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Abstract—The problem of robustification of In-
terconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) for underactuated mechan-
ical system vis-à-vis matched, constant, unknown dis-
turbances is addressed in the paper. This is achieved
adding an outer-loop controller to the IDA-PBC.
Three designs are proposed, with the first one being
a simple nonlinear PI, while the second and the third
ones are nonlinear PIDs. While all controllers ensure
stability of the desired equilibrium in spite of the
presence of the disturbances, the inclusion of the
derivative term allows us to inject further damping
enlarging the class of systems for which asymptotic
stability is ensured.

I. INTRODUCTION
Interconnection and Damping Assignment Passivity-

Based Control (IDA-PBC), first introduced in [1], is
a highly popular controller design technique applicable
for equilibrium stabilisation of a wide class of physical
systems. A comprehensive discussion of IDA-PBC may
be found in [2]. Its application for underactuated mechan-
ical systems has been particularly successful as reported,
for instance, in [3], [4], [5], [6]. It is widely recognised
that IDA-PBC designs are robust against parameter
uncertainties and unmodelled dynamics, e.g., passive ef-
fects like friction. However, the (unavoidable) presence of
external disturbances degrades its performance, shifting
the equilibrium of the closed-loop and, possibly, inducing
instability. For this reason the problem of robustification
of IDA-PBC vis-à-vis external disturbances is of primary
importance.

For fully-actuated mechanical systems this problem
has been addressed in [7], where the key idea of adding
an integral action that preserves the port-Hamiltonian
(pH) structure of the system, first proposed in [8], is
exploited. Proposition 5 of [7] presents a dynamic non-
linear controller, including the essential integral action,

1PRISMA Lab, Università degli Studi di Napoli Federico II,
Naples, Italy, and The University of Newcastle, Australia. email:
Alejandro.Donaire@newcastle.edu.au

2Departamento Académico de Sistemas Digitales, Instituto Tec-
nológico Autónomo de México-ITAM, Rio Hondo No.1, 01080, Dis-
trito Federal, México, email: jose.romerovelazquez@itam.mx

3Laboratoire des Signaux et Systèmes, CNRS-SUPELEC,
Plateau du Moulon, 91192 Gif-sur-Yvette, France, email:
ortega@lss.supelec.fr

4 PRISMA Lab, Department of Electrical Engineering and Infor-
mation Technology, University of Naples Federico II, Via Claudio
21, 80125, Naples, Italy, email: bruno.siciliano@unina.it

that ensures global asymptotic stability (GAS) of the
desired equilibrium in spite of the presence of constant
matched disturbances. The case of unmatched and/or
time-varying disturbances is also studied in that paper,
where controllers that ensure input-state-stability are
proposed. In [9] the particular case of constant mass
matrix is considered. It is claimed that adding an integral
action in velocities rejects the matched disturbances.
Unfortunately, as indicated in [7], this claim is wrong.

To the best of the authors’ knowledge, the first attempt
to solve the constant, disturbance rejection problem for
underactuated mechanical systems was published in [10].
The authors consider the simplest case of 2DOF mechan-
ical systems with constant mass matrix and underactu-
ation degree one. Although the main idea is interesting,
there are several unfortunate errors that invalidate the
claims. Indeed, it is easy to show that the proposed con-
trol law—given in equation (27) of [10]—does not satisfy
the matching equations, which is a key step in the design.
Moreover, since it is not possible to inject damping in
all the momentum coordinates, the closed-loop damping
matrix is not full-rank, a critical assumption made in [10]
to claim asymptotic stability.

In this paper we complement the main idea of [10],
that is adding an integral action on non-passive outputs
of underactuated systems, with the developments of [7] to
propose an outer-loop controller that solves the problem
of (constant, matched) disturbance rejection for underac-
tuated n-DOF mechanical systems with arbitrary under-
actuation degree. An interesting feature of the proposed
outer-loops is that they preserve in closed-loop the port-
Hamiltonian (pH) form of the mechanical system. The
design is applicable for systems where the mass matrix is
independent of the unactuated coordinates and the closed-
loop mass matrix is constant. The first assumption is
instrumental for the results reported in [3], [4], [6], where
it is imposed to simplify the kinetic energy matching
equation. In the present work this assumption, as well
as the requirement that the closed-loop mass matrix is
constant, are needed to construct a suitable change of
coordinates under which the integral action is added.
It should be noted that these assumptions are verified
by a large class of underactuaded mechanical systems,
including those considered in [4].

