh and to integrate these

forces, along with the internal forces computed using the

physical model presented in Sect. 3, into a numerical solver

solving the resulting mechanical equations.
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4.1. Segmentation and deformable iterative closest
point

The approach presented here uses the same methods as

the ones described in the work [18] to segment the point

cloud, relying on the Grabcut visual segmentation tech-

nique, in order to restrict the acquired point cloud to the

considered object, so as to avoid ambiguities, in the match-

ing process with the background or with occluding shapes.

The deformable iterative procedure worked out in [18]

is also employed, first to determine the nearest neighbors

correspondences, both from the segmented point cloud to

the mesh and from the mesh to the segmented point cloud.

Based on the two sets of mesh-to-point cloud and point

cloud-to-mesh correspondences, external elastic forces ex-

erted on the vertices of the mesh can be computed. When

computing these forces, a trade-off has to be found between

these two sets of correspondences, whether the application

deals with stretching or compression actions on the object,

and whether occlusions or segmentation errors are to be

dealt with. Let us note that the contour weighting function

proposed in [18] is not used here and that occlusions is not

an issue we want to cope with in this case.

Estimating the deformations of the mesh consists in solv-

ing a dynamic system of non-linear ordinary differential

equations involving the internal forces, determined with (5),

and the external forces, based on Lagrangian dynamics.

4.2. Processing fractures

Once deformations are computed, topological changes

due to fractures, as modeled in Sect. 3.2, are handled. For

each vertex xj inX , we detect if it is a fracture node, based

on Sect. 3.2.1, and for fracturable nodes the remeshing pro-

cedure presented in Sect. 3.2.2. Let us not that for remesh-

ing, an element attached to different fracturable nodes is

treated only once, by the first investigated node. At the end

of the procedure a new mesh Xf is obtained and will be

directly employed for the next frame.

5. Experimental results
In order to evaluate the performance of our method and

contributions, some experimental results are shown in this

section, in a qualitative manner on some real data.

5.1. Implementation and experimental set-up

For the non-rigid registration phase, we have employed

the Simulation Open Framework Architecture (SOFA) sim-

ulator [7], which enables to deal with various physical mod-

els and to evolve simulations in real-time.

In order to carry out experiments on real data, the point

cloud of the investigated scene is acquired from a calibrated

RGB-D camera Asus Xtion, 320× 240 RGB and depth im-

ages being processed. A standard laptop with an NVIDIA

GeForce 720M graphic card has been used, along with a

2.4GHz Intel Core i7 CPU. The segmentation process re-

lies on a CUDA implementation. The results presented here

deal with elastic bar and plate objects, made of modeling

clay.

For the cylindrical bar object, the involved mesh, de-

picted in Fig. 3, has a circumferential/radial/height reso-

lution of 10 × 20 × 2, resulting in 220 vertices and 570
tetrahedral elements. The material is here poorly elastic,

the Young Modulus being empirically set to E = 2.0MPa
and the Poisson ratio to ν = 0.01. The plate object (see

Fig. 3, right) instead has a length/width/height resolution of

18× 9× 2, resulting in 324 vertices and 816 elements. For

material properties, we set E = 2.5MPa and ν = 0.01 in

this case.

Three cases of fracture are here demonstrated: fracture

due to opening by excessive bending for the bar object and

fractures due to shearing and to opening by stretching for

the plate object, tearing the object. Let us note that in the

first case the parameter λ (0 ≤ λ ≤ 1) which tunes the

balance between mesh-to-point cloud and point cloud-to-

mesh forces (see [18]) is set to λ = 0.5. In the second case

λ = 0.1 so that vertices of the mesh lying on the fracture

crack of the object will be driven towards the nearest ob-

served point on the border of the crack.

Let us note that in [18], the registration process is iter-

atively repeated (3 iterations were performed in the experi-

ments). Here only one iteration is executed to maintain real-

time performances, since fracture detection remains costly

(see Fig. 1).

Figure 3: Meshes of both the cylindrical bar (left) and plate (right)

objects.

5.2. Results

As seen in Fig. 4, opening though bending deformations

can be tracked quite properly for the bar object, so tensile

internal forces computed on the nodes remain physically

consistent, making the fracture model valid, as shown on the

third column. For the plate object, tearing it through out-of-

plane shearing (see Fig. 5) can also be tracked, despite some

artifacts can be noticed on some unfractured regions.

