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Abstract. An important issue in controlling a multi-fingered robotic hand grasping
an object is the evaluation of the minimal contact forces able to guarantee the sta-
bility of the grasp and its feasibility. This problem can be solved online if suitable
sensing information is available. In detail, using finger tactile information and con-
tact force measurements, an efficient algorithm is developed to compute the optimal
contact forces, assuming that, during the execution of a manipulation task, both the
position of the contact points on the object and the wrench to be balanced by the
contact forces may change with time. Since manipulation systems can be redun-
dant also if the single fingers are not –due to the presence of the additional degrees
of freedom (DOFs) provided by the contact variables– suitable control strategies
taking advantage of such redundancy are adopted, both for single and dual-hand
manipulation tasks. Another goal pursued in DEXMART is the development of a
human-like grasping approach inspired to neuroscience studies. In order to simplify
the synthesis of a grasp, a configuration subspace based on few predominant postural
synergies of the robotic hand is computed. This approach is evaluated at kinematic
level, showing that power and precise grasps can be performed using up to the third
predominant synergy.

1 Grasping Force Optimization

The control of a robotic system equipped with multi-fingered hands involves several
aspects which range from the synthesis of the optimal grasping contact points and
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grasp planning, to the load sharing and grasp control. With respect to this last, the
evaluation of the grasping forces able to guarantee the stability of the grasp and its
feasibility, in the face of the external disturbances, represents a crucial problem. The
complexity of the problem relies on the necessity of resolving online an optimization
problem where both constraints and objective functions are nonlinear, the number
of variable and constraints are relatively large, and the grasp configuration and the
load wrench may change with time.

The force closure [41] and the optimal grasp configuration selection problems
are not considered here, as they would be in charge of the grasp planner. On the
other hand, the grasping force optimization problem has been intensively investi-
gated only for relative simple robotic systems and not yet explicitly in the case of
bimanual human-like robotic systems. For this last, the computational complexity
becomes a major issue to be considered for an efficient online solution.

The nonlinearity of the contact friction models (point contact with friction or
soft-finger contact) complicates the solution of the optimal contact force distribu-
tion problem. In [26] the friction cone constraints have been formulated in terms
of linear matrix inequalities (LMIs), and the grasping optimization problem is ad-
dressed as a convex optimization problem involving LMIs with the max–det func-
tion as objective function. This problem can be efficiently solved with the interior
point algorithm for a small number of fingers.

Starting from the observation that verifying the friction cone constraints is equiv-
alent to testing the positive definiteness of certain symmetric matrices, in [11] the
grasp force optimization has been formulated as a convex optimization problem on a
Riemannian manifold with linear constraints. Several gradient flow type algorithms
have been proposed to provide solutions suitable for real-time applications [12]; to
reduce complexity of matrix inversion, the computation of the solution can be split
into an on-line phase and an off-line phase, and sparse matrix techniques can be
adopted [30]. This technique has been employed and experientially tested with an
impedance control approach addressing the regrasping problem for dextrous manip-
ulation tasks [54].

A further improvement has been presented in [27], consisting in a new compact
semidefinite representation of the friction cone constraints which allows a signif-
icant reduction of the dimension of the optimization problem. Moreover, an esti-
mation technique and a recursion method for selecting the step size in the gradient
algorithm are proposed, together with the proof of the quadratic convergence of the
algorithm.

In [50] and [53] a method based on the minimization of a cost function, which
gives an analytical solution but does not ensure by itself the satisfaction of the fric-
tion constraints is presented. An iterative correction algorithm allows modifying
this function until the internal forces enter the friction cone, resulting in a fast sub-
optimal solution suitable for real-time applications. The grasping force optimization
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problem in the case of power grasp is addressed in [60]. In this case, the optimization
problem is formulated as a convex optimization problem involving LMIs similarly
to [26], but considering a decomposition of the contact force space into four orthog-
onal subspaces of active and passive forces.

The method proposed in [11] requires the on-line pseudo-inversion of a con-
strained matrix whose dimension linearly increases with the number of fingers with
a factor that depends on the contact type. By adopting the frictional cone constraint
matrix representation proposed in [27], the dimension of the problem decreases and
the solution can be computed in real time. However, if torque limits constraints are
considered, the complexity of the problem increases more than quadratically with
the number of joints, which is higher in a dual-hand system, making it unsuitable for
real-time applications. Moreover, all the proposed solutions require, at each itera-
tion, the evaluation of an initial point that satisfies the frictional cone constraints and
the joint torque limits. The initial point can be computed with the method proposed
in [34], but at the expense of a significant computational effort.

The proposed algorithm is based on the compact formulation of [27] and on the
solution of a convex optimization case as in [12], and it extends to bimanual ma-
nipulation systems our previous works on single-hand manipulation [32], [33]. The
method allows considering also joint torque constraints, with a minimum increase
of computation complexity, compatible with real-time constraints. Moreover, the it-
erative formulation does not require the evaluation at each step of a new initial point.
Finally, a sub-optimal single-hand optimization algorithm is proposed to cope with
very limited computational hardware availability, and compared with the optimal
solution. In particular, a new criterion for load sharing [61], [58], [56] between the
hands is here introduced to improve the solution. The feasibility and the effective-
ness of this approach have been tested in a simulation scenario where a robotic torso
equipped with two dextrous hands is used to empty a half-filled bottle.

1.1 Problem Formulation

Consider a bimanual robotic system equipped with two multi-fingered hands grasp-
ing an object with n contacts between the object and the fingertips, the links of the
fingers and the palm. Denote the contact wrench of the grasp with c =

[
cT

r cT
l

]T
=[

cT
1 . . . cT

n

]T ∈ R
nm, where ci ∈ R

m is the wrench vector of the i-th contact with
dimension m depending from the adopted contact model, and cr and cl are the cor-
responding wrench vectors of all the contact points of the right and left hand, re-
spectively.

The grasping force optimization problem (GFO) consists in finding the set of
contact wrenches balancing the generalized external force he ∈ R

6 acting on the
object (including object inertia and weight), which are feasible with respect to the
kinematic structure of the hand and to the corresponding joint torque limits, and
minimize the overall stress applied the object, i.e, the internal forces. Moreover, to
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avoid the slippage of the fingers on the object surface, each contact wrench has to
be confined within the friction cone.

The balance equation for the generalized forces applied to the object can be writ-
ten in the form

he = Gc, (1)

where G =
[

Gr Gl
] ∈ R

6×nm is the grasp map composed of the the grasp matices
of the right and left hand, which is full rank for force-closure grasps [41]. It is
assumed that the contact point configurations ensuring the force-closure constraint
are assigned at each time by the planning system.

Although several contact models can be used, the two usually adopted are the
point contact with friction (PCWF) model and the soft finger contact (SFC) model.

In the PCWF case, the contact wrench has three DOFs (m = 3): the normal com-
ponent ci,z to the object surface and the two components ci,x, ci,y on the tangent
plane. The friction constraint is represented by the law

1

μ2
i

(
c2

i,x + c2
i,y

)≤ c2
i,z and ci,z > 0, (2)

where μi is the friction coefficient at the i-th contact point.
In the SFC case, the contact wrench has an additional DOF ci,t (m = 4), corre-

sponding to the torsional component of the moment about the contact normal. In
this case, the friction constraint in an elliptic approximation can be expressed in the
form

1
μi

(
c2

i,x + c2
i,y

)
+

1
μt,i

c2
i,t ≤ c2

i,z and ci,z > 0, (3)

where μi and μi,t denote the tangential and torsion friction coefficients at the i-th
contact point, respectively.

The balance equation for the torques applied to fingers joints of the hand can be
written in the form

JT(q)c+ τe = τ, (4)

where and J(q) =
[

JT
r JT

l

]T
is the (nm× l) hands Jacobian matrix, depending on the

(l-dimensional) vector q of the joint variables, being l the total number of the joints,
τe is the external torque, including gravity, Coriolis, centripetal and inertia effects
at the fingers joints, and τ is the torque provided by the actuators. For simplicity, it
is assumed that N (JT) = /0, meaning the absence of structurally dependent forces,
namely, contact forces not caused by joint torques but depending on hand mechanics
(see, e.g., [41]).

To ensure that the joint actuators are able to provide the required torques, a joint
torque constraint must also be considered

τL ≤ τ ≤ τU , (5)

where τL (τU ) is the lower (upper) joint torque limit.
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The simultaneous satisfaction of the force balance equation (1), with the friction
constraints (2) and (3), and of the joint torque balance equation (4) with constraint (5),
implies that the grasp is stable and feasible. The GFO problem considered here con-
sists in finding the optimal grasp wrench that minimizes the internal forces acting on
the object, under the above constraints. The internal forces are contact wrenches that
satisfy the friction cone constraints and belong to the null space of the grasp matrix
G. These wrenches cint do not contribute to the balance equation (1), being Gcint = 0,
but are used to satisfy the friction cone constraints at the contact points.

1.2 Grasping Constraints and Cost Function

The frictional inequalities (2) and (3) are equivalent to the positive definiteness of
the block-diagonal matrix [27]

F(c) = diag(F1(c1), . . . ,Fn(cn))> 0, (6)

where Fi(ci) is the symmetric (2× 2) matrix

Fi(ci) =

[
ci,z +

ci,x
μi

ci,y
μici,y

μi
ci,z− ci,x

μi

]
(7)

in the PCWF case, while it is the Hermitian (2× 2) matrix

Fi(ci) =

[
ci,z +

ci,x√μi

ci,y√μi
− j

ci,t√μi,t
ci,y√μi

+ j
ci,t√μi,t

ci,z− ci,x√μi

]
, (8)

in the SFC case.
Similarly, the torque limit constraint (5), in view of the torque balance equa-

tion (4), is equivalent to the positive definiteness of the diagonal matrix

T(c,q,τe) = diag(τB)> 0, (9)

where

τB =

[
τB,L

τB,H

]
=

[
JT(q)c− τL + τe

−JT(q)c+ τH − τe

]
(10)

contains the distances of actuator torques from the lower (τB,L) and upper (τB,H)
limits, respectively.

Hence, the simultaneous satisfaction of both frictional and joint torque con-
straints is equivalent to the positive definiteness of the linearly constrained block-
diagonal matrix

P = diag(F,T)> 0. (11)
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Notice that the elements of the matrices F and T are linearly dependent, because
both depend on c. Moreover, the force balance equation (1) and the torque balance
equation (4) corresponds to linear constraints imposed on matrix P.

