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Abstract— Research on bipedal locomotion has shown that
a dynamic walking gait is energetically more efficient than a
statically stable one. Analogously, even though statically stable
multi-wheeled robots are easier to control, they are energetically
less efficient and have low accelerations to avoid tipping over.
In contrast, the ballbot is an underactuated, nonholonomically
constrained mobile robot, upward equilibrium point of whose
body has to stabilized by active controls. In this work, we
derive coordinate-invariant equations of motion for the ballbot.
We present the linearized equations of motion followed by its
controllability analysis. Excluding the rotary degree of freedom
of the ball in the inertial vertical direction, the linear system
turns out to be controllable. It follows that the nonlinear system
is locally controllable and we provide a proportional-derivative
type controller that locally exponentially stabilizes the upward
equilibrium point as well as the translation of the ball. The basin
of attraction turns out to be large in the simulation studies.

I. INTRODUCTION

Contemporary research on robotics has steered towards the
incorporation of robots into everyday lives of humans. Robots
are expected to safely interact with humans both outdoors and
in human environments. This motivation requires robots not
only to be mobile and slim but also tall enough to facilitate
interaction. On the other hand, conventional multi-wheeled
statically-stable robots are typically built to have a low center
of gravity in order to prevent them from easily tipping over.
The satisfaction of these two conflicting requirements urges
the mobile robots to have large, wide, and heavy bases. At the
cost of the necessity to design a more complicated controller,
a more efficient method to tackle the interaction problem is
to utilize dynamically stable robots.

One of the most popular dynamically balancing robots is
the two-wheeled Segway [1]. The ballbot was introduced as
a mobile robot moving on a single spherical omnidirectional
wheel [2], [3]. It is typically slim and as tall as an adult human,
rendering it able to interact with humans while navigating
constrained environments [4], [5].

Even though a variant of this robot has been built by
many laboratories [6], [7], its control framework has been
restricted to the use of classic methods such as linearization
in coordinates and PID controllers [7], [8]. Moreover, many
controllers are typically developed by restricting the dynamics
of the ballbot to a vertical 2D plane and applied to the 3D
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robot by an ad-hoc extension to two distinct vertical planes.
This procedure inevitably ignores the energetic interaction of
the full dynamics of the robot along these planes. Trajectory
planning based on motion primitives has been presented
in [9], while in [10], authors plan a trajectory for the ballbot
equipped with right and left arms. A sliding-mode controller
has also been designed for this system in [11]. For the most
part, the equations of motion of the full dynamics of the
ballbot have been derived in coordinates, which injects a fair
bit of unnecessary complexity into the problem formulation,
requires the use of a symbolic manipulation software and
a decent amount of storage space in the computer [7]. The
only exception to this trend has been provided in [12], where
the authors derive a dynamic model of the ballbot which
additionally assumes that the body has no yaw motion relative
to the ball using Newton’s laws. This lengthy procedure,
which was omitted from the paper due to space considerations,
leads to a dynamical model of the system which is not
particularly easy to work with for control synthesis.

In this paper, we derive the Euler-Lagrange equations of
motion of the full dynamics of the ballbot without resort to
any coordinate system. This yields a compact, yet explicit
representation of the equations of motion, which recover
the 2D dynamics of the ballbot, restricted to a vertical
plane, given in the literature [5]. Taking the variation of
the equations of motion, we derive the linearized dynamics
whose controllability analysis is then performed. This analysis
reveals that controllable subsystem consists of all directions
but the rotation of the ball along the inertial vertical direction.
According to conventional linear control theory, a state-
feedback control law exists that exponentially stabilizes the
origin of the controllable subsystem of the linear system.
Identifying this linear control law as the variation of a certain
nonlinear control law, we are able to locally exponentially
stabilize the upward equilibrium point of the ballbot as
well as the translation of the ball to any desired point.
The development of the controller through the coordinate-
invariant linearization allows us to avoid representation
singularities which typically plague similar controllers relying
on coordinates. Simulation studies indicate that the basin of
attraction of this controller is reasonably large. The main
contribution of this paper is providing an intrinsic and unified
framework to study the dynamics and control of the balancing
system consisting of a heavy top on a spherical wheel.

II. LAGRANGIAN DYNAMICS OF THE BALLBOT

In this section, we present the background information to be
used in the remainder of this paper including the kinematics
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Fig. 1: Ballbot: bodies and frames

and dynamics of the ballbot. Note that, every vector quantity
in this paper is represented in the spatial frame.