However, when opening the plate object by stretching it,

as shown in Fig. 6, only vertices lying on the occluding con-
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tour of the mesh are attracted to the expanded areas in the

point cloud, since correspondences are established based on

3D geometry, without any discriminative descriptors. As a

consequence, forces attracting the contours and stretching

the mesh are weak. Therefore, fracture in this case appears

with a certain delay, when both fractured parts split away.

However, the fracture crack is quite coherent and both parts

are finally consistently recovered.

Figure 4: Results of the tracking process for the cylindrical bar

object, with the input images (first row), the segmented frames

(second row), and the registered mesh reprojected in the input im-

age.

Figure 5: Results of the tracking process for the plate object, torn

through out-of-plane shearing, with the input images (first row),

the segmented frames (second row), and the registered mesh re-

projected in the input image.

Computational costs Regarding computational aspects,

in Tab. 1 are shown the mean computation times of the var-

ious phases of the algorithm, for the sequence presented in

Fig. 5. Ext. forces is the step involving the determination

of the closest points between the mesh and the point cloud,

and the computation the subsequent external forces exerted

Figure 6: Results of the tracking process for the plate object, torn

through opening, with the input images (first row), the segmented

frames (second row), and the registered mesh reprojected in the

input image.

on the mesh. Resolution corresponds to the computation of

the internal forces and in the resolution of the Lagrangian

mechanical equations, to compute the deformations, based

on the computed external and internal forces. Fracture de-
tection consists in computing the separation tensors to de-

tect fractures on the nodes of the mesh. Finally Remeshing
shows the time dedicated to remesh the mesh around the

fracturable nodes. As noticed, the suggested method runs

on this sequence at around 27 fps.

Phases Mean execution times (ms)

Segmentation 10.1

Ext. forces 3.9

Resolution 2.3

Int. forces & fracture detection 20.6

Remeshing 0.6

Total 37.5

Table 1: Mean execution times, in milliseconds, for the different

phases of the approach.

6. Discussion
The proposed approach is a first simple attempt to deal

with fractures of deformable objects. Although the results

presented above are promising and show the relevance of

employing a physically rigorous method to detect fracture,

several issues shall be discussed.

Stiffness of the materials Experiments are shown on two

different simple objects with particular material properties

(high stiffness), the proposed method being for the moment

mostly suitable for such materials. With more elastic mate-

rials, the estimated deformations and internal forces of the

mesh would be rougher, resulting in a more variable sepa-

637637637



ration tensor and so potentially spurious detections of frac-

tures.

Tuning material parameters A cumbersome process can

lie in the determination of coherent material properties of

the object, which consist in the Young modulus, the Poisson

ratio and the fracture threshold. There are set empirically in

this paper and having a fair physical realism may require

some efforts.

Tracking stretching deformations As observed in the

experiments, our method faces some problems when track-

ing opening tearing fractures due to the expansion of the

area covered by the object, since only the vertices lying on

the contour of the mesh are attracted. A method proposed in

the work [18] suggests to weight the vertices of the visible

surface of the mesh, given their distance to the occluding

contour of the mesh. However, this technique tends to al-

ter the physical homogeneity of the material, making in the

case of a fracture model fractures to likely occur around the

contour of the mesh.

Sensitivity to occlusions Since in the segmentation no

distinction is made between a fracture crack and unobserved

areas of the object due to occlusions or segmentation errors,

our method remains sensitive to these latter events.

Remeshing Handling the propagation of a fracture by re-

moving the elements attached to a fracturable node and in-

tersected by the fracture plane leads to a progressive degen-

eration of the mesh if several fracture events occur.

7. Conclusion

In this paper we propose a method to track fractures of

deformable objects, as a first attempt to deal with such topo-

logical changes. The main idea has been to integrate in a

physical FEM based deformation model a model of fracture

events, by first detecting fracturable nodes in the consid-

ered mesh, by decomposing the internal forces into tensile

and compressive components. A second step consists in a

simple local remeshing of the elements around the fracture

nodes. The registration process with the RGB-D data in-

volves performing a deformable iterative closest point pro-

cedure to compute the deformations and finally investigat-

ing fracture events over the mesh and eventually carrying

out remeshing. Experimental results on two different ob-

jects and three sorts of fractures show the relevance of this

simple physical based method, which can however be im-

proved by handling more properly the remeshing phase, by

dealing with larger elastic, due to stretching actions for in-

stance, and plastic deformations, and by handling occlu-

sions by distinguishing them with fracture cracks.
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