By denoting with c(F) the contact wrench vector extracted from the frictional
constraint matrix, with τB(T) the vector composed by the diagonal elements of T,

and defining vector ξ (P) =
[
c(F)T τB(T)T

]T
, the linear constraints on matrix P

imposed by (1) and (4) can be represented in the following affine general form

Aξ (P) = b (12)

with

A =

[
G 06×2l

Aτ

]
b =

⎡
⎣ he

τL− τe

τH − τe

⎤
⎦ , (13)

where Aτ is a (2l× nm+ 2l) matrix defined as follows

Aτ =

[
J(q)T −Il 0l

J(q)T 0l Il

]
, (14)

being 0× the null matrix and I× the identity matrix of the indicated dimensions.
The optimization procedure is based on the minimization of the cost function

Φ(P) : P(r)→R, being P(r) the set of positive definite symmetric (r×r) matrices
P = PT > 0, defined as

Φ(P) = tr
(
WpP+WbP−1) , (15)

where tr(·) denotes the trace operator, Wp and Wb are positive definite symmetric
matrices. Notice that Φ is a strictly convex twice continuously differentiable func-
tion on P(r) and Φ(P)→ +∞ for P→ ∂P(r), being ∂P(r) the boundary of
P(r).

By noting that the sum of the elements of T (i.e. of τB) is constant for each c,
because the sum of the two joint torque constraints for the i-th joint is constant
and equal to τH,i− τL,i, the diagonal weighting matrix Wp = diag(wpI6,02l), with
wp > 0, is considered. In this way, the term WpP weights only the normal forces
ci,z at each contact point, i.e. the pressure forces on the object. If required, different
weights can be used allowing higher contact forces for strongest fingers.

The second term WbP−1 represents a barrier function, which goes to infinity
when P tends to a singularity, i.e. when friction or torque limits are approached. The
barrier weight matrix is also chosen diagonal Wb = diag(Wb,F ,Wb,T ), with

Wb,F = wb,F diag(μ1, . . . ,μn)

Wb,T = wb,T diag
(
τH,1− τL,1, . . . ,τH,l − τL,l ,

τH,1− τL,1, . . . ,τH,l − τL,l
)
,

(16)

being wb,F > 0 and wb,T > 0.
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Hence, the minimization of the cost function (15) with the linear constraint (12)
corresponds to the minimization of the normal contact wrench components applied
to the object while satisfying the friction and torque constraints.

1.3 Semidefinite Programming

The minimization problem can be solved using the linearly constrained gradi-
ent flow approach on the smooth manifold of positive definite matrices presented
in [28], [11]. In particular, it is possible to prove that Φ(P) presents a unique min-
imum that can be reached through the linear constrained exponentially convergent
gradient flow

ξ (Ṗ) = Qξ (P−1WbP−1−Wp), (17)

where Q = (I−A†A) is the linear projection operator onto the tangent space of
A, and A† = AT(AAT) is the pseudo-inverse of A. Consequently, AQ = 0 and
Aξ (Ṗ) = 0; hence, if the solution satisfies the constraint (12) at t = 0, it will satisfy
the constraint for all t > 0.

A discrete-time version of (17) based on the Euler numerical integration algo-
rithm is

ξ (Pk+1) = ξ (Pk)+αkQξ (P−1
k WbP−1

k −Wp), (18)

where the step size αk is chosen to ensure down hill steps. Notice that the choice of
αk strongly affects the performance of the optimization algorithm. A wrong choice
could determine a very slow convergence or the break of the barrier. Several strate-
gies have been proposed for the self-tuning of αk at each iteration (see [34] for
details). The sensitivity to the step size choice can be reduced by adopting a Dikin-
type recursive algorithm [12], [19], that leads to the discrete flow

ξ (Pk+1) = ξ (Pk)−αkQ
ξ (P−1

k WbP−1
k −Wp)

‖P−1
k WbP−1

k −Wp‖Pk

, (19)

where ‖X‖Y = tr(Y−1XY−1X), and 0 ≤ αk ≤ 1 can be evaluated with a bounded
line search minimizing Φ(Pk+1).

The online implementation of the proposed algorithm requires the inversion of a
(6+ 2l) square matrix AAT needed for the evaluation of A† at each iteration, also
when the grasping configuration is unchanged, i.e. when G is constant, due to the
variation of J(q).

Starting from the discrete version of the gradient flow (18), the following new
formulation can be derived

ck+1 = ck +αkQ̄ξ (P−1(ck)WbP−1(ck)−Wp), (20)

where Q̄ = (I−G†G)[Inm02l](I−A†
τAτ) is the result of the projection onto the

null space of matrix Aτ in (14), which guarantees the coherence of the elements of
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matrix P, and of the subsequent projection onto the null space of the grasp matrix,
ensuring the force balance constraint (1). Therefore, the evaluation of the inverse
of a 6+ 2l square matrix is decomposed into the evaluation of the inverse of two
matrices of lower dimensions (6 and 2l, respectively). Moreover, if the grasp config-
uration remains unchanged, the projector depending on G can be evaluated off-line.
A similar decomposition can be easily achieved for the gradient flow (19).

1.4 Improvements for Real-Time Applications

An iterative technique for the on-line evaluation, at each sampling time, of the ini-
tial point —the initial solution P0 for the optimization gradient flow algorithm—
is proposed here, based on the optimal solution at the previous sampling time. The
quantities that can vary between successive sampling times are the hand configura-
tion q, the external torque τe, and the grasp map G, while they are taken constant
during the iterations of the optimization algorithm between two consecutive sam-
pling times (optimization cycle).

To avoid the evaluation of an initial point at each sampling time, the following
approach is proposed. Initially, at time t0, the method proposed in [34] (or an equiv-
alent one) is used to evaluate off-line a first valid initial solution, which is employed
for the first optimization cycle. For the next sampling times tk, the initial point is
computed from the optimal solution ck−1 computed at the end of the previous opti-
mization cycle, through the iterative algorithm

c̄ j =(I−G†
kGk)c̄ j−1+γ jG

†
khe,k +(1− γ j)G

†
k−1he,k−1

τ̄ j =JT(γ jqk+(1−γ j)qk−1)c̄ j+γ jτe,k+(1−γ j)τe,k−1,
(21)

with initial condition c̄0 = ck−1, where the subscript k is referred to the current
optimization cycle, while the subscript j and the variables with the bar are referred
to the iterations within the cycle. The coefficient γ j ∈ (0,1] is chosen at each iteration
according to a monotone sequence, using a simple linear search algorithm, as the
maximum value that does not produce invalid solutions (P0 ≤ 0). In the worst case,
γ0 must be set to a value close to zero.

In detail, at each step of the optimization cycle, the first equation of (21) grad-
ually modifies the external wrench component of the current solution until the full
external wrench he,k is balanced (i.e., γ j = 1). Obviously, the optimization cycle can-
not be terminated until γ j does not reach 1. If the solution evaluated at the previous
sampling time (ck−1) is sufficiently far from the boundaries (the distance depends
also from the weights assigned to Wb), γ0 can be set to 1 at the first iteration, and
thus the initial point has the same internal wrench component of the previous op-
timal solution. On the other hand, when γ0 < 1, the effect of the barrier function
produces a new solution that, at each iteration of the optimization cycle, goes away
from the boundaries; this guarantees that γ j increases at each step, until γ j = 1. The
second equation is required to modify the joint torque with the same rationale of
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the first equation. In sum, the sequence γ j produces an effect similar to a low-pass
filter on the variation of the solutions between subsequent optimization steps that
are recovered directly within the recursive optimization algorithm.

From the practical experience, if the weight Wb of the barrier function in the cost
function (15) is chosen high enough and the sampling period is small, in most cases
the last optimal solution is a valid initial solution, i.e. γ0 = 1.

Under the reasonable assumption that the solutions of the optimization algorithm
evaluated at successive sampling times are quite close, the joint torque constraints
can be simplified observing that not all the joint torque constraints can be effective
simultaneously. For example, if, for the current optimal solution, the actuator of joint
i provides a torque close to the upper bound τH,i, the constraint on the lower bound
τL,i can be deactivated at the next sampling time, being negligible the corresponding
barrier term in the cost function. More in general, if for a grasp configuration a given
contact force is required along a certain direction, it is reasonable to assume that
the corresponding joint torques will not change significantly at the next sampling
time. Starting from this observation, the number of joint torque constraints can be
dynamically reduced at each sampling time, by using the distance of the torque
evaluated at the previous sampling time from the lower and upper bounds as the
criterion for selecting the constraint (the lower or the upper one) that needs to be
activated. Only those constraints with a distance higher than a torque limit threshold,
that can be chosen as a fraction στ > 0 of the corresponding torque limit, will be
activated.

Wherever required, to reduce chattering phenomena during the activation and
deactivation of a constraint, that can introduce noise in the solution, a simple double
threshold (στ,L > 0 and στ,H > 0) with a hysteretic threshold can be employed.

For applications with limited computational resource, a further simplification in
the algorithm can be introduced by splitting the bimanual optimization problem
into two simpler single-hand problems. In this case, the initial point iterative self-
evaluation algorithm presented above can be employed to find the initial common
solution. Then two independent optimization procedures can be started separately
for each hand, and the corresponding solutions are composed only at the end to
achieve a unique wrench vector solution. The price to pay with the simplified algo-
rithm is that the solution is not optimal in a global sense.

A significant improvement in the solution can be reached by considering a suit-
able weighted pseudo-inverse of the grasp matrix in (21), with the goal of achieving
a load sharing between the hands in reason of the actual load of the hand actuators.
In detail, at each sampling time, the minimum distance of the joint torques with re-
spect to the corresponding limits is evaluated for each hand, namely δτ,r and δτ,l for
the right and for the left hand, respectively. Then a weighting matrix

WG = diag

(
δτ,r + δτ,l

δτ,r
Inrm,

δτ,r + δτ,l
δτ,l

Inl m

)
, (22)

with nr and nl the number of contact points for the right and for the left hand, is
adopted for the evaluation of the weighed pseudo-inverse of the grasp matrix.
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Fig. 1 The DEXMART Hand prototype.

G# = W−1
G G(GW−1

G GT)−1. (23)

With this choice, the quadratic form cTWGc is minimized, reducing the load re-
quirement on the hand closest to its torque limits. This approach, as demonstrated
in the following case study, can produce a reduction up to 50% of the computational
time when a large number of joint torque constraints are active.

1.5 Case Study

The proposed GFO algorithm has been tested in simulation using two models of the
DEXMART Hand (see Fig.1), mounted on an anthropomorphic torso, as shown in
Fig. 2. It is assumed that the hands grasp a cylinder representing a bottle half filled
with water and the task consists in pouring water by reorienting the bottle. The bottle
is initially grasped with the main axis aligned to the vertical direction; then the task
can be decomposed into three steps:

• a rotation of 135 deg about the horizontal axis through the geometric center of
the cylinder is commanded;

• the hand is stopped while some water is poured from the bottle (the mass and
inertia of the bottle change accordingly);

• the opposite rotation is commanded to set the bottle back to the initial pose.