A. Background and Kinematics

The skeleton diagram of the ballbot is depicted in Figure 1.
It is constructed by connecting a rigid spherical wheel to
a rigid cylindrical body such that the body is unable to
translate with respect to the ball but is free to move otherwise.
Therefore, the configuration manifold of the ballbot is Q =
R2× SO(3)× SO(3). The inertial frame, denoted by ΣS, is
fixed to a horizontal plane. The spherical wheel is represented
by the frame ΣB and is assumed to have its center of mass
at its geometric center. As a result, the vector from the point
of contact of the sphere with the ground and its center of
mass is given by re3 in the inertial frame. Here, r denotes the
radius of the sphere and throughout the paper en denotes the
nth standard unit vector. The cylindrical rigid body situated
on the wheel is referred to as the “top” and is bestown a
reference frame denoted by ΣT . The center of mass of the
top is assumed to lie on the central axis of its geometrical
shape at a distance l > 0 from the center of the ball. The ball
is assumed to roll without slipping, yielding the well-known
nonholonomic constraint between the time derivative of its
position vector psb and its spatial angular velocity ωsb

(1)ṗsb = rωsb × e3 = rω̂sbe3,

where we introduced the hat ∧ operator, which stands for
the standard isomorphism between R3 and so(3). Its inverse
is denoted by the symbol ∨, known as the vee map [13].

The kinematics of the orientation of the ball and the top
are given in the spatial frame by

(2)Ṙsb = ω̂sbRsb, Ṙst = ω̂stRst .

Using notation and methods from [13], we express the velocity
of the top with respect to the inertial frame Vst in terms of
the velocity of the ball with respect to the inertial frame Vsb
and the velocity of the top with respect to the ball Vbt

(3)Vst = Vsb + AdgsbVbt =

[
vsb + Rsbvbt + psb × Rsbωbt

ωsb + Rsbωbt

]
,

where vbt and ωbt are the linear and angular components of
Vbt . The following calculation shows that the linear velocity
of the top with respect to the ball vanishes.

(4)
V̂bt = ġbtg−1

bt =
d
dt

([
Rbt lRbte3
0 1

])[
R>bt −le3
0 1

]
=

[
ω̂btRbt lω̂Rbte3

0 0

][
R>bt −le3
0 1

]
=

[
ω̂bt 0
0 0

]
,

where gbt is the homogeneous transformation of the top with
respect to the ball. Substituting (4) into (3) yields

(5)Vst =

[
vst
ωst

]
=

[
vsb + psb × Rsbωbt

ωsb + Rsbωbt

]
.

Now, we compute the time derivative of pst :

ṗst = vst + ωst × pst

= vsb + psb × Rsbωbt + ωst × pst

= ṗsb−ωsb× psb+ psb×Rsbωbt +ωsb× pst +Rsbωbt× pst

= ṗsb + ωst × (pst − psb)

= ṗsb + ωst × pbt

= ṗsb + lωst × Rste3.

(6)

Throughout this paper, the dot product of two vectors
is denoted by x · y = xT y for any x,y ∈ Rn. Unless it is
conspicuous from the context, the n× n identity matrix is
denoted by In. Simiarly, the n×m matrix composed of zero
elements is denoted by 0n×m, and it is written as 0n if n = m.
Some properties of the hat map that we freely use in the
remainder are as follows

x̂y = x× y = −y× x = −ŷx,
x · ŷz = y · ẑx = z · x̂y,

x̂ŷẑ = (x · z)y− (x · y)z,

for any x,y,z ∈ R3.

B. Lagrangian

We write the Lagrangian of the ballbot in the spatial frame,
that is, as seen by an observer stationary in the inertial frame.
Note that it is imperative that the rolling constraint (1) not be
inserted into the Lagrangian before its variation is taken. If
the variation of the Lagrangian is taken after the substitution
of the nonholonomic constraints, this yields the vakonomic
equations, which are known to disagree with the dynamics
of rigid bodies. Instead, one should take the variation before
the imposition of the nonholonomic constraints, leading to
the Lagrange-d’Alembert equations, the correct equations
of motion [14], [15]. The inertia of the ball and the top
expressed in the inertial frame Ib, It ∈ Sym2 (Q), respectively,
are positive-definite symmetric (0,2)-tensor fields on Q. Their
respective masses are denoted by mb and mt .