The rest of the paper is organized as follows.
Section II briefly recalls IDA-PBC and formulates its
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robustification problem. The main result of the paper
is presented in Section III. Section IV contains the
example of the acrobot [4]. Future work is discussed in
Section V.

Notation. For x ∈ Rn, S ∈ Rn×n, S = S> > 0, we
denote |x|2 := x>x and ‖x‖2

S := x>Sx. Given a function
H : Rn → R we define ∇H :=

(
∂H
∂x

)>
.

II. ROBUST IDA-PBC
A. Standard IDA-PBC

IDA-PBC was introduced in [5] to control underactu-
ated mechanical systems described in pH form[
q̇
ṗ

]
=
[

0n×n In
−In 0n×n

]
∇H(q, p) +

[
0n×m
G(q)

]
u, (1)

where q, p ∈ Rn are the generalized position and mo-
menta, respectively, u ∈ Rm is the control, G : Rn →
Rn×m with rank(G) = m < n, the function H : Rn ×
Rn → R,

H(q, p) := 1
2 p
>M−1(q) p+ V (q) (2)

is the total energy with M : Rn → Rn×n, the positive
definite inertia matrix and V : Rn → R the potential
energy.

The control objective is to design a static, state-
feedback that assigns to the closed-loop the stable equi-
librium (q, p) = (q?, 0), q? ∈ Rn. This is achieved in
IDA-PBC by matching the pH target dynamics[

q̇
ṗ

]
=
[

0n×n M−1(q)Md(q)
−Md(q)M−1(q) J2(q, p)−Rd(q)

]
∇Hd

(3)
with the new total energy function Hd : Rn × Rn → R,

Hd(q, p) := 1
2 p
>M−1

d (q) p+ Vd(q), (4)

where the desired inertia matrix Md : Rn → Rn×n is
positive definite, the desired potential energy Vd : Rn →
R verifies

q? = arg minVd(q), (5)

and the desired damping matix is defined by

Rd(q) := G(q)KPG
>(q) ≥ 0,

with KP ∈ Rn×n a free positive definite matrix. The
matrix J2 : Rn × Rn → Rn×n is free to the designer and
fulfills the skew-symmetry condition

J2(q, p) = −J>2 (q, p). (6)

The closed-loop system (3) has a stable equilibrium
point at (q?, 0) with Lyapunov function Hd, which veri-
fies

Ḣd = −‖G>M−1
d p‖2

KP
≤ 0.

The closed-loop is asymptotically stable provided that
the output

yd := G>M−1
d p (7)

is detectable [11].
Equating the right-hand sides of (1) and (3) one

obtains the so-called matching equations, which are two
partial differential equations (PDEs) that identify the
assignable Md and Vd, and gives an explicit expression
for the (static state-feedback) control signal denoted
uIDA(q, p).
B. Formulation of the robust IDA-PBC problem

In this paper, we consider the effect of constant,
matched disturbances in the mechanical system (1) that
may represent external forces or an input measurement
bias. We assume that the system (1) is in closed-loop with
an IDA-PBC into which the disturbance propagates and
must be rejected with an outer-loop control—denoted
v—as requested below.
Problem formulation. Given the dynamics[

q̇
ṗ

]
=

[
0n×n M−1 Md

−MdM
−1 J2 −GKPG

>

]
∇Hd +

+
[

0n×m
G

]
(v + d), (8)

with Hd as in (4) and d ∈ Rm. Find (if possible) a
dynamic controller v = β(q, p, ζ), where ζ ∈ Rm is the
state of the controller, that ensures GAS of the desired
equilibrium (q, p, ζ) = (q?, 0, ζ?), for some ζ? ∈ Rm,
even under the action of constant disturbances d.

Remark 1: Notice that the dimension of the dynamic
extension ζ coincides with the one of the input space,
i.e., m. As will be shown below, this choice suffices to
provide a solution to the problem.