A dynamic simulation has been performed using Matlab/Simulink, where the vari-
ation of the position of the center of mass of the water and that of its weight have
been considered. Figure 2 shows on the right a section of the bottle half filled with
water. In the figure, the intensity of the gravity force is proportional to the black
vertical arrow applied to the instantaneous center of mass (of length proportional to
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Fig. 2 Left: anthropomorphic torso with two DEXMART Hands grasping a bottle. Right:
section of the grasped bottle with graphical representation of the gravity force and torque
(black arrows), of the resultant force and torque applied by the fingers (red arrows), of the
optimal contact forces (green arrows if not interested by joint torque constraints, orange arrow
otherwise), and of the friction cones (yellow triangles).

the intensity of the force), while the intensity of the gravity torque with respect to
the center of the bottle is proportional to the black circular arrow. The red arrows
represent the external force and torque balancing the gravity effects and resulting
from the contact forces applied by the fingers, represented by green arrows if not
interested by joint torque constraints, orange arrow otherwise. The sections of the
friction cones in the contact points are colored in yellow. A sequence of significant
configurations of the bottle during task execution is shown in Fig. 3.

The effectiveness of the friction and of joint torque limits constraints is shown
by considering two different simulations: in the first one only the friction constraint
is considered, without any constraint on the joint torque limits, while in the second
one different torque limits are set for the fingers. In particular, the thumb actuators
are considered stronger than the corresponding actuators of the other fingers of the
hand (±0.5 vs. ±0.075 Nm), like for the human hand.

In Fig. 4 the trajectory and the areas covered by the contact force vector of each
finger in the corresponding contact point during the bottle motion are shown, in blue
(red) color for the case without (with) torque constraints. As expected, the frictional
constraints are always respected in both simulation cases accordingly to the barrier
function considered into the cost function (15).

The time history of the minimum distance of the joint torques for all the actuators
from the corresponding limits is shown in Fig. 5, with the red (blue) line refers to
the case with (without) torque constraints. The effect of the barrier function settled
up also on torques insures the full respect of the adopted limits, without affecting
significantly the contact wrenches as shown in Fig. 6.
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Fig. 3 Sequence of significant configurations of the bottle and of the forces during the task
execution.

In Fig. 6 a comparison of the norm of the contact wrenches (on the left) and of
the joint torques (on the right) is shown for both simulation cases. The differences
for the norm of the torque between the two cases is very limited, while the contact
wrenches are improved (smaller in norm), due to a better balancing of the load
between the fingers.

The benefits resulting from the adoption of the online joint-torque constraints
selection are shown in Fig. 7, where the time history of the computational time
effort are represented on the left and the number of employed constraints are rep-
resented on the right. To remove the dependence on the employed hardware, all the
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Fig. 4 Areas covered by the contact forces of each finger (Top: right hand, Bottom: left hand;
from the left side: from the thumb to the little finger) without (blue color) and with (red color)
torque constraints with respect to the friction cones (represented with green lines).
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−0.01

0
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0.02
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0.04

N
m

s

Fig. 5 Time history of the minimum distance of the joint torques from the corresponding
limits for all the actuators, in red (blue) color for the case with (without) torque constraints.
Negative values (the yellow area) correspond to the violation of one or more joint torque
limits.

considered cases are normalized with respect to the maximum value of the fully
constrained case (black line) to the value 100 (corresponding about to 23 ms on an
Intel Pentium IV at 2.8 Ghz). In particular, four different cases are compared: all
constraints (black lines), στ = 0 (red lines), στ = 0.5 (green lines), στ = 0.8 (blue
lines), and unconstrained (gray lines), where στ is the threshold for the activation
of the joint torque constraints. The achieved reduction of the mean of the computa-
tional time varies from a minimum of about 30% for στ = 0 to a maximum of about
90% for στ = 0.8.

The adoption of the sub-optimal single-hand GFO algorithm can provide a signif-
icant reduction on the computational time with respect to the optimal one, as shown
in Fig. 7 for the case of all joint torque constraint simultaneously active. However,
the drawback is that the sub-optimal solution has reduced performance in terms of
both the norm of contact wrenches and of joint torque (see Fig. 8). Consequently,
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Fig. 6 Time history of the norm of the contact wrenches (on the left) and of the joint torques
(on the right), in red (blue) color for the case with (without) torque constraints.

0 2 4 6 8 10
0

20

40

60

80

100

s
0 2 4 6 8 10

0

20

40

60

s

Fig. 7 Time history of the normalized computational-time effort (left) and of the number of
employed joint torque constraints (right) for the cases with all constraints (black), στ = 0
(red), στ = 0.5 (green), στ = 0.8 (blue), unconstrained (gray), and single-hand local opti-
mization with (violet) and without (cyan) weighted pseudo-inverse of the grasp matrix.
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Fig. 8 Time history of the norm of the contact wrenches (on the left) and of the joint torques
(on the right) for the cases of local single-hand optimization without (blue) and with (green)
weighted pseudo-inverse of the grasp matrix, and global optimization (red).

also the distance with respect to the joint torque limits result reduced significantly, as
shown in Fig. 9), but without violating the imposed constrained. As shown in these
figures, the adoption of the weighted pseudo-inverse of the grasp matrix in (23)
can improve the achieved solution resulting in a well-shared load between the two
hands. This behavior is mainly due to the reduction of the DOFs available to the
optimization algorithm considering separately the the two hands instead of both
together.
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Fig. 9 Time history of the minimum distance of the joint torques from the corresponding
limits for all the actuators for the cases of local single-hand optimization without (blue) and
with (green) weighted pseudo-inverse of the grasp matrix, and global optimization (red).
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Fig. 10 Time history of the norm of the load force (on the left) and moments (on the right) for
the right (red) and left (blue) hand in the cases of local (continuous lines) and global (dashed
lines) method.

On top of Fig. 10 the time history of the normalized load-sharing coefficients
δτ,r/(δτ,r +δτ,l) (red) and δτ,l/(δτ,r +δτ,l) (blue) employed in (23) is shown, while
the time history of the norm of the load force and moments for the right (red) and
left (blue) hand in the cases of sub-optimal (continuous lines) and optimal (dashed
lines) method are shown in Fig. 10. As expected, the whole balancing of effort
between the hands is degraded with respect to the optimal solution (dashed lines),
but the adopted load sharing method allows an online load repartition according to
the current load capability of each hand.

2 Kinematic Control with Force Feedback

Dual-arm/hand object manipulation with multi-fingered hands is a challenging task,
especially in service robotics applications, but it has not investigated as extensively
as it should deserve. In order to achieve the desired motion of the manipulated ob-
ject, arms and fingers should operate in a coordinated fashion. In the absence of
physical interaction between the fingers and the object, simple motion synchroniza-
tion shall be ensured. Further, the execution of object grasping or manipulation re-
quires controlling also the interaction forces to ensure grasp stability [43], [49].
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From a kinematics point of view, an object manipulation task can be assigned in
terms of the motion of the fingertips and/or in terms of the desired object motion.
The planner (or the controller) has to map the desired task into the corresponding
joint trajectories of the fingers and the arms, thus requiring the solution of an inverse
kinematics problem.

In this work, starting from the framework presented in [31], a kinematic model for
object manipulation using a dual-arm/hand robotic system is derived, which allows
computing the object pose from the joint variables of each arm and each finger (ac-
tive joints), as well as from a set of contact variables, modelled as passive joints [40].
Suitable conditions are derived ensuring that a given motion can be imposed to the
object using only the active joints. Exploiting also the information provided by force
sensors mounted inside the fingertips, a two-stage control scheme is proposed so as
to achieve the desired object motion and to maintain the desired contact normal
forces.

The kinematic redundancy of the system, deriving also from the presence of the
passive joints, is suitably exploited to satisfy a certain number of secondary tasks
with lower priority, aimed at ensuring grasp stability and manipulation dexterity
—without violating system constraints— besides the main task corresponding to
the desired object motion. To this aim, a prioritized task sequencing with smooth
transitions between the different tasks [36] is employed.

At the best of authors knowledge, the focus of previous works on kinematics of
multi-fingered manipulation was on constrained kinematic control [25], [40], or ma-
nipulability analysis [8], without considering redundancy resolution and the benefits
of integrating a force feedback in a kinematic control loop. The effectiveness of the
proposed approach is demonstrated in simulation by considering an object exchange
task for a planar bimanual system.

2.1 Kinematic Model

Consider a bimanual manipulation system, e.g., the humanoid manipulator of Fig. 11
composed by a three DOFs torso and two DLR manipulators (each with seven
DOFs). The direct kinematics can be computed as reported in [55], by introduc-
ing a frame Σb fixed with the base of the torso, two frames, Σr and Σl , attached at
the base of the right and left arm, respectively, and two frames, Σrh and Σlh, attached
to the palms of the right and left hand, respectively. Moreover, assuming that each
arm ends with a robotic hand composed by N fingers, it is useful to introduce a
frame Σr fi (Σl fi), attached to the distal phalanx of finger i (i = 1 . . .N) of the right
(left) hand.

The pose of Σr fi with respect to the base frame Σb can be represented by the
well known (4× 4) homogeneous transformation matrix Tb

r fi
(Rb

r fi
,ob

r fi
), where Rb

r fi
is the (3× 3) rotation matrix expressing the orientation of Σr fi with respect to the
base frame and ob

r fi
is the (3×1) position vector of the origin of Σr fi with respect to

the base frame. Hence, the direct kinematics can be expressed as

Tb
r fi = Tb

r (qt)T
r
rh(qrh)T

rh
r fi(qr fi) (24)
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Fig. 11 Kinematic structure of a humanoid manipulator with torso and arms inspired to the
DLR Justin.

where Tb
r is the matrix relating the frame at the basis of the right arm to the base

frame (which depends, in turn, on the torso joint vector, qt ), Tr
rh(qrh) is the matrix

relating the right palm frame to the base frame of the right arm (which depends, in
turn, on the joint vector of the right arm, qrh), and Trh

r fi
is the matrix relating the

frame attached to finger i to the palm frame of the right hand (which depends, in
turn, on the joint vector qr fi , where the fingers are assumed to be identical). An
equation similar to (24) holds for the left hand fingers, with subscript l in place of
subscript r.

Due to the branched structure of the manipulator, the kinematic equations of both
the right and the left arm depend on the joint vector qt of the torso and, thus, they
are not independent. Without loss of generality, hereafter it is assumed that the torso
is motionless, i.e., qt is constant; therefore, the kinematics of the right and of the
left hand can be considered separately. Hence, in the sequel, the superscripts r and
l will be omitted and will be used explicitly only when it is required to distinguish
between the right and the left arm.

The velocity of frame Σ fi with respect to the base frame can be represented by
the (6× 1) twist vector v fi = [ȯT

fi
ωT

fi ]
T , where ω fi is the angular velocity, such that

Ṙ fi = S(ω fi)R fi , with S(·) the skew-symmetric operator representing the vector
product. The superscript b, denoting the base frame, has been omitted to simplify
notation.

The differential kinematics equation relating the joint velocities to the velocity of
frame Σ fi can be written as

υ fi =

[
JPi(qi)
JOi(qi)

]
q̇i = JFi(qi)q̇i, (25)

where qT
i =
[
qT

h qT
fi

]T
and JFi is the Jacobian of the arm, ending with finger i.
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Fig. 12 Local parametrization of the object surface with respect to Σo.