The kinetic energy of the ball is given by the sum of its
rotational and translational kinetic energies, while its potential
energy is zero, since its height with respect to the inertial
frame remains a constant

Kb =
1
2

ωsb · Ibωsb +
1
2

mb ṗsb · ṗsb,

Vb = 0.
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The potential energy of the top is given by the height of its
center of mass from the horizontal times its mass. The kinetic
energy of the top can be written in terms of the rotational
velocity of the top and the translational velocity of the ball
with respect to the inertial frame by substituting from (6):

Kt =
1
2

ωst · Itωst +
1
2

mt ṗst · ṗst

=
1
2

ωst · Itωst +
1
2

mt l2
ωst · ωst +

1
2

mt ṗsb · ṗsb −
1
2

mt l2 (ωst

· Rste3)
2 + mt l ṗsb · (ωst × Rste3) ,

Vt = mtgle3 · Rste3.

Therefore, the Lagrangian is
(7a)L = K −V = Kt + Kb −Vt

(7b)

=
1
2

ωst · Itωst +
1
2

mt l2
ωst · ωst +

1
2

ωsb · Ibωsb

+
1
2
(mb + mt)ṗsb · ṗsb −

1
2

mt l2 (ωst

· Rste3)
2 + mt l ṗsb · (ωst × Rste3)− mtgle3 · Rste3.

C. Euler-Lagrange equations
We derive concise and coordinate-invariant equations of

motion of the ballbot. By restricting the full dynamics to the
x-z plane, we derive the 2D dynamics of the ballbot. This
procedure recovers the 2D equations of motion explicitly
presented in the literature [4], [5].

We freely make use of the following identities when taking
the variation of the Lagrangian (7):

(8a)δR−1 = −R−1
δRR−1,

(8b)δIt = δRstR−1
st It − ItδRstR−1

st ,

(8c)δIb = δRsbR−1
sb Ib − IbδRsbR−1

sb ,

(8d)δω̂st = ˙̂ηst + η̂stω̂st − ω̂st η̂st ,

(8e)δω̂sb = ˙̂ηsb + η̂sbω̂sb − ω̂sbη̂sb,

(8f)δṗsb =
d
dt

(δpsb) .

where we have defined the variation η̂st := δRstR−1
st and

similarly for ηsb. Computing the variation of the Lagrangian

δL =
1
2
(〈δωst , Itωst〉+ 〈ωst ,(δIt)ωst + Itδωst〉) + mt l2 〈δωst ,

ωst〉+
1
2
(〈δωsb, Ibωsb〉+ 〈ωsb,(δIb)ωsb

+ Ibδωsb〉) + (mb + mt)〈δ ṗsb, ṗsb〉 − (ωst

· Rste3)mt l2(〈δωst ,Rste3〉+ 〈ωst ,(δRst)e3〉)
+ mt l(〈δ ṗsb,ωst × Rste3〉

+ 〈ṗsb,δωst × Rste3 + ωst × (δRst)e3〉)
− mtgl〈e3,δ(Rst)e3〉

= 〈(It + mt l2)ωst , η̇st〉+ 〈Ibωsb, η̇sb〉

+ (mb + mt)〈ṗsb,
d
dt
(δpsb)〉 − (ωst · Rste3)mt l2 (〈η̇st +

ηst × ωst ,Rste3〉+ 〈ωst ,ηst

× Rste3〉) + mt l
(
〈 d

dt
(δpsb),ωst × Rste3〉+ 〈ṗsb,

( ˙̂ηst +

η̂stω̂st
)

Rste3〉
)
+ mtgl〈Itωst × ωst + e3 × Rste3,ηst〉.

Next, we take the variation of the action S =
∫

Ldt using
integration by parts with vanishing variations at the endpoints

δS =
∫

δLdt

=
∫
−〈(It + mt l2)ω̇st + (ωst · Rste3)mt l2

ωst × Rste3

− mt l p̈sb × Rste3 + Itωst × ωst − mtgle3 × Rste3,ηst〉

+ 〈−Ibω̇sb,ηsb〉 − 〈(mb + mt)
d
dt

ṗsb − mt l (ω̇st

× Rste3 + ωst × (ωst × Rste3)) ,δpsb〉dt.

Finally, we insert the nonholonomic constraint (1) and its
variational form δpsb = rηsb× e3

δS =
∫
−〈(It + mt l2)ω̇st + (ωst

· Rste3)mt l2
ωst × Rste3 − mtrl (ω̇sb

× e3)× Rste3 + Itωst × ωst − mtgle3 × Rste3,ηst〉
+ 〈−Ibω̇sb − (mb + mt)r2 (ω̇sb × e3)× e3 + mtrl (ω̇st

× Rste3 + ωst × (ωst × Rste3))× e3,ηsb〉dt.