III. MAIN RESULT
A. The class of mechanical systems

In this section, we present the main result of the
paper, which requires the following assumption imposed
throughout the rest of the paper.

Assumption A. The input matrix G and the desired
mass matrix Md are constant and the mass matrix
M(q) is independent of the non-actuated coordinates.
Consequently,

G⊥∇q(p>M−1p) = 0,
where G⊥ ∈ R(n−m)×n is a full-rank left-annihilator of G.

Remark 2: The term G⊥∇q(p>M−1p) appears in the
kinetic energy matching equation as a forcing term
that makes the PDE inhomogeneous and introduces
a quadratic term in the unknown Md, rendering very
difficult its solution. In [3] it is also assumed to be zero to
provide an explicit solution of the PDE. In [6] changes of
coordinates are introduced to eliminate, or simplify, this
term. In Proposition 2 of [6] it is shown that a sufficient
condition to eliminate this term is that the Coriolis and
centrifugal forces of the mechanical system enter into the
kernel of G.
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B. Nonlinear PI controller
Proposition 1: Consider the dynamics (8) with J2 = 0

in closed-loop with the PI controller v = β(q, ζ), with

β(q, ζ) = =−K2KIK
>
2 G
>M−1∇Vd −KPKIζ (9)

and
ζ̇=K>2 G

>M−1∇Vd, (10)

with constant matrices KP > 0, KI > 0 and

K2 := (G>M−1
d G)−1 ≥ 0.

P1. Introduce the globally defined change of coordinates
z = ψ(q, p, ζ) given by

z1 = q (11)
z2 = p+GK2KI(ζ − α) (12)
z3 = ζ (13)

The closed-loop dynamics can be written in pH form as
follows ż1
ż2
ż3

=

 0n×n M−1 Md −M−1GK2
−MdM

−1 −GKPG
> 0n×m

K>2 G
>M−1 0m×n 0m×m

∇Hz

(14)
with Hamiltonian

Hz(z) = 1
2z
>
2 M

−1
d z2 + Vd(z1) + 1

2‖z3 − α‖2
KI

(15)

and
α := (KPKI)−1d.

P2. The equilibrium (q, p, ζ) = (q?, 0, α) is stable.
P3. If the output

yD1 = G>M−1
d z2

is a detectable output of the dynamics (14), then
(q?, 0, α) is an asymptotically stable equilibrium.

Proof: First, to prove P1, we differentiate (11) to
obtain

ż1 ≡ q̇,

= M−1z2 −M−1GK2KI(z3 − α),

which allows us to write the first state equation of (14).
We proceed in a similar fashion with (12)

ż2 = ṗ+GK2KI ζ̇

= −MdM
−1∇Vd(q)−GKpG

>M−1
d p+G(v + d)

+GK2KI ζ̇

= −MdM
−1∇Vd(q)−GKpG

>M−1
d p+Gd

+G
[
−K2KIK

>
2 G
>M−1∇Vd −KPG

>M−1
d G

×K2KIζ

]
+GK2KIK

>
2 G
>M−1∇Vd

∣∣∣∣∣
(q,p,ζ)=ψ−1(z)

≡ −MdM
−1∇Vd(z1)−GKPG

>M−1
d z2,

which is the second row of the closed-loop dynamics
(14). Finally, we note that the dynamics of ζ and z3 are
equivalent. Indeed, from the last row of (14), we obtain

ż3 = K>2 G
>M−1∇Vd(z1)

∣∣∣∣∣
z=ψ(q,p,ζ)

≡ ζ̇,

To prove the stability property P2, we consider Hz as
Lyapunov candidate function for the closed-loop (14). Its
time derivative results as follows

Ḣz = −‖G>M−1
d z2‖KP

≤ 0, (16)

which ensures stability of the desired equilibrium. The
assumption that yD1 is a detectable output of the sys-
tem (14) ensures asymptotic stability of the equilibrium
(q?, 0, α) [11], proving property P3.

Remark 3: The controller (9) is a nonlinear PI (around
∇Vd) of the form

v = −KP (q)∇Vd −KI(q)ζ
ζ̇ = ∇Vd

with nonlinear gains

KP (q) := K2KIK
>
2 G
>M−1(q)

KI(q) := KPKIK
>
2 G
>M−1(q).