Therefore, the differential kinematics equation of the whole arm-hand system,
considering the N fingers as end-effectors, can be written in the form

ṽ f = J(q)q̇, (26)

where ṽT
f =
[
vT

f1
· · ·vT

fN

]T
, qT =

[
qT

h qT
1 · · ·qT

N

]T
, and J is the Jacobian of the overall

arm-hand system.
Assuming that the hand grasps a rigid object, to derive the kinematic mapping

between the joint variables of the arm-hand system and the pose (position and ori-
entation) of the object, it is useful introducing an object frame Σo attached to the
object, usually chosen with the origin in the object center of mass. Let Ro and oo

denote respectively the rotation matrix and the position vector of the origin of Σo

with respect to the base frame, and let vo denote the velocity twist vector.
Grasping situations may involve moving rather than fixed contacts: often, both

the object and the robotic fingers are smooth surfaces, and manipulation involves
rolling and/or sliding of the fingertips on the object surface, depending on the con-
tact type. If the fingers and object shapes are completely known, the contact kine-
matics can be described introducing contact coordinates defined on the basis of a
suitable parametrization of the contact surfaces [39], [41].

In this work, it is assumed that the fingertips are sharp (i.e. they end with a point,
denoted as tip point) and covered by an elastic pad. The elastic contact is modeled by
introducing a finger contact frame, Σki , attached to the soft pad and with the origin
in the tip point oki , and a spring-damper system connecting oki with the origin of
frame Σ fi , attached to the rigid part of the finger (see Fig. 13) and with the same
orientation of Σki . The displacement between Σ fi and Σki , due to the elastic contact
force, can be computed as

o fi− oki = (li−Δ li)Ron̂o(ξ ), (27)
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where li and 0 ≤ Δ li ≤ li are the rest position and the compression of the spring,
respectively, and n̂o is the vector representing the outward normal to the object’s
surface at the contact point, referred to Σo.

Let Σci be the contact frame attached to the object, with the origin at contact point
oci . Notice that, instantaneously, the object contact point oci and the finger contact
point oki are coincident. One of the axes of Σci , e.g., the Z axis, is assumed to be the
outward normal to the tangent plane to the object surface at the contact point.

It is assumed that, at least locally, the position of the contact point with respect to
the object frame oo

o,ci
= oo

ci
−oo

o can be parameterized in terms of a coordinate chart
co

i : Ui ⊂R
2 	→R

3 which maps a point ξ i = [ui vi]T ∈Ui to the point oo
o,ci

(ξ i) of the
surface of the object.

Assuming that co
i is a diffeomorphism and that the coordinate chart is orthogonal

and right-handed, the contact frame Σci can be chosen as a Gauss frame [39], where
the the relative orientation expressed by the rotation matrix Ro

ci
is computed as a

function of the orthogonal tangent vectors co
ui
= ∂co

i /∂ui and co
vi
= ∂co

i /∂vi [31].
Consider the contact kinematics from the object point of view. Let co

i (ξ i(t))
denote a curve on the surface of the object, with ξ i(t) ∈ U (see Fig. 13). The
corresponding motion of Σci with respect to the base frame can be determined as
a function of: object motion, geometric parameters of the object and the curve geo-
metric features. Namely, the velocity of the contact frame can be expressed as

υci =

[
ȯci

ωci

]
= GT

ξi
(ξ i)υoi + Jξi

(ξ i)ξ̇ i, (28)

where Gξi
(ξ i) and Jξi

(ξ i) are respectively (6× 6) and (6× 2) full rank matrices,
whose expressions can be found in [31].

Consider now the contact kinematics from the fingers point of view. The contact
can be modeled with an unactuated 3-DOF ball and socket kinematic pair centered
at the origin oki of Σki , fixed to the soft pad of the finger; the origin may also move
on the surface, if sliding is allowed. Therefore, the relative orientation Rki

ci
of Σci

with respect to Σki can be computed in terms of a suitable parametrization of the
ball and socked joint, e.g., Euler angles.

A vector θ i =
[
θi1 θi2 θi3

]T
of XYZ Euler angles can be considered, and thus

Rki
ci
= Rki

ci
(θ i). Singularities occurs for θ2i = ±π/2, but they do not correspond to

physical singularities of the kinematic pair.
Notice that, in the presence of a contact force, because of the tip elasticity, frame

Σki translates from the finger frame Σ fi according to (27), but the orientation does

not change. Therefore, Rki
ci
= R fi

ci . Moreover, the angular velocity of Σci relative

to Σ fi can be expressed as ω fi
fi,ci

= H(θ i)θ̇ i, where H is a transformation matrix
depending on the joint parameterization. In view of the decomposition ωci = ω fi +

R fi(qi)ω
fi
fi,ci

, and from (25), the angular velocity of Σci can be computed also as a
function of joint and contact variables in the form

ωci = JOi(qi)q̇i +R fi(qi)H(θ i)θ̇ i, (29)
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with JOi defined in (25). Moreover, since the origins of Σci and Σki coincide, the
following equalities hold:

oci = oki = o fi − (li−Δ li)Ron̂o
i (ξ i)

ȯci = JPi(qi)q̇i + Δ̇ liRon̂o
i (ξ i) (30)

+(li−Δ li)S(Ron̂o
i (ξ i))ωo− (li−Δ li)Ro

∂ n̂o
i (ξ i)

∂ξ i
ξ̇ i,

with JPi defined in (25). Using (29) and (30), the velocity of the contact frame can
be expressed as

υci = JFi(q)q̇+ Jθi(θ i,qi)θ̇ i + JΔ li(ξ i)Δ̇ li

− J′ξi
(ξ i,Δ li)ξ̇ i−GT

Δ li(ξ i,Δ li)υo, (31)

where Jθi is a (6× 3) full rank matrix, whose detailed expression can be found
in [31], JΔ li is a (6× 1) vector

JΔ li =

[
Ron̂o

i (ξ i)
0

]
,

J′ξi
is a (6× 2) full rank matrix

J′ξi
=

⎡
⎣(l−Δ li)Ro

∂ n̂o
i (ξ i)

∂ξ i
0

⎤
⎦ ,

and GΔ li is the (6× 6) matrix

GΔ li =

[
0 0

(Δ li− li)S(Ron̂o
i (ξ i)) 0

]
.

Hence, from (28) and (31), the contact kinematics of finger i has the form

JFi(qi)q̇i + Jηi(η i,qi,Δ li)η̇ i + JΔ li(ξ )Δ̇ li = GT
i (η i,Δ li)υo, (32)

where η i =
[
ξT

i θT
i

]T
is the vector of contact variables, Jηi =

[
−(Jξi

+ J′ξi
) Jθi

]
is a

(6×5) full rank matrix, and Gi = Gξi
+GΔ li is a (6×6) full rank grasp matrix. This

equation can be interpreted as the differential kinematics equation of an “extended”
finger corresponding to the kinematic chain including the arm and finger joint vari-
ables (active joints) and the contact variables (passive joints), from the base frame
to the contact frame [40].

It is worth noticing that equation (32) involves all the 6 components of the veloc-
ity, differently from the grasping constraint equation usually considered (see, e.g.,
[41]), which contains only the components of the velocities that are transmitted by
the contact. The reason is that the above formulation takes into account also the
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velocity components not transmitted by contact i, parameterized by the contact vari-
ables and lying in the range space of

[
Jηi JΔ li

]
. As a consequence, Gi is always a

full-rank matrix.
Depending on the considered contact type [49], some of the parameters of ξ i and

θ i are constant. Hence, assuming that the contact type remains unchanged during
the task, the variable parameters at each contact point are grouped in an (nci × 1)
vector η i of contact variables, with nci ≤ 5.

Differently form the classical grasp analysis, in this work the elasticity of the soft
pad has been explicitly modeled (although using a simplified model). This means
that the force along the normal to the contact surface is always of elastic type. The
quantity Δ li, at steady state, is related to the normal contact force fni by the equation
Δ li = fni/ki, being ki the elastic constant of the soft pad of finger i.

Object dynamic manipulation is, in general, a difficult task, since the number of
the control variables (the active joints) is lower than the number of configuration
variables (active and passive joints). However, in some particular situations, it is
possible to simplify the analysis, considering only the kinematics of the system.

To this purpose, assume that force sensors are available on the fingertips and a
force control strategy is employed to ensure a desired constant contact forces fdi

along the direction normal to the contact point. Therefore, Δ li = Δ ldi = fdi/ki can
be assumed to be fixed (Δ̇ li = 0) and equation (32) can be rewritten as

JFi(qi)q̇i + Jηi(η i,qi,Δ li)η̇ i = GT
i (η i,Δ li)υo. (33)

On the basis of (33), it is possible to make a kinematic classification of the
grasp [49].

A grasp is redundant if the null space of the matrix
[
JFi Jηi

]
is non-null, for at

least one finger i. In this case, the mapping between the joint variables of “extended”
finger i and the object velocity is many to one: motions of active and passive joints
of the extended finger are possible when the object is locked.

A grasp is indeterminate if the intersection of the null spaces of [−Jηi GT
i ], for

all i = 1, . . . ,N, is non-null. In this case, motions of the object and of the passive
joints are possible when the active joints of all the fingers are locked.

It is worth noticing that, also in the case of redundant and indeterminate grasps,
for a given object pose and fingers configuration, the value of the contact variables
is uniquely determined. More details can be found in [31].

2.2 Control Scheme with Redundancy Resolution

In the case of a kinematically determinate and, possibly, redundant grasp, a two-
stage control scheme is proposed for the dual arm-hand manipulation system. The
first stage is an inverse kinematics scheme with redundancy resolution, which com-
putes the joint references for the active joints corresponding to a desired object’s
motion —assigned in terms of the homogeneous transformation matrix Td and the
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corresponding twist velocity vector vod— and to the desired normal contact force
fT
d =

[
fd1 · · · fdN

]
. The second stage is a parallel control composed of a PD posi-

tion controller and a PI tip force controller, ensuring the desired object motion and
desired contact forces on the basis of the previously computed joint references.

Namely, in ideal conditions, the joint references computed by the kinematic stage
ensure tracking of the desired object motion, with the desired contact forces. In the
presence of modeling errors and parameters uncertainty, the contact forces may dif-
fer from those planned. Using the force sensors at the fingertips, a force control
strategy is adopted to ensure the desired contact force by modifying the joint ref-
erences computed by the inverse kinematics stage. In principle, the joint references
of the overall manipulation system could be involved; however, it is reasonable to
design a force controller acting only on the joints of the fingers.