Keeping accordance with the literature, we assume that the
rotation of the ball along the inertial z-axis cannot be actuated
and is always a constant during the motion of the ballbot. We
consider the scenario where the relative orientation between
the ball and the top is actuated as in [5], [7]. In other words,
the control input belongs to the subbundle of the cotangent
bundle of Q, characterized by the annihilator of the relative
angular velocity ωtb: τ′ ∈ {σ∈ so∗(3) : 〈σ,ωtb〉= 0}, after its
identification with R3. We notice that ω̂tb = AdRT

st
(ω̂sb− ω̂st)

and using the dual of this mapping, we find the forced Euler-
Lagrange equations of motion of the ballbot.

(9)M(q)v̇ +C (q,v) + G(q) = B(q)τ′,

where q = (Rst ,Rsb), v = (ωst ,ωsb), τ′ ∈ R3 and

M(q)

=

[
It + mt l2

(
I3 − Rste3 ⊗ eT

3 RT
st
)

mtrlRst ê3RT
st ê

T
3

mtrlê3Rst êT
3 RT

st Ib − (mb + mt)r2ê2
3

]
,

C(q,v) =
[

mt l2 (ωst · Rste3)Rst ê3RT
stωst + Itωst × ωst

mtrlê3ω̂2
stRste3

]
,

G(q) =

[
−mtglê3Rste3

0

]
, B(q) = −

[
I3
ê2

3

]
Rst .

These equations are appended by the rolling constraint (1) to
yield the Euler-Lagrange equations of motion of the ballbot.

III. DYNAMIC PROPERTIES OF THE UNCONTROLLED
BALLBOT

In this section, we discuss the equilibrium configurations,
the repercussions of the rolling constraint regarding LaSalle’s
invariance principle, and the local eigenstructure of the
linearized dynamics.
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A. Equilibrium Configurations

When τ = 0, we can determine the equilibria of the ballbot
using the equations of motion (9) with the rolling contraint (1).
Along with the fact that the inertial z-axis rotation of the
ball is assumed to be stationary, the rolling constraints yields
ṗsb = 0⇐⇒ ωsb = 0. Inserting psb = constant and ωsb = 0
into the equations of motion (9) along with ωst ≡ 0 yields
e3×Rste3 = 0. In other words, the uncontrolled equilibria of
the ballbot are given by

E± = {(psb,Rsb,Rst , ṗsb,ωsb,ωst) ∈ T Q : ωsb = ωst = 0,
ṗsb = 0, psb = const, Rsb = const, Rste3 = ±e3}.

Notice that E+ corresponds to the upward equilibrium point,
that is, the top points in the inertial positive z-direction and
E− corresponds to the downward equilibrium point. Due to
the rolling constraint and the assumption that the ball does not
have an angular velocity along the inertial z-axis, asymptotic
stabilization of the translation of the ball is necessary and
sufficient for the asymptotic stabilization of its orientation by
LaSalle’s invariance principle.

B. Linearized Equations of Motion

We are interested in deriving the local dynamics around
the upward equilibrium set; that is, the local dynamics in a
tubular neighborhood of the set E+. The derivation of these
local equations involves taking the first-order variation of
the nonlinear equations of motion (9). We notice that one
omits the terms in C(q,v) since they are quadratic in ωst .
The terms in the expressions δM(q)v̇ and δB(q)τ vanish due
to the neighborhood in which the linearization is performed.
Therefore, in a first approximation, the terms that remain are

M(q)|Rst =I3δv + δG(q)|Rst =I3 = B(q)|Rst=I3δτ,

which yields the linearized dynamics of the ballbot around
the upward equilibrium point

(10)Mlinη̈ + Glinη = Blinδτ,

where η = (ηst ,ηsb) and

Mlin = M(I3, I3), Blin = B(I3, I3), Glin =

[
mtglê2

3 03
03 03

]
,

and the rolling constraint (1) remains unchanged since it is
already linear.

The local eigenstructure near the upward equilibrium point
can be determined from these linearized dynamics. The
eigenvalues of (10) are the roots of det

[
λ2Mlin +Glin

]
= 0.