Remark 4: Notice that in the simplest case when Vd is
quadratic, that is,

Vd(q) = ‖q − q?‖2
S ,

with S > 0, then v is a standard PI around the position
error q − q?. This is the case if the system (1) is linear,
whence the gains KP and KI are constant.

C. First nonlinear PID controller
Now, we extend the previous proposition by adding

damping in the coordinates z1 to relax the detectabil-
ity condition needed to ensure asymptotic stability and
simplify its analysis.

Proposition 2: Consider the dynamics (8) with J2 = 0
in closed-loop with the PID controller v = β(q, ζ, p), with

β(q, ζ, p) =−
(
KPG

>M−1
d GK1G

>M−1 +K1G
>Ṁ−1

)
×∇Vd −K1G

>M−1∇2VdM
−1p−KIζ (17)

and1

ζ̇=G>M−1
d GK1G

>M−1∇Vd +G>M−1
d p, (18)

with constant matrices KP > 0, KI > 0 and K1 > 0.

P1. The closed-loop dynamics can be written in pH form
as follows ż1
ż2
ż3

 =

 −Γ1 M−1 Md 0n×m
−MdM

−1 −GKPG
> −G

0m×n G> 0m×m

∇Hz (19)

with
Γ1 := M−1GK1G

>M−1 ≥ 0,

1To simplify the notation we have used Ṁ−1 to denote d(M−1)
dt

.
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Hamiltonian as in (15) and α := K−1
I d. The states of

(8) and (19) are related by the state transformation z =
ψ(q, p, ζ) as follows

z1 = q (20)
z2 = p+GK1G

>M−1∇Vd (21)
z3 = ζ (22)

P2. The equilibrium (q, p, ζ) = (q?, 0, α) is stable.

P3. If the output

yD2 =
[
G>M−1∇Vd
G>M−1

d z2

]
is a detectable output of the dynamics (19), then
(q?, 0, α) is an asymptotically stable equilibrium of the
closed-loop.

Proof: First, to prove P1, we take the state trans-
formation (20), and we differentiate it with respect to
time to obtain

ż1 = −Γ1∇Vd +M−1z2

= −Γ1∇Vd +M−1
[
p+MΓ1∇Vd

]
≡ q̇,

which allows us to write the first state equation of
(14). We proceed in a similar fashion with the state
transformation (21). By differentiating with respect to
time, we obtain

ż2 = ṗ+GK1G
>M−1∇2Vdq̇ +GK1G

>Ṁ−1∇Vd
= −MdM

−1∇Vd(q)−GKPG
>M−1

d p+G(v + d)
+GK1G

>M−1∇2VdM
−1p+GK1G

>Ṁ−1∇Vd

= −MdM
−1∇Vd(q)−GKPG

>M−1
d

[
p+GK1G

>

×M−1∇Vd

]
−GKI(ζ − α)

∣∣∣∣∣
(q,p,ζ)=ψ−1(z)

≡ −MdM
−1∇Vd(z1)−GKPG

>M−1
d z2,

which is the second row of the closed-loop dynamics
(19). Finally, we note that the dynamics of ζ and z3 are
equivalent. Indeed, from the last row of (19), we obtain

ż3 = G>M−1
d z2

∣∣∣∣∣
z=ψ(q,p,ζ)

≡ ζ̇,

The proof of P2 and P3 mimics the proof of Proposition
1, noting that

Ḣz = −‖G>M−1∇Vd‖2
K1
− ‖G>M−1

d z2‖2
KP
.

Remark 5: The controller (17) differs from the nonlin-
ear PI (9) in two respects. First, it contains a derivative
term with respect to the signal ∇Vd—hence the addition
of the letter D to the PI name. Second, besides the

integral action (around ∇Vd) there is another one around
q̇. Indeed, (17) can be written in the form

v = −KP (q)∇Vd − ζ1 − ζ2 −KD(q)d∇Vd
dt

ζ̇1 = KI1(q)∇Vd
ζ̇2 = KI2(q)q̇

with some suitable defined nonlinear gains KP (q), KD(q)
and KIi(q), i = 1, 2.