In order to derive the equations of the first stage, starting from (32), it is useful
to write the differential kinematic equations of the whole (right or left) arm-hand
system as

J(q)q̇+ Jη(η ,q,Δ l)η̇ = GT(η ,Δ l)ṽo, (34)

where J is the Jacobian of the arm-hand system defined in (26), Jη is a block diag-
onal matrix Jη = diag{Jη1 , · · · ,JηN} corresponding to the vector of passive joints

ηT =
[
ηT

1 · · ·ηT
N

]T
, G is the block diagonal grasp matrix G = diag{G1, · · · ,GN},

Δ lT =
[
Δ l1· · ·Δ lN

]T
and ṽT

o =
[
vT

o · · ·vT
o

]T
.

From (34), the following closed-loop inverse kinematics algorithm can be de-
rived: [

q̇d
η̇d

]
= J̃

†
(qd ,ηd ,Δ ld)G

T(ṽod +Koẽo)+Noσ , (35)

where J̃ =
[
J Jη

]
, the symbol † denotes a right (weighted) pseudo-inverse, ṽT

od
=[

vT
od
· · ·vT

od

]T
, Ko is a diagonal and positive definite matrix gain, ẽT

o =
[
eT

o1
· · ·eT

oN

]T
,

being eoi the pose error between the desired and the current object pose computed

on the basis of the direct kinematics of the extended finger i, and No = I− J̃
†
J̃ is a

projector in the null space of the Jacobian matrix J̃. The quantity Δ ld in (35) is the
vector collecting the finger soft pad deformations Δ ldi = fdi/ki corresponding to the
desired contact force fdi.

Equation (35) is used to compute the joint reference vector qd for the controller
of the second stage.

In view of the above considerations, any kind of joint motion control can be
adopted for the arms of the bimanual manipulation system, receiving as input the
joint references computed by the inverse kinematics scheme. In this chapter, the
joint torques for finger i are set according to the parallel force/position control law

τ i = JT
i (qi)

(
kPΔpi + fdi + kFΔ fni + kI

∫ t

0
Δ fnidτ

)
− kdq̇i + gi(qi) (36)
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where gi(qi) is the vector of the gravity torque of finger i, Δpi denotes the posi-
tion error of finger i between the desired value computed through direct kinematics
starting from qdi

and the current one, and Δ fni is the projection of the force error
along the normal to the object surface at the contact point. The above control law
regulates the contact force to the desired value at the expense of a position error
(i.e., a displacement of the positions of the fingers with respect to the palm), in the
presence of uncertainties.

Since the system may be highly redundant, multiple tasks could be fulfilled, pro-
vided that they are suitably arranged in a priority order, according to the augmented
projection method [1]. Consider m secondary tasks, each expressed by a task func-
tion σ th(q̃) (h = 1, . . . ,m), where q̃ =

[
qT

d ηT
d

]T
. According to the augmented pro-

jection method [1], the control law (35) can be replaced by

˙̃q= J̃
†
(q̃,Δ ld)G

T(ṽod+Koẽo)+
m

∑
h=1

N(JA
th
)J†

th Kth eth , (37)

where Jth is the Jacobian of the hth task, JA
th is the augmented Jacobian, given by

JA
th(q̃,Δ ld) =

[
J̃

T
(q̃,Δ ld) JT

t1(q̃) . . . JT
th−1

(q̃)
]T

.

N(JA
th
) is a null projector of the matrix JA

th
, Kth is a positive definite gain matrix

and eth = σ thd
−σ th is the task error, being σ thd

the desired value of the h-th task
variable.

The augmented projection method can be also adopted to fulfill mechanical or
environmental constraints, such as joint limits and obstacle avoidance (other fingers
or the grasped object). To this aim, each constraint can be described by means of
a cost function, C (q̃), increasing when the manipulator comes close to violate the
constraint. In order to minimize the cost function, the manipulator could be moved
according to the opposite of the gradient −∇T

q̃ C (q̃), that could be considered as
a fictitious force moving the manipulator away from configurations violating the
constraints. In order to include the constraints in (37), an overall cost function CΣ
given by

CΣ (q̃) =∑
cs

γcsCcs(q̃), (38)

is introduced, where γcs and Ccs are a positive weight and a cost function, respec-
tively, referred to the csth constraint.

2.3 Task Sequencing

If the system comes close to violate a constraint, a high level supervisor has to re-
move some secondary tasks and relax enough DOFs to fulfill the constraint [36].
To manage in a correct way removal/insertion of tasks from/into the stack (task
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sequencing), a suitable task supervisor can be designed, based on a three layers
architecture: the lower layer computes the motion variables on the basis of a stack
of active tasks; the intermediate layer determines which tasks must be removed from
the stack in order to respect the constraints; the upper layer verifies if the previously
removed tasks can be pushed back in the stack.

A task must be removed from the stack when the predicted value of the overall
cost function at the next time step is above a suitable defined threshold, C . Let T be
the sampling time adopted to implement the control law and κT the actual time, the
configuration at time instant (κ+ 1)T can be estimated as follows

̂̃q(κ+ 1) = q̃(κ)+T ˙̃q(κ). (39)

Hence, a task must be removed from the stack if

CΣ

(̂̃q(κ+ 1)
)
≥ C . (40)

Once it has been ascertained that a task must be removed from the stack, the problem
is to detect which task has to be removed. To the purpose, several criteria have been
proposed in [36], with the aim of verifying the conflict between the constraints and
each task. In this chapter, the overall cost function gradient is projected in the null
space of the task Jacobian, i.e.,

Pth =
∥∥∥N
(
Jth

)(−∇T
q̃ CΣ

)∥∥∥ h = 1, . . . ,m ; (41)

the task corresponding to the minimum of Pth is then removed, since its projection
into the null-space of Jth should be, ideally, zero to ensure constraint fulfillment.

The tasks removed by the second layer must be reinserted in the stack as soon as
possible, provided that the constraints will not be violated. A prediction of the CΣ
evolution at the next time step has to be evaluated by considering the effect of each
task currently out of the stack, i.e.

̂̃qth(κ+ 1) = q̃(κ)+ J†
th eth(κ) . (42)

Therefore, let C < C be a suitably chosen threshold; a task is pushed back in the
stack if

CΣ

(̂̃qth(κ+ 1)
)
≤ C . (43)

Task sequencing might cause discontinuities in the commanded joint velocities
due to the change of active tasks in the stack. For each task a variable gain ρth is
introduced to achieve a smooth behavior of the controller output

ρth(t)=

{
1−e−μ(t−τ) if the h-th task is in the stack
e−μ(t−τ ′) if the h-th task is out of the stack,

where τ and τ ′ are the time instant in which the task is inserted in the stack and the
time instant in which it is removed, respectively, and 1/μ is a time constant.
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Fig. 13 Manipulation system.

Hence, the first stage control law can be written in its complete form

˙̃q = J̃
†
(q̃,Δ ld)G

T(ṽod +Koẽo)+
m

∑
h=1

ρth N(JA
th
)J†

thKth eth − k∇N(JA
tm+1

)∇T
q̃ CΣ ,

where k∇ is a positive gain.

2.4 Case Study

The presented control scheme has been tested on a manipulation system grasping
a certain object, represented in Fig. 14, composed by two identical planar grippers,
each with two branches and 7 DOFs, resulting in a total of N = 4 fingers and 14
active joints. The idea is that of performing an object exchange.

In its initial configuration, it is assumed that the system grasps the object with
only tips 1 and 2, which are in a force closure condition, since the contact normal
forces are acting on the same straight line [41]. Tips 3 and 4 approach the object
until they reach a condition in which all the tips are in contact with the object. The
main task consists in keeping the object still, while Tips 3 and 4 move in order
to achieve a force closure condition upon the object in a dexterous configuration,
without violating a certain number of limits and constraints. Then, Fingers 1 and 2
can leave the object, simulating in this way an hand-to-hand object passing.

The force control loop ensures that the planned forces are applied on the object.
In this case study, the desired forces for Tips 3 and 4 are negligible, since they have
to slide on the object’s surface so as to reconfigure themselves to reach force closure
condition. The desired forces for Tips 1 and 2 are dynamically planned, on the basis
of the current value of the forces exerted by the fingers, in order to produce zero net
force and moment on the object and to balance disturbances caused by movements
of the other two fingertips.

A sequence of snapshots representing the described task are shown in Fig. 14. It
can be noticed that, in the final configuration (fifth snapshot), Fingers 3 and 4 are
in a force closure condition, since the normals at the contact points act on the same
straight line.
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1 2

3 4

5 6

Fig. 14 Snapshots describing the case study.

Four different subtasks have been considered: the first two, aimed at choosing
the optimal contact points, are related to the grasp quality; the others regard the
manipulability and the distance between the palm and the grasped object.

Unit frictionless equilibrium. The grasp quality can be guaranteed by moving the
contact points on the object surface until the unit frictionless equilibrium is reached.
This condition is a special case of a force-closure grasp; it is satisfied when two
positive indices, called frictionless force (ε f ) and moment (εm) residuals, are zero:
[16], [45]

ε f =
1
2

fT f f =
4

∑
i=1

n̂o
i (44)

εm=
1
2

mT m m =
4

∑
i=1

co
i × n̂o

i , (45)

where i = 1, . . . ,4, and where n̂o
i (ξ i) and co

i (ξ i) are the surface normal and the
position of the ith contact point, respectively, both referred to the object frame. It
has been shown that, for two or more contact points, unit frictionless equilibrium is
a force closure condition for any nonzero friction coefficient [45], [46].

Manipulability. In order to keep the manipulator far from singularities, a manipu-
lability index of each finger can be considered. In detail, the following manipulability
measure, which vanishes at a singular configuration, is adopted for the i-th finger [55].
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wi(qi) =
√

det
(
Ji(qi)JT

i (qi)
)

i = 1, . . . ,4 . (46)

The considered task function is then

σwi =

{
1
2(wi−wi (qi))

2 ifwi (qi)< wi

0 otherwise,
(47)

where wi is a threshold for the task activation. The desired value, σwid , is zero.
Distance between palm and object. Consider the position po

c of the palm centroid
in the object frame and a suitably chosen surface S surrounding the object char-
acterized by the equation F (po) = 0. When the centroid is inside the surface S , a
collision can occur; therefore, the centroid must be moved on the boundary, i.e, in a
position such that F (po

c) = 0. Hence, the task function is the following

σP(po
c) =

{
F (po

c) if the centroid is inside S
0 otherwise.

(48)

In the following the two considered constraints are described.
Joint-limit avoidance. A physical constraint to the motion of the system is im-

posed by the mechanical joint limits. The system configuration is considered safe if
q j ∈ [qj

,q j], for j = 1, . . . ,14, with q
j
and qj suitable chosen values far enough from

the limits. The cost function, directly defined in the joint space, is the following:

CJL(q) =
14

∑
j=1

c j(q j), (49)

c j(q j) =

⎧⎪⎪⎨
⎪⎪⎩

k j e
δ (q j−q j)

2− 1 if q j ≤ q
j

0 if q
j
< q j ≤ qj

k j eδ (q j−q j)
2− 1 if q j > qj,

where k j and δ are positive constants.
Collision avoidance. In order to avoid collisions between the fingers, it is im-

posed that the distance between the fingers be larger than a safety value, ds; hence,
if dii′ denotes the distance between the ith and the i′th finger, the following cost
function can be formalized

CCA(q̃) =∑
i,i′

cii′(q̃), (50)

where the sum is extended to all the couples of fingers,

cii′(dii′) =

⎧⎨
⎩

kii′
ds− dii′

d2
ii′

if dii′ ≤ ds

0 if dii′ > ds,
(51)

and kii′ is a positive gain.
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Fig. 15 Object’s pose errors for each finger.
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Fig. 16 Finger force errors.
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Fig. 17 Force and moment residuals.