Note that there are zero eigenvalues since the last three
columns and rows of Glin are zero. These correspond to the
ball dynamics. There are yet two more eigenvalues at zero,
corresponding to the rotation of the top around the inertial z-
axis. The remaining eigenvalues come in positive and negative
pairs since the remaining terms in the (1,1) block of Glin
yield a negative definite matrix. This implies that the upward
equilibrium point of the ballbot is an unstable saddle. Notice
that the downward equilibrium point of the ballbot turns
out to be a stable equilibrium point and therefore, there
exist a heteroclinic connection between these two equilibria,
providing a nonlocal characterization of the dynamic flow.

IV. CONTROL ANALYSIS

In this section, we derive two distinct feedback control
laws. The first control law is intended to achieve asymptotic
stabilization of the orientations of the ball and the top to the
identity matrix, while the second one targets the asymptotic
stabilization of the orientation of the top to the identity matrix
and the translation of the ball to a desired location on the
plane. From the linearized equations (10), we confirm that
the system is controllable in the quotient R12/span{e6,e12}
of R12, where we have identified the tangent space Tq0T Q at
the upward equilibrium point q0 with R12. The directions that
are excluded to form the quotient vector space correspond
exactly to the rotation and the angular velocity of the ball
along the inertial z-direction . Indeed, we write the linearized
equations (10) in the conventional form

ẋ = Ax + Bu,

where x = (ηst ,ηsb, η̇st , η̇sb), u = δτ, and the various matrices
are given by

A =


03 03 I3 03
03 03 03 I3

D1ê2
3 03 03 03

D2ê2
3 03 03 03

 , B =


03
03
D3

D4ê2
3

 ,
where D2 > 0 and D1,D3,D4 < 0 are 3×3 diagonal matrices.
Due to this form of the state matrix A, it is readily seen that
image(An)⊆ image

([
A A2 A3

])
, for n≥ 4. Consequently,

we can form the controllability matrix from the pair (A,B)
by using only B and the first three powers of A:

C =


0 D3 0 D3D1ê2

3
0 D4ê2

3 0 D3D2ê2
3

D3 0 D3D1ê2
3 0

D4ê2
3 0 D3D2ê2

3 0


It is readily verified that image(C )⊕ span{e6,e12} = R12.
We recognize that the subspace span{e6,e12} consists of
variations of the orientation and the angular velocity of the
ball around the inertial z-axis. We denote by the pair (Ã, B̃)
the controllable subsystem of (A,B), whose corresponding
state and control input are denoted by x̃ and ũ, respectively.

We retain our standing assumption that this motion of
the ball is mechanically constrained. Under this assumption,
the orientation of the top and the ball are asymptotically
stabilized by the control force, τ chosen as follows

(11)
τ = −1

2
Kp

[ (
Rst − RT

st
)∨(

e3eT
3 Rsb − RT

sbe3eT
3
)∨]

− Kd

[
ωst(

ω̂sbe3eT
3 + e3eT

3 ω̂sb
)∨] .

where Kp,Kd ∈R3×6 both of whose 3×3 blocks are symmet-
ric, positive definite matrices. Indeed, in light of the following
calculations
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1
2
(δ(R− R>))|R =I3 =

1
2

(
R>η̂ + η̂R

)
|R=I3 = η̂,

(δω̂)|
ω =0 = ˙̂η,

1
2
(δ(e3e>3 R− R>e3e>3 ))|R =I3 =

1
2

(
η̂e3e>3 + e3e>3 η̂

)
= η̂− η̂z,

(δω̂e3e>3 + e3e>3 δω̂)|
ω =0 = ˙̂η− ˙̂ηz,

where η̂z :=
([

0 0 ηz
]>)∧, it can be verified that the vari-

ation of the control law (11) corresponds to the conventional
state feedback ũ = −Kx̃, which is known to exponentially
stabilize the origin of the controllable subsystem [16]. Con-
sequently, the orientation of the ball and the top are locally
exponentially stabilized by the control law (11).