Remark 6: It is important to underscore the presence
of the positive semidefinite matrix Γ1 in the (1, 1) block
of the system matrix in (19). This additional damping
term allows—via the addition of the term G>M−1∇Vd in
yD2—to relax the condition P3 for asymptotic stability.
D. Second nonlinear PID controller

We present now a more elaborated nonlinear PID
controller with the following features.
• To simplify the asymptotic stability analysis it adds

damping in coordinates z3, as well as in z1 and z2.
• The assumption of J2 = 0 is obviated, enlarging the

class of closed-loop systems (8) to be considered.
Proposition 3: Consider the dynamics (8) in closed-

loop with the PID controller v = β(q, ζ, p), with

β(q, ζ, p) = −
[
KPG

>M−1
d GK1G

>M−1 +K1G
>Ṁ−1

+K2KI

(
K>2 +K>3 G

>M−1
d GK1

)
G>M−1

]
∇Vd

−

[
K1G

>M−1∇2VdM
−1 + (G>G)−1G>J2M

−1
d

+K2KIK
>
3 G
>M−1

d

]
p

−
(
KPG

>M−1
d GK2 +K3

)
KIζ, (23)

and
ζ̇ =

(
K>2 +K>3 G

>M−1
d GK1

)
G>M−1∇Vd

+K>3 G>M−1
d p, (24)

where K1 > 0, KP > 0, and KI > 0, K3 > 0 and
K2 := (G>M−1

d G)−1.

P1. The closed-loop dynamics can be written in pH form
as follows ż1
ż2
ż3

 =

 −Γ1 M−1 Md −Γ2
−MdM

−1 −GKPG
> −GK3

Γ>2 K>3 G
> −Γ3

∇Hz

(25)
with Hamiltonian as in (15), and the constant gains

Γ1 := M−1GK1G
>M−1

Γ2 := M−1GK2

Γ3 := K>3 G
>M−1

d GK2

α := K−1
I (KPG

>M−1
d GK2 +K3)−1d.
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The states of (8) and (25) are related by the state
transformation z = ψ(q, p, ζ) as follows

z1 = q (26)
z2 = p+GK1G

>M−1∇Vd(q) +GK2KI(ζ − α) (27)
z3 = ζ (28)

P2. The equilibrium (q, p, ζ) = (q?, 0, α) is stable.
P3. If the output

yD3 =

 G>M−1∇Vd
G>M−1

d z2
KI(z3 − α)


is a detectable output of the dynamics (25), then
(q?, 0, α) is an asymptotically stable equilibrium of the
closed-loop.

The proof of proposition 3 follows a similar procedure
as in proof of proposition 2, and thus we omit it due to
space limitation.

Remark 7: Note that the controller in Proposition 1
can be derived from the one in Proposition 3 setting
K1 = 0 and K3 = 0. An extra term needs to be
added to deal with the case when J2 6= 0. Similarly, the
controller in Proposition 2 can be derived from the one
in Proposition 3 by setting K2 = 0 and K3 = Im, and
including a term to handle J2 6= 0.

IV. THE ACROBOT EXAMPLE
In this section we consider the example of the Acrobot

as case study [12]. The IDA-PBC controller used in this
section was borrowed from [4]. It is interesting to note
that all the mechanical systems studied in that paper,
including the Acrobot, belong to the class of systems we
consider in our work.

A. Dynamic model and IDA-PBC
The equation of motion of the acrobot are given by (1)

with n = 1, m = 1,

M(q2) =
[
c1 + c2 + 2c3 cos(q2) c2 + c3 cos(q2)
c2 + c3 cos(q2) c2

]
,

V (q) = g [c4 cos(q1) + c5 cos(q1 + q2)] ,

G =
[

0
1

]
,

where g is the gravitational constant and c1, c2, c3 and
c4 are constant parameters of the system.
The upright equilibrium q? = (0, 0) of the Acrobot

can be stabilised asymptotically with the IDA-PBC con-
troller

uIDA(q, p) = 1
2∇q2(p>M−1p) +∇q2V −

[
k2 k3

]
×

×M−1Vd + kv
k1k3 − k2

2
(k2p1 − k1p2),

where kv > 0 is the damping injection gain, and the
controller gains k1, k2 and k3 with

k1 :=
(

1−
√
c1/c2

)
k2 > 0, k3 >

k2

1−
√
c1/c2

.