The parameters of the elastic contact are: 5 ·104 N/m for the springs elastic co-
efficients, 5 Ns2/ m for the springs damper coefficients and li = 5 · 10−3 m for the
springs rest condition. The parameters used to define the subtasks are chosen as fol-
lows: wi = 2.55 for the manipulability subtask, q

j
=−110o,q j = 110o,k j = 5,δ = 2

for the joint-limit avoidance and kii′ = 1,ds = 5 cm for the collision avoidance. In
the system of Fig. 13 the palm is represented by the ramification point of the right
manipulator. The task has a duration of 4.5 s; a Runge-Kutta integration method,
with a step size of 2 ms, has been used to simulate the system.
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Fig. 19 Time history of the stack status: 1 is the main task, corresponding to keep the object
fixed; 2 and 3 are the force and moment residual tasks, respectively; 4 is the manipulability
task; 5 is the task about the distance between palms and object.

Figure 15 shows the time history of the norm of the object’s pose error for each
finger (position on the left, orientation on the right). Figure 16 shows the evolution
of the force error for each finger: in detail, Finger 1 is much more affected by the
motion of Fingers 3 and 4 than that of Finger 2; the desired value for the normal
force at Tips 3 and 4 is very small and it is impossible to see remarkable variations
in the time history.

Figure 17 shows the force and moment residuals, ε f and εm, respectively. Since
both residuals asymptotically converge to zero, it is clear that Fingers 3 and 4 reach
a force closure condition.

Figure 18 shows the time history of the manipulability measure (left) and the dis-
tance from the palm function σP in (48) (right). The manipulability measure of each
finger is above the limit value wi, while σP is zero when the task is not activated,
since the palm is sufficiently far from the object.

Finally, Figure 19 depicts the time history of the stack status during the simula-
tion. It can be noticed that the main task is never removed from the stack, while the
other tasks are removed when some constraints are near to be violated. When the



248 L. Villani et al.

system is in a safe condition with respect to the constraints, the tasks are re-inserted
in the stack maintaining their previous priorities. Notice that the label assigned at
each task denotes its priority in the stack.

3 Control Using Postural Synergies

Recent works on the application of human hand postural synergies to a robotic hand
demonstrate that understanding human prehension is a promising way to simplify
and optimize the control of multiple-DOF limbs. In order to interact with humans
directly, the robots of the future will require enhanced manipulation capabilities
similar to those of human beings. For this purpose, complex dexterous hands with
advanced sensorimotor skills and human-like kinematics are needed. The human
hand is an excellent example of dexterous bio-mechanical architecture with versa-
tile capabilities to perform different kinds of tasks. The undergoing research in the
field aims at the reproduction of human’s abilities not only by means of anthropo-
morphic design but also by the adoption of human-inspired control strategies. To this
purpose postural synergies have been identified to be the key strategies in planning
and control of the robotic and prosthetic hands of the future.

The studies on grasp taxonomy carried out by scientists such as Napier [42],
Cutkosky [17] and Iberall [29] aim at defining which fingers (and which parts of the
fingers) are used by humans to generate forces on the grasped object. According to
this classification, the hand configuration during grasping operation can be decom-
posed in a limited set of basic postures. On the other hand, recent advances in neuro-
science have shown that control of the human hand during grasping is dominated by
movements in a continuous configuration space of highly reduced dimensionality
with respect to the number of DOFs [52], [37].

In this work, the eigengrasps of the DEXMART Hand (Fig. 1) have been de-
rived using the principal component analysis (PCA) by considering a set of 36 hand
configurations among precision, intermediate and power grasps of common (for hu-
mans) objects contained in a comprehensive human grasp taxonomy [51]. A method
is proposed to derive the postural synergies of the DEXMART Hand from experi-
ments and the kinematic patterns connected to the three predominant eigenpostures.
Moreover, the temporal variation of the three synergies weights is exploited for real-
time execution of the grasps.

From the data analysis it can be argued that the introduction of the third predomi-
nant synergy significantly improves the grasp synthesis and performance, especially
with regard to the improvement of the adduction/abduction motion of the thumb.
Experimental results show that grasp planning and control of the DEXMART Hand
performed by using the three predominant postural synergies allows not only re-
producing the set of postures adopted to derive the eigengrasps with a high level
of fidelity, but also synthesizing and performing a wide set of grasps, namely pre-
cision, intermediate and power grasps of objects with different shapes and dimen-
sions. Indeed, in order to prove the efficiency of the method, the synthesis of new
grasp/object pairs not contained in the reference set of postures used for PCA has
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been realized. The intent here is to imitate the typical attitude of humans in manip-
ulation as well as to cover the entire grasp variety in recently proposed taxonomies,
e.g. [20]. All the data from experiments are obtained using a prototype of the DEX-
MART Hand without sensors. Thus, the motivation of this study is to test the method
for deriving synergies and the potential of the anthropomorphic design of the DEX-
MART Hand to work efficiently in a synergies based framework for grasp planning
and prehension control during reach to grasp.

3.1 Related Work

Recently, the studies on kinematic synergies have collected the interest of many
researchers not only belonging to the field of neuroscience but also working on
control theory and mechanical design of artificial hands. Preliminary studies on the
human hand had pointed out that the combination of tendon coupling and muscle
activation patterns exhibited by humans lead to significant joint coupling and inter-
finger coordination, or, in other words, to postural synergies, that are evidence of
simplified control schemes occurring at neurological level for the organization of
the hand movements.

In [52] the PCA has been used to calculate the postural synergies from real-world
data collected on a variety of human hand postures by means of a data glove. More-
over, the authors show that a wide set of hand postures during grasping operation
evolves continuously within a linear space spanned by few postural synergies that
account for most of the hand configurations variance, without distinguishing be-
tween power and precision grasps. In [37] it is shown that even if higher principal
components account for a small percentage of the variance, they give critical details
not only for the static grasp when the hand adapts to the object shape, but also for
the act of preshaping during the grasp. In [15], [13], [14] the authors extend the
concept of postural synergies to robotic hands showing how a similar dimensional-
ity reduction can be used to derive comprehensive planning and control algorithms
that produce stable grasps for a number of different robot hand models. Synergies
have been used to solve the dimensionality reduction problem in control and coordi-
nation of a 16-DOF underactuated prosthetic hand prototype (CyberHand), in order
to perform the three prehensile forms mostly used in activities of daily living [38].

Other applications have been made in order to simplify the design and analy-
sis of robotic hand structures [10]. In [47] the authors investigate how the number
and types of synergies are related to the possibility of controlling the contact forces
and the object motion in grasping and manipulation tasks. In [22], using the defi-
nition of force-closure for underactuated hands and the definition of grasping force
optimization, the authors investigate the role of different postural synergies in the
ability of obtaining force closure grasps and the quality of the grasps in two case
studies addressing a precision and a power grasp. The manipulability analysis has
been extended to synergy-actuated hands, where compliance is utilized in order to
solve the force distribution problem [48]. The authors introduce new manipulability
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indices which take into account underactuation and compliance. A modified model
of synergies including the mechanical compliance of the hand’s musculotendinous
system has been proposed in [7] in order to account in the synergy model for the
force distribution in the actual grasp. In [59] a synergy impedance controller has
been derived and implemented on the DLR hand.

Recent work on mapping synergies from the human hand to the robot hand has
been addressed in [24]. The proposed mapping strategy between the synergies of a
paradigmatic human hand and a robotic hand is carried out in the task space and it
is based on the use of a virtual sphere. This approach has the advantages to be in-
dependent of the robotic hand and depends only on the specific operation, and thus
it can be used for robotic hands with very dissimilar kinematics. In [23] three syn-
ergies from data on human grasping experiments have been extracted and mapped
to a robotic hand. Then a neural network with the features of the objects and the
coefficients of the synergies has been trained and employed to control robot grasp-
ing. Neural networks have been utilized also in other papers in order to simulate
temporal coordination of human reaching and grasping. In [57] the neural network
model includes a synergistic control of the whole fingers during prehension and the
design of a library of hand gestures.

3.2 Postural Synergies of the DEXMART Hand

Postural synergies describe patterns occurring at the joint displacement level. In
[52], the authors measure a set of static human hand postures by recording 15 joint
angles and, by means of the PCA, they show that the first two principal components
account for >80% of the hand postures. Thus the use of the principal components,
also called postural synergies, holds great potential for robot hands control, imply-
ing a substantial reduction of the grasp synthesis problem dimension with respect to
the case of considering the entire number of DOFs of the robotic hand.

Drawing inspiration from the studies on the human hand motion, and since the
DEXMART Hand presents human-like kinematics, we have found a set of princi-
pal components of the DEXMART Hand configuration space. The study of the two
predominant synergies of the DEXMART Hand was carried out in [21], where ex-
perimental results showed that it is possible to obtain grasp synthesis for a large set
of objects in the case of both precision and power grasps.

More recently, the third synergy has been experimentally obtained and evaluated.
It has been shown that, by exploiting the third synergy, the movement of adduc-
tion/abduction of the thumb covers the whole range of joint limits without violating
the limits of the other joints. This improves the correct opposition of the thumb and
allows synthesizing and executing more precisely complex grasps and reproducing
the set of postures adopted to derive the eigengrasps with higher accuracy with re-
spect to the case in which only two synergies are used.

The first two synergies found for the DEXMART Hand account for >77% of the
hand postures, thus matching quite well the results reported in [52]. Therefore, since
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the three predominant postural synergies account for >85% of the hand postures, a
robot hand control strategy that uses also the third synergy will significantly improve
the grasping performance, as experiments reported in this work show.