It is often the case that we do not care about the final
orientation of the ball as long as the orientation of the top
and the translation of the ball are asymptotically stabilized
to their desired locations. We recall from the previous
section III-A that this implies that the orientation of the
ball is asymptotically stable, too. This control objective is
locally achieved by the following control law

τ = −1
2

Kp

[(
Rst − R>st

)∨
0]

− Kd

[
ωst((

ω̂sb − ω̂d
sb

)
e3e>3

)∨
+
(
e3e>3

(
ω̂sb − ω̂d

sb

))∨] ,
(12)

where ωd
sb = e3× fd , with fd =− k

r

[
x− xd y− yd 0

]>, for
some k > 0. The proof of this statement again follows from
the calculations leading to the orientation control law (11)
in addition to the following arguments regarding the rolling
constraint equation (1). We know by the arguments above
that ωsb −−→t→∞

ωd
sb, exponentially fast. Therefore, under the

control law (12), we can write the evolution of the translation
of the ball as

(13)
[
ẋ ẏ ż

]
= −k

r

[
x− xd y− yd 0

]
+
[
εx εy 0

]
,

for some k > 0, where εx,εy are exponentially vanishing
perturbations due the exponentially stable nature of ωst . It
follows from the vanishing perturbation theory [17] that Rst =
I3 and (xd ,yd ,0) is a locally exponentially stable equilibrium
point of the nonlinear system (9).

V. NUMERICAL EXAMPLES

In the subsequent numerical simulations, the inertial
properties of the ballbot are taken from [5].

First, simulation results for the uncontrolled ballbot are
presented. The initial condition is a small perturbation of the
upward equilibrium. More specifically,

Rst(0) = Ry, π

360
Rx, π

180
, ωst(0) = 0,

Rsb(0) = I3, ωsb(0) = 0,
psb(0) = 0,

where the top is perturbed by 1
2
◦

along the pitch and 1◦

along the roll direction from the upward equilibrium. The
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corresponding simulation results are shown in Figure 2. The
two figures on the top left demonstrates the complex energy
transfer between the top and the ball as the ballbot dynamics
evolve. On the top right two plots, we observe the unforced
translation of the ball performing a chaotic motion around
the starting position. The bottom two plots are the amount
of rotation the top and the ball undergo from left to right
respectively.

Second, simulation results are presented that show the
response of the ballbot to a feedback control (12). Even
though this controller is derived from the lienarization of
the system, simulations indicate that it has a large basin of
attraction. Indeed, in this simulation, the initial conditions
given by

Rst(0) = Rz, 2π

3
Ry, 3π

4
Rx, π

3
, ωst(0) = 0,

Rsb(0) = I3, ωsb(0) = 0,
psb(0) = 0,
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Fig. 4: Controlled response: stabilization of the upward
equilibrium and a translational periodic motion

are quite far away from the desired upward equilibrium Rst =
I3 and the desired planar position pd

sb = (−0.25,−0.4,0).
Figure 3 illustrates the asymptotic stabilization. In the top
left two figures, we again see the kinetic and potential energies
of the top and the ball. The kinetic energies go to zero since
the motion exponentially comes to a stop while the potential
energy converges to mt ·g · l. In the top right figure, we see
the convergence of the translation of the ball to the desired
location along with the path the ball takes to get there. In the
bottom left figure, we see the orientation of the top converging
to identity. Finally on the bottom right plot, we see the total
control effort evolution as the stabilization task is carried out.

Finally, we present the trajectory tracking properties of the
same feedback control (12) in Figure 4. Starting from the
initial conditions

Rst(0) = Ry, π

3
Rx, π

4
, ωst(0) = 0,

Rsb(0) = I3, ωsb(0) = 0,
psb(0) = 0,

we set the desired translation of the ball to be (xd(t),yd(t)) =
0.4(cos t

2 ,−sin t
2 ). In this case, the kinetic energies of the

bodies do not vanish and the potential energy of the top
settles at a value a bit smaller than mt ·g · l. This arises due
to a constant orientation error of the top in order to track the
desired circular motion of the ball. There is an expected
tracking error in the translational motion of the ballbot
because the perturbation (13) which exponentially vanishes
in the regulation problem, is only bounded in the tracking
problem. The necessary control effort can be observed in the
bottom left plot.

VI. CONCLUSION

Euler-Lagrange equations that evolve on Q=R2×SO(3)×
SO(3) have been derived for the ballbot. We are able to
analyze dynamic properties and derive control laws that
achieve asymptotic stabilization for a number of purposes

thanks to the particularly compact form of these equations
of motion.

We emphasize that modeling, analysis and computations
can be carried out directly in terms of a geometric coordinate-
free framework as illustrated for the ballbot in this paper.
This fact facilitates the analysis of the dynamics and control
synthesis for complex systems such as the ballbot.

As a future avenue of research, we would like to explore the
basin of attraction of suitable controllers developed through
the coordinate-free framework by performing a Lyapunov-
based analysis. We also intend to further support the developed
theory in this paper by performing experiments after designing
and implementing a ballbot in our laboratory.
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