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Abstract

Redundancy offers a potential over nonre-
dundancy in robot design and control in terms of
greater motion/force manipulability. The solution
to the kinematic control problem is crucial for
an effective use of redundancy. The redundant
degree-of-freedom's (DOF's) can be exploited to
meet additional motion/force constraints, such as
dexterity, task compatibility, obstacle avoid-
ance, and limited joint range. The augmented task
space approach is adopted and a recently estab-
lished computational method to solve the con-
strained inverse kinematic problem is proposed.
Finally, a case study for a snake-like robot op-
erating in a constrained environment is developed
and simulation results are inciuded.

Introduction

The design of redundant manipulator geome-
tries has been lately receiving a considerable
interest among roboticists. The key point is the
potential advantage offered by a redundant struc-
ture over a nonredundant structure, in terms of
increased motion/force manipulability. Several
indices of this ability have been recently estab-
1ished in the literature [1-71. In this scenario
the solution to the robot kinematic control prob-
lem appears to be the drawback to overcome for an
effective use of redundant manipulators. In fact,
the extra degree-of-freedom's gained with a re-
dundant design may concur to meet additional con-
straints on the solution to the inverse kinematic
problem. Typical constraints are obstacle avoid-
ance [1-31, limited joint range {41, dexterity
measures (5,61, and task compatibility indices
{7]. This issue is discussed in this paper and
the augmented task space approach is followed
[8,91, that is the task space which determines
the number of redundant DOF's 1is suitably aug-
mented to include the above kinds of constraints.
The solution to the constrained inverse kinematic
problem is provided by a recently established
algorithm which avoids any matrix inversion
[10,11]. An interesting case study is worked out.
This concerns a snake-like planar robot (many
DOF's) operating in a constrained environment; it
is shown how the end-effector can automatically
be positioned inside while avoiding Tink colli-
sion with the boundaries of the environment. Sim-
ulation results illustrate the effectiveness of
the proposed approach.
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Direct Kinematics and Statics

] For any manigulator with known geometrical
dimensions, the direct kinematic equation speci-
fies the relation between the (n x 1) joint vec-
tor q and the (m x 1) task vector x as [12]

()

where f is a continuous nonlinear function which
assocjates to each q a unique x.

_ Differentiating eq. (1) with respect to time
yields ;he relation between the joint velocity
vector g and the task velocity vector X, through
the (m x n) Jacobian matrix J(q) = 3f/3q [12],
i.e.

x = f(q)

(2)

The direct static equation for a manipulator
specifies the relation between the (m x 1)
end-effector force vector y and the (n x 1) joint
torque vector T, through the transpose of the
Jacobian matrix [12], i.e.

= JT(S)I- (3)

If the manipulator is redundant with respect to a
certain task, it is m < n. Assuming that the
Jacobian matrix has full rank m for almost all
q's, one has (n - m) redundant DOF's available.
If for some g the Jacobian has rank less than m,
the manipulator is said to be at a singular con-
figuration. In this configuration the manipulator
loses its ability to move along or rotate about
some direction of the space, meaning that its
manipulability is reduced[12].

Definition of Constraints

] As discussed above, redundancy can be conve-
niently exploited to meet additional motion/force
constraints, so as to obtain greater manipula-
b111ty in terms of manipulator kinematical con-
figuration and interaction with the environment.
To this purpose, the human arm constitutes a tan-
gible model of this ability [1].

If the robot is required to move in a c¢lut-
;efed environment, obstacle avoidance and limited
Joint range represent two types of constraints to
account'for in the trajectory planning and in-
verse kinematics solving. Assume that a manipula-
tor is tracking a desired collision-free



end-effector trajectory. One or more links may
happen to be too close to an obstacle in the
workspace, and a collision is expected (Fig. 1).
Obstacles can be supposed to be modeled as convex
volumes. According to the approach proposed in
[2,3], the distance (¥d_1) between the link can-
didate to a collision (point Qo) and the obstacle
(point c) has to be computed.” This distance has
to be maintained at a value greater than a given
threshold [101. Similarly, in case a joint limit
q. is encountered [4], the current q, has to be
btaked and kept far enough from the mit {101.
The constraints which characterize the manip-
ulator dexterity can be nicely defined by follow-
ing the kineto-static formulation given in
[7]. There the manipulator is viewed as a mechan-
ical transformer with joint velocity and torque
as input and task velocity and force as output.
From eq. {2), it can be said that gt a given con-
figuration g, the unit sphere in R* defined by

g'g< (4)
maps into the velocity ellipsoid in R™ defined by
@@ ¢ 1. (5)

Similarly from eq. (3), it can be said that at a
given configuration g, the unit sphere in R de-
fined by

¢l (6)
maps into the force ellipsoid in R™ defined by
(@9 @)y < 1. (7)

It can be easily proved that the principal axes
(eigenvectors) of the velocity and force
ellipsoids coincide, whereas the axis lengths
(eigenvalues) are in inverse proportions [7].