The DEXMART Hand kinematics is rather close to that of the human hand.
Hence, with the aim of deriving the PCA, a set of grasps similar to those illus-
trated in [51] has been considered. The choice of the reference set of postures has
been made by taking into account all the most common human grasps considered
in the grasp taxonomy literature. This set is composed of grasps of objects such
as spheres of different dimensions involving a different number of fingers in both
power and precise grasp configuration. Cylindrical grasps have been considered as
well, distinguishing also between different positions of the thumb. Moreover, several
configurations for precise grasps with index and thumb opposition as well as inter-
mediate side grasps have been included. Following the taxonomy adopted in [20], a
comprehensive hierarchical human grasp classification used for the PCA is reported
in Fig. 20. Furthermore, a suitable number of open-hand configurations with dif-
ferent positions of the thumb and of the adduction/abduction fingers joint has been
added in order to find synergies that allow the hand to moves continuously also to-
ward open-hand configurations which are equally important to reach and grasp the
objects. A total amount of n = 36 hand configurations have been evaluated to de-
rive the fundamental eigenpostures. Each grasp configuration of the reference set of
postures has been experimentally reproduced with the DEXMART Hand as close
as possible to a natural human-like grasp, and the vector ci ∈ R

15 of the joint an-
gle values corresponding to each reproduced grasp has been measured. Once the
set of the DEXMART Hand configurations matrix C = {ci | i = 1 . . .n} has been
built, the vector c̄ representing the mean hand position in the grasp configurations
space (zero-offset position) and the matrix F = {ci− c̄ | i = 1 . . .n} of the grasp
offsets with respect to the mean configuration have been computed. The PCA has
then been performed on F and a base matrix E of the postural synergies subspace
has been found. The PCA can be performed by diagonalizing the covariance matrix
of F as

FFT = ES2 ET . (52)

The (h×h) orthogonal matrix E gives the directions of variance of the data, and the
diagonal matrix S2 is the variance in each direction sorted in decreasing magnitude,
i.e. the element on the diagonal represents the eigenvalue of the covariance matrix.

To verify the effectiveness of the synergy-based modeling approach, the percent-
age σ of the total variance of the data described by the first j-th principal compo-
nents can be obtained by means of the following equation

σ j =
j

∑
k=0

sk

/ 15

∑
k=0

sk (53)

where sk is the k-th element of the diagonal of the matrix S2. Since the three principal
components account for >85% of the postures (σ3 = 0.8503), the posture matrix C
can be reconstructed with good accuracy by adopting the matrix
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Fig. 20 Reference set of comprehensive human grasps and open-hand configurations used
for PCA.

Ê = [e1 e2 e3] (54)

composed of the three principal components of E as a base of the robotic hand con-
figuration space, thus allowing the control of the robotic hand motion in a configura-
tion space of highly reduced dimensions with respect to the DOFs of the hand itself.
Each hand grasp posture ci can be obtained by a suitable selection of the weights
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Fig. 21 In this figure, the angular change in degrees for each joint due to a positive uni-
tary variation in α1, α2, and α3 for the first three synergies is represented. The adduc-
tion/abduction, proximal and medial flexion joints are indicated from 1 to 3 for the thumb,
from 4 to 6 for the index finger, from 7 to 9 for the middle finger, from 10 to 12 for the ring
finger and finally from 13 to 15 for the little finger.

[α1 α2 α3]
T ∈ R

3 of the postural synergies. Therefore, the projection ĉi of each
robotic hand configuration ci on the postural synergies subspace can be evaluated as

ĉi = c̄+ Ê

⎡
⎣α1,i

α2,i

α3,i

⎤
⎦ . (55)

In the following, the three fundamental synergies derived for the DEXMART Hand,
i.e. the robotic hand motions spanned by e1, e2 and e3 respectively, are briefly de-
scribed, referring to the minimum and maximum configuration of each synergy as
the hand configurations obtained by means of, respectively, the minimum and max-
imum value of the corresponding synergy weights without violating the joint limits
[21]. When the weights of the synergies are zero, the hand posture corresponds to
the zero-offset position c̄. The vectors of the three synergies and the zero-offset
vector of the DEXMART Hand are reported in Tab. 1.

The circular graphs represented in Fig. 21 are a useful tool for identifying the
joints whose rotations are more involved in each synergy. From left to right, the
angular variations in degrees for each joint due to a unitary variation of the corre-
sponding synergy weight is represented for the first, the second and the third syn-
ergy. It is easy to observe how the adduction/abduction thumb joint motion (Joint 1)
is more involved in the third synergy rather than in the first two. Moreover, in the
third synergy the movement of the index and of the thumb are more engaged than for
the other fingers. This justifies the use of the third synergy in order to grasp objects
more precisely, especially for precision grasps and intermediate side grasps, where
the position of the thumb and of the index is crucial, as the experiments reported in
Sect. 3.4 demonstrate.
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(a) First postural synergy. (b) Second postural synergy. (c) Third postural synergy.

Fig. 22 Representation of the DEXMART Hand postural synergies. On the top of each figure,
from left to right, a sequence of hand postures going form the minimum to the maximum
configuration are represented. On the bottom the lateral views are reported.

3.3 Control with Postural Synergies

In order to perform the desired grasp, the value of the three eigenpostures weights
[α1 α2 α3]

T are computed by projection of the desired grasp posture in the synergies
subspace: ⎡

⎣α1,i

α2,i

α3,i

⎤
⎦= Ê† (ci− c̄) (56)

where Ê† is the Moore-Penrose pseudo-inverse of the base matrix Ê. It is straightfor-
ward to note that the motions shown in Fig. 22(a), 22(b) and 22(c), derived by con-
sidering separately the three synergies, are obtained from (55) by assuming α2 = 0
and α3 = 0 for the first synergy, α1 = 0 and α3 = 0 for the second synergy and
finally α1 = 0 and α2 = 0 for the third synergy.

The temporal value of the weights α1, α2, α3 during grasp operations has to be
chosen in such a way that, starting from the zero-offset position c̄ (i.e. α1 = α2 =
α3 = 0), the hand opens during the reach in preparation for object grasp, and then
closes reaching a suitable shape determined from (56) and depending on the original
grasp configuration ci for the considered object. In the open-hand configuration,
namely c0, all the flexion joint angles are close to zero, and the corresponding values
of α1, α2 and α3 can be determined from (56) by posing ci = c0.

The intermediate values of the synergy weights have been determined by assum-
ing a suitable time interval for the grasp operation (six seconds for the whole reach
to grasp phase, three seconds for both the opening and closing phases) and by lin-
ear interpolation of the α1, α2 and α3 values in the three reference configurations
{c̄, ĉ0, ĉi}.

Three synergies, shown in Figs. 22(a), 22(b) and 22(c) respectively, are now an-
alyzed in detail. With reference to the first postural synergy (column e1 in Tab. 1),
in the minimum configuration the proximal and medial flexion joint angles of all
the fingers are all almost zero and increase their value during the motion toward the
maximum configuration. The adduction/abduction movements are not very involved
in this synergy. In Fig. 22(a) the minimum, zero-offset and maximum configuration
in frontal and lateral view of the first postural synergy are represented. The second
postural synergy (column e2 in Tab. 1) is characterized by a movement in opposite
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Table 1 First three eigenpostures and zero offset vectors of the DEXMART Hand postural
synergies subspace (data in degrees).

e1 e2 e3 c̄[deg]
adduction/abduction 0.0282 0.0235 -0.2454 -0.833

Thumb proximal 0.0674 0.1874 -0.3639 20.5
medial 0.2004 -0.3853 0.6991 34.7

adduction/abduction -0.0266 -0.0647 0.0228 2.92
Index proximal 0.1575 0.2893 0.3648 34.9

medial 0.3220 -0.3494 -0.0735 50.5
adduction/abduction -0.0404 0.0069 -0.0675 -0.694

Middle proximal 0.3405 0.3794 0.0304 41.4
medial 0.2999 -0.2948 -0.3034 42.2

adduction/abduction -0.0374 0.0343 -0.0778 -1.11
Ring proximal 0.3775 0.3977 0.0200 45.5

medial 0.3766 -0.2568 -0.1675 49.2
adduction/abduction 0.0364 -0.0738 0.0720 0.694

Little proximal 0.3892 0.3213 0.1273 48.7
medial 0.4235 -0.2026 -0.1491 51.7

directions of the proximal and medial flexion joints. In this synergy, the adduc-
tion/abduction movements of all the fingers are more involved with respect to the
first synergy for the index and the little finger. In Fig. 22(b) the minimum, zero-
offset and maximum configurations of the second postural synergy are depicted in
frontal and lateral views. In the third postural synergy (column e3 in Tab. 1) the
movement involves especially the index and the thumb. Thanks to this synergy, the
movement of adduction/abduction of the thumb covers the whole joint range with-
out violating other joint limits. This characteristic is crucial because the correct
index/thumb opposition allows increasing the grasp accuracy, and thus achieving
more stable grasps. This justifies the use of three predominant synergies for the
hand control in order to improve the grasp performance. Finally, the excursion of
the angles of adduction/abduction of the middle and ring fingers are quite involved
in this synergy, more than in the first two. In Fig. 22(c) the minimum, zero-offset
and maximum configuration in frontal and lateral views of the third postural synergy
are represented.

3.4 Experimental Evaluation

The hand controller developed in the Matlab/Simulink environment is based on the
RTAI-Linux realtime operating system. The Matlab Realtime Workshop toolbox
has been used for the automatic generation of the real-time application of the DEX-
MART Hand controller. The user interface to the real-time application has been
implemented by means of the Simulink External Mode capabilities, for which the
RTAI-Linux support has been purposely developed.
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Fig. 23 Reproduced power grasps from the reference set of postures using the first three
synergies.

Fig. 24 Reproduced precision grasps from the reference set of postures using the first three
synergies.

In the experiments, starting from the zero-offset position, the hand moves contin-
uously in the synergies configuration subspace and goes in an open-hand configu-
ration. Then, it closes reaching a configuration that depends on the particular grasp
to be performed. During the closing phase, the weights of the three postural syner-
gies are obtained by linear interpolation from those corresponding to the open-hand
configuration to those suitable values unique for each object and computed using
(56).

Experimental results reveal that, by using the three predominant eigengrasps, it
is possible to reproduce several grasp configurations more precisely than in the case
of using two synergies only [21].

The linear combination of the three synergies allows a power grasp of both cylin-
ders and spheres of different dimensions by means of suitable opposition of the
thumb, see Fig. 23.
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Fig. 25 Reproduced intermediate side grasps from the reference set of postures using the
first three synergies.

In Fig. 24, the performance of precise grasp operations is reported considering
different objects, achieving opposition of the thumb and index as well as precise
grasps using from two to five fingers for prismatic and circular objects.

The reproduced intermediate side grasps from the reference set of postures is
depicted in Fig. 25. All the evaluations of the experiments data have been carried out
with the aid of the following tables. Table 2 reports the first three synergy weights
computed by projection of the reference set of postures in the synergies subspace.
In Tab. 3 the absolute value of the angle error of the adduction/abduction joint of the
thumb obtained comparing the reference set of configurations and the reproduced
configurations using two and three synergies are reported. Finally, the average of
the joint errors in the case of using two and three synergies are reported in Tab. 4.
The average of the joint errors is computed using the Euclidean norm

e =
‖ci− ĉi‖

15
.

By observing the first image from the left (pen, Configuration C27 in Tab. 2) of
Fig. 25, it is interesting to note that this posture is very close to the minimum con-
figuration of the third synergy; indeed the weight of the third synergy is high with
respect to the other grasps, and thus the use of the third synergy is essential for this
performance.