The desired mass matrix is

Md =
[
k1 k2
k2 k3

]
> 0,

and the gradient of desired potential energy is given by

∇q1Vd = −K0 sin(q1 − µq2)− b1 sin(q1)−
−b2 sin(q1 + q2)− b3 sin(q1 + 2q2)−
−b4 sin(q1 − q2) + ku(q1 − µq2),

∇q2Vd = K0µ sin(q1 − µq2)− b2 sin(q1 + q2)−
−2b3 sin(q1 + 2q2) + b4 sin(q1 − q2)−
−kuµ(q1 − µq2).

where b1 := g
2k2

(c3c5 ± 2√c1c2c4), b2 := gµ
2k2(µ+1) (c3c4 ±

2√c1c2c5), b3 := gµc3c5
2k2(µ+2) and b4 := gµc3c4

2k2(µ−1) .
Remark 8: It is important to underscore that the IDA-

PBC given above ensures asymptotic stability of the
upward Acrobot position with a domain of attraction
including a region in the lower half plane, i.e., |q1| > π

2 .
That is, the IDA-PBC can swing up the Acrobot without
switching. To the best of the authors’ knowledge this is
the first such result for any pendular system. See [4] for
further details of the controller design and the stability
proof.

B. Nonlinear PID outer-loop: Simulations
First, we observe that G and the desired mass matrix

are constant and G⊥∇q(p>M−1p) = 0, thus Assump-
tion A is verified. Hence to reject the disturbances we
add to the IDA-PBC the outer-loop controller (23), (24)
of Proposition 3 with the parameters K1, K3, KI and
KP to be chosen.

To assess the performance of the proposed outer-loop
controller some simulations were carried out. For the
simulations, we use the values of the model parameters
and the gains of the IDA-PBC provided in [4], that is,
g = 9.8, c1 = 2.3333, c2 = 5.3333, c3 = 2, c4 = 3, c5 = 2,
k1 = 0.3386, k2 = 1, k3 = 5.9073, µ = −0.6019, k0 = 10,
ku = 280 and kv = 12. The gains of the nonlinear PID
controller (23), (24) are as follows: K1 = 0.01, K3 = 25,
KI = 0.01, and KP = kv.

The simulations are performed under the following
extreme scenario: the system starts with the Acrobot
hanging down with zero velocity, that is with initial
conditions q1(0) = −π, q2(0) = 0, p1(0) = 0 and
p2(0) = 0 and without any disturbance. Then, a matched
constant disturbance d = 10Nm is added to the system
at time t = 25s (see Figure 3 ). Under this scenario, we
test the IDA-PBC with and without the nonlinear PID.

Figures 1 shows the time histories of the angles and
angular velocities of the Acrobot when only the IDA-
PBC is used. As expected, the presence of the dis-
turbance produces an error on the regulation task by
shifting the equilibrium of the closed loop from the
desired equilibrium.

In a second test, we simulate, under the same scenario
as before, the Acrobot in closed loop with the IDA-PBC
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Fig. 1. Time histories of the Acrobot angles q1 and q2, and the
velocities q̇1 and q̇2 with the IDA-PBC only.

augmented with the nonlinear PID controller (23), (24).
Figure 2 shows the time histories of the Acrobot’s angles
and angular velocities. It is clear, from the plots, that
the angles converge to the desired position, while the ve-
locities converge to zero. Figure 3 shows the time history
of the controller state ζ, which provides the disturbance
rejection. Note that the plot of ζ(t) in Figure 3 has
been multiplied by the constant a = (KPG

>M−1
d GK2 +

K3)KI , such that a ζ(t) converges to aα = d. The time
history of the control input u is shown in Figure 3, that
is the input produced by the IDA-PBC plus the PID
controller.
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Fig. 2. Time histories of the Acrobot angles q1 and q2, the
velocities q̇1 and q̇2 with the IDA-PBC plus the nonlinear PID.