The volume of the velocity ellipsoid (5) can
be used as an effective means for singularity
avoidance. The manipulability measure at a con-
figuration q is defined as [5

w(g) = [det 3(q)aT(g)1 (8)
and is proportional to the above volume. At a
singular configuration it is obviously w(gq) =
0. A dynamic manipulability measure is also de-
fined in [6]) which is related to the inertia ma-
trix of the manipuiator.

The force ellipsoid is at the basis of the
definition of the condition number [1]

) Al3(q)9"(q)?

“(q) =
¥ @@

where A and X respectively denote the 1ar9est and
the smallest eigenvalues of the matrix JJ . While
a determinant going to zero marks the presence of
a singularity as in (8), the actual value of the
determinant is not a practical measure of the
degree of ill-conditioning. Instead, the condi-
tion number gives a measure of closeness of the
force ellipsoid to a sphere. At an isotropic con-
figuration g it is «(q) = 1, that is the manipu-
lator will exert end-effector forces of equal
magnitude in all directions. Also, on the basis
of the above duality between force and velocity

(9)
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ellipsoids, an isotropic configuration will
present end-effector velocities of equal magni-
tude in all directions.

While the previous two measures quantify the
natural (dexterous) configuration of a manipula-
tor, different indices have been recently pro-
posed in [7] to quantify the compatibility of a
configuration with respect to a given task. In
other words, it seems appropriate to distinguish
between fine manipulation tasks, where accurate
control of small velocity/force is required, and
coarse manipulation tasks, where exertion of
large velocity/force is required. Therefore, the
force transmission ratio along a given direction
u can be defined as the distance from the center
to the surface of the force ellipsoid along u

a(q) = [u'(d(q)d"(g))ul™ (10)

and dually the velocity transmission ratio along
a direction v as

8(g) = v (3(q)aT(g)) T, (11)

It follows that the best direction for effecting
velocity (maximumB ) is also the best direction
for controlling force (minimuma). Dually, the
best direction for effecting force (maximuma ) is
also the best direction for controlling velocity
(minimum B8 ). The two indices {10) and (11) can be
also combined into one compatibility dindex ¢ =
1/2B) as a quantitative measure of good control
exertion) compatibility in a given direction.

The Inverse Kinematic Algorithm

It is well known that the solution of the
inverse kinematic problem, i.e. given x solve eq.
(1} for g, is fundamental in robot manipulator
control. In case of redundant manipulators, the
approach is based on the inversion of the mapping
{2). It can be shown that the general solution to
(2) is given by

g wdf(q)x + 11 - J"(g)d(g)]g'0

where Jt is an (n x m) generalized inverse of
matrix J, I is the (n x n) identity matrix, and
?? is an (n x 1) arbitrary joint velocity vector.
is worth noticing that the solution (12) com-
Foses of the least-square term of minimum norm
121 plus the homogeneous term created by the
projection operator (I - J'J) which selects the
components of §_ in the null space of the mapping
J. Hence, the Vector §, can be used to "locally"
optimize [8] some additional criterion based on
the constraints defined in the previous section
[1-7].

A rather different approach to the inverse
kinematic problem for redundant manipulators is
given by a recently proposed general solution
algorithm which is based on a dynamic reformula-
tion of the problem [13,14]. The method is summa-
rized in the following.

Let § be a solution to (1) relative to a giv-
en end-effector location x. A task error vector e
can be defined between the reference vector X and
the actual vector x computed from the current
joint vector g via eq. (1),

(12)

(13)

(> »

e=x-x



Here the explicit dependence on time is not
shown. However, differentiating with respect to
time yields

é=5%-J(q)q (14)
It can be proved [13,147 that the choice
4= KT(g)e (15)

ensures that the trac§ing error is bounded and
the positional error (X = 0) is zero, by means of
a suitable selection of the positive definite
matrix K. The resulting closed-loop scheme is
illustrated in Fig. 2. Attractive features of the
scheme are that only direct kinematic functions
(f, J) must be computed and the joint velocity
vector § is inherently generated by the algo-
rithm. The solution (15) apparently serves as in-
verse kinematic solution for a general uncon-
strained redundant manipulator. It will be shown
in the following section how constraints can be
embedded in the solution.

Task Space Augmentation

As discussed above, a redundant arm offers
the possibility of setting a number of con-
straints on its manipulation, which make the
structure more versatile. The task augmentation
approach is an alternative strategy to the usual
methods based on the use of generalized inverses,
see eq., (12), for which the constraints are in-
corporated into the homogeneous solution term
[1-7]. Shortcomings of the usual method are that
repetitive motions in the task space need not
involve repetitive paths in the joint space
- 8,9], and kinematic singularities are not avoid-
ed in any practical sense, since the joint veloc-
jty are minimized only instantaneously (8,9].