By looking at Tab. 3, it is possible to note that the use of the three predominant
synergies reduces the error on the angular position of the adduction/abduction thumb
joint for almost all the 36 configurations with respect to the case in which only two
synergies are used.

In Tab. 3, the grasp configurations executed using only two synergies are marked
with a star, while the new grasp configurations that have been performed success-
fully adding the third synergy are marked with a diamond. This table shows that,
by introducing the third predominant synergy, the joint angle error of the thumb
is reduced for almost all the grasps configurations marked with a star, except for
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C10 (box), C16 (credit card) and C19 (pen). Nevertheless, a global improvement
obtained using also the third synergy is evident observing the average joint angle
errors reported in Tab. 4. Only for the configuration C14 no improvement has been
obtained and this is confirmed by the very small value of the third synergy weight;
this means that the third synergy gives almost no contribution to the variance of this
posture. The improvement on the adduction/abduction thumb joint angle using the

Table 2 Synergy weights of the grasps from the reference set of postures.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

α1 0.90 63.7 64.7 38.0 21.9 42.7 53.1 68.2

α2 -3.47 28.1 -24.5 36.5 -33.6 -5.76 -8.21 -8.66

α3 7.06 3.61 7.95 -21.2 -65.9 -2.33 -4.68 -8.56

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

α1 -30.8 -4.00 58.8 12.3 -7.89 -18.9 8.86 63.7

α2 -12.0 -117 9.39 -63.5 -59.0 8.47 1.36 39.3

α3 21.4 -2.30 44.3 -14.0 27.6 0.15 -23.7 -8.38

Conf. C17 C18 C19� C20� C21 C22 C23� C24

α1 13.7 42.7 67.4 -29.8 -18.4 -30.4 82.8 39.8

α2 44.2 -43.2 28.4 122 -0.103 -30.2 2.58 23.3

α3 -37.6 -13.2 16.0 25.3 17.7 11.2 31.7 18.3

Conf. C25� C26 C27� C28 C29 C30 C31� C32

α1 35.4 65.3 75.9 81.8 -103 -120 26.3 -134

α2 -17.8 1.82 19.8 26.4 -28.0 29.5 -0.933 4.10

α3 27.6 18.8 -68.0 -20.3 27.8 18.7 31.0 -9.15

Conf. C33 C34 C35 C36

α1 -134 -127 -134 -135

α2 4.20 18.3 4.96 3.73

α3 -10.2 -36.5 -5.04 -5.26

third synergy is very clear at least for the configurations marked with a diamond.
For what concerns Configuration C27 (pen, intermediate side grasp), the improve-
ment can be seen mainly in the error average and it is spread on the thumb and index
joints. These results show that the use of the third synergy allows grasping objects
more precisely, especially when the position of the thumb and index is crucial, as
in the case of precision grasps. The confirmation of this is given by the observa-
tion that the configurations marked with a diamond correspond to precision grasps,
except for C27.

In Fig. 26, the distribution of the synergy weights adopted for executing the
grasping experiments is shown in the space of the three predominant eigengrasps,
and an example of a complete hand trajectory computed by linear interpolation of
the synergies weights in the three reference configurations for the grasp of a generic
object (a CD) is reported by the red dashed line. For the sake of clarity, only the
weights of the grasps obtained during the experiments are reported, and only some
of them are named. In this figure the full bullets represent the final configuration
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Table 3 Adduction/abduction thumb joint angle error (in degrees) in the reproduced grasps
from the reference set of postures obtained using two and three synergies.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

two syn 9.11 11.6 9.59 8.89 11.0 9.76 9.53 9.11

three syn 7.38 10.7 11.5 3.69 5.16 9.19 8.38 7.01

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

two syn 8.02 6.30 11.0 12.0 7.56 8.83 10.5 1.88

three syn 2.77 6.87 0.17 8.54 0.77 8.80 4.73 3.94

Conf. C17 C18 C19� C20� C21 C22 C23� C24

two syn 9.41 9.35 8.26 11.2 8.65 7.60 11.6 10.8

three syn 0.186 12.6 12.2 4.97 4.30 4.84 3.79 6.33

Conf. C25� C26 C27� C28 C29 C30 C31� C32

two syn 9.74 8.95 8.23 7.91 5.59 6.48 9.89 14.5

three syn 2.98 13.6 8.46 2.93 1.22 1.88 2.28 12.3

Conf. C33 C34 C35 C36

two syn 14.5 14.0 5.50 5.45

three syn 12.0 5.02 6.74 6.74

Table 4 Average joint angle errors (in degrees) in the reproduced grasps from the reference
set of postures obtained using two and three synergies.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

two syn 1.81 1.84 1.83 2.70 4.89 2.25 2.24 2.12

three syn 1.75 1.82 1.75 2.30 2.16 2.24 2.22 2.05

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

two syn 2.21 1.38 3.48 1.90 2.64 1.63 3.62 1.56

three syn 1.69 1.37 1.84 1.65 1.89 1.63 3.26 1.46

Conf. C17 C18 C19� C20� C21 C22 C23� C24

two syn 4.11 2.01 3.20 2.19 2.06 3.78 2.77 2.34

three syn 3.26 1.81 3.02 1.40 1.68 3.70 1.79 1.99

Conf. C25� C26 C27� C28 C29 C30 C31� C32

two syn 2.95 2.31 4.83 4.27 3.29 4.05 2.60 2.00

three syn 2.31 1.94 1.66 4.05 2.72 3.86 1.57 1.90

Conf. C33 C34 C35 C36

two syn 1.92 4.99 1.99 1.70

three syn 1.80 4.35 1.97 1.66

weights corresponding to the grasps performed also in the previous work [21]. The
triangles represent the final configuration weights corresponding to the objects that
have been grasped thanks to the use of the third synergy also. Finally, the circles rep-
resent the final synergy weights corresponding to the synthesized grasps of different
grasp/object pairs (Fig. 28(b)) not included in the table of Fig. 20 and obtained by
projection in the synergies subspace of the desired configuration of the hand. This
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Fig. 26 The distribution of hand postures in the space of the first three postural synergies
is represented, distinguishing between the object graspable also using the first two synergies
only (full bullets), the objects graspable thanks to the use of the third synergy (triangles), and
the synthesized grasps obtained by projection (circles).

desired configuration is obtained experimentally, moving singularly the joints in or-
der to realize the desired grasp.

In Fig. 27 two grasp configurations executed using both two and three synergies
are represented. From left to right the first pictures of the ball and of the CD are the
ones executed using three synergies. From these pictures, the improvement on the
position of the thumb can be noticed thanks to the introduction of the third synergy
in the hand control.

The grasps realized above show that through the use of three synergies we can
reproduce the matrix of the reference set of postures (Fig. 20) with accuracy greater
than 85%.

The idea now is to extend the method in order to grasp any object not necessarily
contained in the reference table. The advantage of the synergies subspace is that
of simplifying grasp synthesis of common objects using also complex hand shapes
typical of human manipulation.

To accomplish this goal, we have selected grasps of five common objects in
Fig. 28(a). The object/grasp pairs have been chosen so as to cover the entire va-
riety in recently proposed taxonomy [20], namely a power palm grasp, a power
pad grasp, an intermediate side grasp, a precision pad grasp, and a precision side
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Fig. 27 Comparison between two grasps configuration executed using both two and three
synergies. From left to right the first pictures of the ball and of the CD are the ones executed
using three synergies.

(a) Reference set of human grasps.

(b) Synthesized grasps with the DEXMART Hand.

Fig. 28 On the top the reference set of human grasps, not included in the PCA analysis,
covering the entire variety of grasps in recently proposed taxonomies, is depicted. On the
bottom the synthesized grasps realized with the DEXMART Hand using synergies subspace
projection is shown. A power palm grasp, a power pad grasp, an intermediate side grasp, a
precision pad grasp and a precision side grasp are reported from left to right.

grasp. Moreover, the choices have been made with the intent to imitate the typical
modality of human manipulation.The selected grasp configurations are unusual for a
typical application of robotic manipulation as they are carried out by a robotic hand
with high dexterity and anthropomorphism. In fact, they constitute a high standard
for robotic hands currently on the market and designed for applications of service
robotics and prosthetics. On the other hand, the synthesis of this kind of grasps in-
volves complex problems of planning and control. The high number of DOFs and
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complex kinematics similar to that of the human hand is essential for this specific
type of tasks. Despite this, the DOFs have to be managed.

Through a teaching-by-showing technique, the use of synergies allows reducing
significantly synthesis complexity. By singularly guiding the finger joints, the hand
has been carried to the desired grasp configuration and the joint displacement vec-
tor has been recorded. Through the projection of the desired configuration in the
synergies subspace we have derived their weights in the final configuration ĉi. The
weights are subsequently used in the control algorithm that performs motion during
reach to grasp and realize the desired final grasp configuration, see Fig. 28(b).

Table 5 Synergy weights of the grasps in Fig. 28(b) (from left to right).

Conf. G1 G2 G3 G4 G5

α1 84.3 -6.61 16.7 -14.4 42.8

α2 34.8 8.96 20.6 7.93 18.5

α3 -37.3 18.6 -47.1 12.9 -16.2

The weights shown in Tab. 5 indicate the contribution rate of each synergy to
achieve the final configuration. Referring to what we have previously argued about
the use of the third synergy, for the grasp represented in the third image of Fig. 28(b)
(G3), the weight of the third synergy greatly influences the success of the grasp, see
Tab. 5.

The experimental results demonstrate a good choice of the reference set of
postures to retrieve the synergies subspace, and confirm that the planning/control
method based on synergies can work efficiently for every object and grasp choice
throughout a complete taxonomy. During reach to grasp, the hand behaves like a
human hand reaching impressive human like shape using a small effort in planning.

4 Conclusion

In this chapter, some issues related to the control of anthropomorphic sensorised
hands have been addressed. First, the problem of computing online the optimal con-
tact forces to grasp an object has been considered, assuming that these forces may
vary during task execution, thanks to the availability of force/torque sensors at the
fingertips of the DEXMART Hand. The proposed algorithm takes into account the
maximum joint torques that can be provided by the fingers and has been extended
to bimanual manipulation tasks with a limited increase of the computational com-
plexity, thanks to a novel load sharing technique. The other interesting feature of
anthropomorphic manipulation, especially in the bimanual case, is the availability
of redundant degrees of freedom. These have been suitably exploited to design a
multi-priority control approach that allows satisfying a certain number of secondary
tasks, aimed at ensuring grasp stability and manipulation dexterity, besides the main
task corresponding to the desired object motion. Finally, anthropomorphism has
been exploited for the development of a human-like grasping approach based on the
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synergic motions that can be observed in the human hand. In detail, the synthesis
and control of grasping for the DEXMART Hand have been simplified by comput-
ing a reduced configuration subspace based on few predominant postural synergies.
This approach has been evaluated at kinematic level, showing that both power and
precise grasps can be performed using up to the third predominant synergy.
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