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

Time [s]

C
o
n
tr
o
lle
r 
s
ta
te
, 
d
is
tu
rb
a
c
e  

−1000

0

500

0 10 20 30 40 50

Time [s]

C
o
n
tr
o
l 
to
rq
u
e
 [
N
m
]

Fig. 3. Time histories of the matched disturbance d, the controller
state ζ multiplied by the constant a = (KPG

>M−1
d
GK2 +K3)KI ,

and the control torque.

V. CONCLUSIONS
In this paper, we presented an outer-loop control

design to improve the robustness of IDA-PBC for under-
actuated mechanical system subject to matched constant

disturbances. First, it is shown that a nonlinear PI en-
sures stability of the desired equilibrium and, under some
additional assumption, also asymptotic stability. To relax
the latter assumption, enlarging the class of systems for
with convergence is ensured, additional damping terms
are added to the closed loop. This leads to the inclusion of
a derivative term in the control law, yielding a nonlinear
PID.

In future work we attempt to relax Assumption A,
that imposes serious constraints on the class of systems
for which IDA-PBC is applicable. Also, in the spirit
of [7], we are considering the presence of matched and
unmatched disturbances simultaneously, which might be
possibly time-varying.

Acknowledgement
This work was partially supported by the RoDyMan

project, which has received funding from the European
Research Council FP7 Ideas under Advanced Grant
agreement number 320992. The authors are solely re-
sponsible for the content of this manuscript.

References
[1] R. Ortega, A. V. D. Schaft, I. Mareels, and B. Maschke,

“Putting energy back in control,” IEEE Control Systems
Magazine, vol. 21, no. 2, pp. 18-33, 2001.

[2] R. Ortega and E. Garcia-Canseco, “Interconnection and
damping assignment passivity-based control: A survey,” Eu-
ropean Journal of Control, vol. 10, no. 5, pp. 432-450, 2004.

[3] J. Acosta, R. Ortega, A. Astolfi, and A. Mahindrakar, “Inter-
connection and damping assignment passivity-based control of
mechanical systems with underactuation degree one,” IEEE
Transactions on Automatic Control, vol. 50, no. 12, pp. 1936-
1955, 2005.

[4] A. Mahindrakar, A. Astolfi, R. Ortega, and G. Viola, “Fur-
ther constructive results on interconnection and damping as-
signment control of mechanical systems: The acrobot exam-
ple,” International Journal of Robust and Nonlinear Control,
vol. 16, no. 14, pp. 671-685, 2006.

[5] R. Ortega, M. Spong, F. Gomez-Estern, and G. Blankenstein,
“Stabilization of a class of underactuated mechanical systems
via interconnection and damping assignment,” IEEE Trans-
actions on Automatic Control, vol. 47, no. 8, pp. 1218-1233,
2002.

[6] G. Viola, R. Ortega, R. Banavar, J. Acosta, and A. As-
tolfi, “Total energy shaping control of mechanical systems:
simplifying the matching equations via coordinate changes,”
Automatic Control, IEEE Transactions on, vol. 52, no. 6, pp.
1093-1099, 2007.

[7] J. Romero, A. Donaire, and R. Ortega, “Robust energy shap-
ing control of mechanical systems,” Systems & Control Letters,
vol. 62, no. 9, pp. 770-780, 2013.

[8] A. Donaire and S. Junco, “On the addition of integral action
to port-controlled hamiltonian systems,” Automatica, vol. 45,
pp. 1910-1916, 2009.

[9] D. Dirksz and J. Scherpen, “Power-based control: Canonical
coordinate transformations, integral and adaptive control,”
Automatica, vol. 48, no. 6, pp. 1045-1056, 2012.

[10] M. Ryalat, D. Laila, and M. Torbati, “Integral ida-pbc and
pid-like control for port-controlled hamiltonian systems,” in
2015 American Control Conference, Chicago, IL, USA, 2015,
pp. 5365-5370.

[11] A. van der Schaft, L2-Gain and Passivity Techniques in Non-
linear Control. Berlin: Springer-Verlag, 2000.

[12] M. Spong, “The swing-up control problem for the Acrobot",
IEEE Control Systems Magazine, 1995; 15(1):49-55.

6603