The main idea of the task augmentation ap-
proach is to impose a number of functional con-
straints in terms of the joint vector, expressed
in the same base frame associated with the manip-
ulator direct kinematic equation (1), as [8]

8 = h{q)

where h(q) is an (r x 1) vector, with r < (n -
m), so as cover at most all redundant DOF's.
Therefore, the augmented kinematic equation re-
sults

(16)

Ix

f
. f(q) (1)
h(q)

whose joint vector solution g not only places the
end-effector at the desired location x, but also
meets the required constraints, specified by h in
implicit form. Also, differentiating both sides
of (12) with respect to time provides the mapping
of the joint velocity vector into the augmented
task velocity vector, i.e.

o

J(q)
= 1 4 (18)
3h(q)

3q

|2¢e
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where the matrix

(19)

3q

is called the augmented Jacobian matrix.

At this point, it is clear that a1l kinds of
constraints defined above can be suitably de-
scribed by the vector h in (17). Further, the
algorithm based on eq. (15) can be successfully
adopted to solve the inverse kinematic problem
for constrained redundant manipulators, on condi-
tion that the matrix J 1is suitably replaced by
the matrix J, defined in (19). The inclusion of
constraints dn obstacle avoidance and limited
joint range 1is described in [10], whereas the
inclusion of constraints on dexterity measures is
reported in [11]. As regards the latter point, in
(8] it has been noticed that the augmented
Jacobian J_ in (19) will present not only the
same singufarities as those of the end-effector
Jacobian J in (2), but also other singularities
due to the addition of the r rows. If the aug-
mented task space error happens to span the null
space of J_, the solution of type (15) gets stuck
and no further improvement of the manipulability
measure is possible, along with the fact that a
position error may occur. In other words, in or-
der to guarantee that the additional constraints
are exactly met, one should ensure that the vec-
tor h in (17) is obtained by projecting the given
constraints onto the null space of the
end-effector Jacobian J [8].

A Case Study

One of the potential advantages of a
kinematically redundant manipulator is the use of
the redundant DOF's to manoeuvre in a complex
workspace and avoid contact with obstacles. As-
sume that a manipulator is tracking a desired
collision-free end effector trajectory in the
task space. If one or more links along its
kinematical structure happen to be too close to
an obstacle in the workspace, a collision can be
expected; then one or more costraints need to be
introduced in order to avoid collisions with the
obstacle.

In order to present the performance of the
proposed inverse kinematic algorithm for con-
strained redundant manipulator, a case study is
developed in the following. A planar seven DOF's
manipulator is considered. The manipulator task
consists of reaching a desired end effector posi-
tion, located inside a constrained environment
which is constituted by a torus. The manipulator
is assumed to start from a joint configuration
which places the end effector outside the torus.

The insertion strategy imposes that once the
joints (that is their cartesian positions) enter
the torus, they are constrained to belong to a
geometric locus that assures the absence of col-
lisions between manipulator links and torus inner
walls. The chosen locus is a circumference of
radius (r+R)/2, concentric with the two circum-
ferences of radii r and R which mark the torus
boundaries in the horizontal plane.



As the degree of redundancy is equal to five,
not more than five constraints can be added to
define the augmented task space. In view of the
described task, forcing to zero the distance be-
tween cartesian joint position ant the geometri-
cal Tocus can be assumed as an actractivity con-
straint; it can be written as:

hi(@) =t x, - f;(@)1 =0, 2,8 (20)

q —(ql,---,qi_l)

where x . represents the torus center coordinates,
and f.74) is the direct kinematic function which
charadterizes the cartesian position of the i-th
joint. In the planar case it can be written as:

i-1

fixlD] 153 Vicy
ii(g)= =
1,8

i-1
Tyl |33 T

where ¢, =cos(q,+..+q, ) and s, =sin(q;+..+q, ). In
relatioﬁkwith the coﬂ%idered q&ructuﬂe, th§ sub-
script i=8 indicates th end effector.

Denoting with p. R® the position of the i-th
joint in a cartesian reference frame, the aug-
mented kinematic equation is

P4 . fi(ﬂ)
g h{q)

where h(g)= &;h.(q) is a vector whose maximum
dimension is five and whose components are h.(g);
it is defined by suitably selecting 'five
actractivity constraints. The scalar §; will be 1
or 0 depending if the corrisponding constraint is
active or not.

It must be emphasized that an insertion
strategy which "pulls" the end effector inside
the torus (by assigning a trajectory to p,) and
successively activates the actractivity con-
straints on the joints 7,6,5... is problematic;
it easily happens that the position constraints
on the end effector and the actractivity con-
straints on the other joints induce contrasting
actions on the joint variables; in other words,
given the complexity of both the task and the
structure of the manipulator, algorithmic singu-
larities can frequently occur, which are due to
the augmented rows in (22). When such a situation
arises, the position error grows and instability
can appear because of the discrete implementation
of the inversion algorithm (15).

