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A COMPUTATIONAL TECHNIQUE FOR SOLVING ROBOT END-EFFECTOR TRAJECTORIES INTO JOINT TRAJECTORIES
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The Problem

For any robot with known geometrical parame-
ters, the direct kinematic equation can be writ-
ten as [1]

where the expl i ci t dependence
dropped. In [3,41 it was shown
of type

4 = KJ (_)e

on time has been
that a control law

(5)

x(t) = f(q(t)) (1)

where t is the time variable, x is the (m x 1)
vector of task coordinates, q is the (n x 1) vec-
tor of joint coordinates, and f is a nonlinear
vectorial function, whose structure and parame-
ters are known.

It is well known that the solution of the
inverse kinematic problem, i.e. solving eq. (1),
is of fundamental importance for robot control. A
typical robot task is specified as a trajectory
assigned to the end-effector, say ^(t), R(t),
x(t). This must .be solved into a joint trajec-
tory, say 4(t), q(t), q(t), which constitutes the
reference input to the joint control servos.

The most popular approach to the problem re-
lies on the possibility of finding a closed-form
analytical solution to the robot kinematic equa-
tion. It is recognized that this is true only for
robots having simple geometries [21, such as the
spherical wrist, the elbow manipulator etc. Fur-
ther, the analytical solution is usually
non-unique and sequential, and requires the com-
putation of Atan2 functions.

Besides eq. (1), the other direct kinematic
relation is

A(t) = J(q(t))A(t). (2)

where J = af/as- is the Jacobian matrix.

Previous Work and the Extended Algorithm

This paper originates from a rather different
approach to the problem which is applicable to
any robot structure, whose kinematic equation and
Jacobian are known. The idea, independently pro-
posed in [3' and [4], is to reformulate the in-
verse kinematic problem as a tracking problem for
a simple dynamic system. Let

e(t) = x(t) - f(q(t)) (3)

denote the end-effector error vector between the
desired end-effector configuration vector i(t)
and the dynamic system output vector x(t)=f(ft)).
Since the initial robot configuration can be as-
sumed to be known, it is e(O) = 0. The error dy-
namics results, via (2),

e=x- J(q) (4)

with K a positive definite matrix, guarantees
that the tracking error is bounded and the posi-
tional error (R = 0) is null. Further, the choice
[3]

= J-1(A + Ke) (6)

with m = n for simplicity (otherwise a general-
ized inverse of 3 must be used), guarantees that
the tracking error is identically zero. The joint
velocity vector is also directly generated by
the algorithm. In particular, the control law (5)
has the advantage that the algorithm does not
require any matrix inversion; thus it may over-
come the problem of inverting eq. (1) in the
neighborhood of a kinematic singularity, and it
can be applied to redundant manipulators (m < n).
Further, the general inverse kinematic algorithm
based on eq. (5) has been customized to the spe-
cial cases of manipulators having a spherical
wrist [5], two-by-two intersecting axes at the
end-effector [61, and to the case of redundant
manipulators with a set of constraints on obsta-
cle avoidance and limited joint range [71, dex-
terity and task compatibility [8].

One of the limits of the preceding approach
is that the joint acceleration vector q is not
directly generated. Having also that feature may
be nice for designing a joint space dynamic con-

trol, say computed torque for instance [91. To
this purpose, eq. (2) can be further derived with
respect to time, yielding

x = j(q)f + J(q jq (7)

As a consequence, the 2nd order error dynamics
results

e=i -J (q)i - J(q)S (8)

and a suitable control law is to be sought in
order to guarantee error convergence.

In [4] the extension of the 1st order scheme
based on the control law (5) to a 2nd order
scheme was proposed, but a formal proof of algo-
rithm convergence was not given. Later, in
[10] the control law

-= Jl(q)[-i(_q)4 + K e - KdkI (9)

has been proposed, with K and K positive defi-
nite matrices, which ens1res a timited tracking
error (depending on the shape of B(t)) and a null

positional error. Also in [111 a 2nd ordetr pnc
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tional scheme based on the control law

g = JT(Kp + Kd ) (10)

has been proposed as an alternative scheme for
redundant manipulators which avoids the inversion
gf the Jacobian and the computation of the term
J(q)9 q

A new 2nd order inverse kinematic scheme can
be derived by adopting the same "inverse dynam-
ics" technique which is typical of a resolved
acceleration control £9]. Indeed, the simple con-
trol law

j = J 1(q)[x - J(q)4 + Kpt + KdeJ

leads to the error dynamics equation

e+Ke + Ke = 0.e- Kd6

(11)

(12)

As emphasized above, the initial robot configura-
tion is known, that is e(0) = e(0) = 0. There-
fore, the control law (12) ensures that x(t) ex-
actly tracis the reference trajectory i(t), i.e.
q(t) = f (i(t)) = ~(t). The solution (11) is
easily recognized as improving the so>ution (9),
since they both require the on-line c.mputation
of J 1(q) and J(q)4 and ensure a null positional
error, tut-onlyl 11) guarantees a null tracking
error. The closed-loop scheme based on the con-
trol law (11) is illustrated in Fig. 1.

A final remark concerns with the computation-
al purden and the drawback of matrix inversion
(J C(q) and j(q)4). Adoptihg a solution similar
to the one proposed in £12J for the task space
control would lead to an inverse kinematic algo-
rithm which requires the computation of the
transpose of the Jacobian only, similarly to what
happens for the 1st order solution in (5). In
this case, the control law woul d be formally
analogous to (10), but the matrices K and K
should be properly designed in order to Ouaranteg
that the tracking error be confined to an attrac-
tive region of the error space containing the
origin.

An Example

The first three degree-of-freedom's of a PUMA
robot (9] are considered to apply the proposed
inverse kinematic algorithm. The reference task
trajectory consists of a straight line of 0.5 m
to be executed in 0.5 s, with a sinusoidal veloc-
ity profile; the initial robot configuration (q
= q = q = 0 deg) places the end-effector in th4
reftrenci initi-al position.. K = diag (100 100
100) and K = diag (20 20 20)?P The sampling time
is 2 ms. $he norms- of the error vector and its
derivative are reported in Fig. 2; it can be rec-
ognized that the scheme of Fig. 1 performs the
kinematic inversion of the given end-effector
trajectory, guaranteeing a small tracking error,
essentially due to the discrete-time implementa-
tion, and a null positional error.
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Fig.1 - The 2nd order inverse kinematic scheme
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Fig.2 - Tracking errors: a) position, b) velocity
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