Conversely, a more efficient strategy has
been chosen, which "pushes" the manipulator in-
side the torus: the joints are successively driv-
en inside the torus and then the actractivity
constraints are actived simultaneously relaxing
the relative positional constraint. Moreover the
actractivity constraint on the i-th joint is Sugp
posed to be satisfied by only varying the (i-1)
joint variable. Thus the algorithmic singulari-
ties are automatically avoided because the aug-
mented Jacobian matrices will result
block-diagonal.

This procedure will be described following a
1ist of sequential subtasks, each of one brings a
joint external to the torus in the point P (see
fig.3) inside the torus and activates the
actractivity constraint on the joint inside the
torus.

(21)

(22)
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subtask positional actractivity
constraint constraint
pg(ag,95) none
P;{a5.95) hglay)
Pg(a4595) hg(a;),h;(q¢)
6 E3(ql ,Q_z) hs(Q7)1h7(Q6) ’hﬁ(q5)’

hs( Q4) ’h4(Q3)

The notation p.(q. .,q. ,) means that the j-th
joint tr;gﬁctor} t}akk?hdags obtained using only

the (j-1 ~" and the (j-2)°" joint variables; with
gg(iéﬂ ) is denoted that the j-th joint is forced
n

to the geometric locus only by using
the (§-1)™" joint variable.

During the execution of the generic subtask,
the augmented kinematic function is:

E‘i(t) l_ii(ql""q'i-l
_ hi+1(q1,"’qi)
0 B e
t hg(Qys.+487) |
B 81 7 R

(23)

The associated jacobian matrix is obtained by
differentiating the (23) with respect to the
joint variables chosen to satisfy each con-
straint. It results:

J = diag {Ji.ahiﬂ/aqi,..,ahe/aq7 } (24)
where J.=ai./aqi_ aq; , represents the Jjacobian
matrix pelative t% éhé ositioning of the i-th
joint. From (23) and (24?, it can be argued that
the dimensionality of the algorithm progressively
increases from 2 to 7, in passing from subtask 1
to 6. In each subtask algorithmic singularities
cannot occur at all, due to the diagonal struc-
ture of the associated jacobian matrix; the
kinematic singularities, relative to the posi-
tioning task (that is rank J.< 2) can be avoided
by suitably locating the manfbu]ator with respect
to the torus.

In fig.3a the starting configuration is ae-
picted. The manipulator with 7 equal Tlinks of
lenght 1.236 m, is drawned up. The initial condi-
tions on the joints are: q1(0)= 0°, q,(0)= 175°,
q3(0)= -175°," q4(0)= 175°. ag(0)="-1%5°, qg(0):
175°, q,(0)= -175°.

The’ torus, with an inner radius r= 1.75m and
an outer radius R= 2,25m has center x_= 0.618, 4,
in the cartesian frame used in dé§iribing the
kinematic of the manipulator. The frame origin is
assumed to be on the manipulator base.

In Fig.3b an intermediate situation in the
execution of subtask 3 is depicted.

In Fig.3c the final configuration of the ma-
nipulator is shown; the end effector has reached
a point diametrically opposite to P.

In Fig.4 the joint variables are plotted,
corresponding to the accomplishment of the inser-
tion task.

The "extraction" of the manipulator from the
torus can be obtained with a sequence of suitable
subtasks following a strategy inverse with re-
spect to that one previously described.



Conclusions

A new solution to the inverse kinematic prob-
lem for redundant manipulators has been present-
ed. It is based on a closed-loop algorithm whose
convergence 1is assured by choosing a control
function which only involves the computation of
the direct kinematics of the manipulator.

The redundant degree of freedom's can be ex-
ploited to meet additional motion/force con-
straints, such as manipulability, task compati-
bility and obstacle avoidance. The direct
kinematics can be appropriately augmented by in-
cluding the chose mentioned constraints; the re-
sult is an efficient algorithm which enables the
designer to make the most of redundant manipula-
tor versatility.

The problem of fitting a 7 DOF's planar ma-
nipulator in a torus has been considered; it has
been shown that, by conveniently modelling the
insertion strategy, the solution algorithm give
rise to joint variables trajectories which pro-
duce collinsions-free motions inside the torus.
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Fig. 1 - Geometry of a planar manipulator showing
the interaction with the obstacle.

D)

Fig. 2 - The general closed-loop inverse
kinematic scheme,
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Fig. 3a - Case study: starting configuration.
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Fig. 3b - Case study: intermediate configuration
during the execution of subtask 3.
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Fig 3c - Case study: final configuration. Fig. 4 - Joint variable trajectories.
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