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Abstract

This paper presents an approach to designing a con-
trol system with ountput feedback for a lightweight
flexible arm. A éwo-time scale dynamic model is ob-
tained, which allows the adoption of a composite con-
trol strategy. First a slow control can be designed for
the slow (rigid) subsystem, then a fast stabilising con-
trol for the fast (flexible) subsystem. The problem of
the lack of full state measurements concerned with
the fast control design is solved. An output feedback
low order dynamic compensator is designed, whose
optimal gains are computed via a convergent numer-
ical algorithm. Also, a more robust design can be
achieved if a loop transfer recovery procedure is in-
troduced. The design procedure is finally tested by
means of nonlinear simulation results for the flexible
arm.

1. Introduction

Flexible arms may offer long term solutions to ma-
nipulation problems in applications where high per-
formance is not guaranteed by the use of today’s rigid
manipulator arms. Lower arm coet, higher motion
speed, better energy efficiency, safer operation and
improved mobility are only some of the benefits which
are potentially achievable with lighter arms [1]. The
structural flexibility of a lightweight mechanical sys-
tem, however, complicates the modeling and control
problem.

A solution to the modeling problem is given by
the Lagrangian-assumed mode method established by
Book [2] where the flexible motion of a single link
is obtained via a truncated series of assumed mode
shapes [3]. The result is an extended number of gen-
eralised coordinates, and then state variables, to han-
dle for control purposes.

Previous research efforts aimed at designing lin-
ear control systems for active control of flexible vibra-
tions have been produced by Hastings and Book [4],
Cannon Jr. and Schmits [5], Meldrum and Balas [6],
Fukuda [7], Sakawa et al. [8], Bayo [9], and Siciliano

2377

et al. [10]. Nonlinear control strategies, instead, have
been propoeed by Singh and Schy [11], and De Luca
and Siciliano [12].

The approach pursued here is based on a two-
time scale model of the flexible arm, as derived by
Siciliano and Book [13]. This allows the definition
of a slow subsystem corresponding to the rigid body
motion, and a fast subsystem describing the flexible
motion. A composite control strategy [14] is then
applied. First a slow control is designed for the slow
subsystem as it would be done for an equivalent rigid
arm, then a fast control stabilises the fast subsystem.

The main contribution of this work is to address
the problem of the lack of full state availability, as the
rates of the flexible variables cannot be directly mea-
gured. Preliminary work can be found in Siciliano et
al. [15], where a fixed order dynamic compensator for
the fast subsystem is designed [16] and a convergent
numerical algorithm for calculating LQ optimal out-
put feedback gains [17] is used. Here, a loop trans-
fer recovery formulation [18] iz shown to lead to a
straightforward design procedure, with excellent ro-
bustness properties. An example is finally worked out
for the flexible arm in the Flexible Automation Lab-
oratory at the Georgia Institute of Technology and
nonlinear simulation results are presented.

2. Two-Time Scale Dynamic Model

The one link flexible arm of Fig. 1 is considered in
this work. The arm moves on the horizontal plane
and is stiff with respect to torsional effects. This flex-
ible beam can be also regarded as the last member of
an open kinematic structure whose previous links are
rigid. It is believed that analysing first the simple
one link case is the necessary step towards the goal
of designing an effective control system for multi-link
flexible manipulators.

The derivation of the dynamic model follows
from Siciliano and Book {13] and is briefly sum-
marised below. The link is modeled as an Euler-
Bernoulli beam with uniform density. A solution to



the flexible motion of the link can be obtained assum-
ing separability in time and space [3], i.e.

ymt) =3 &E)iln) 1)
i=1

where ¢; is the admissible eigenfunction expressing
the displacement of the s-th assumed mode of link
deflection and §; is the time-varying amplitude of the
i-th mode. The boundary conditions will then deter-
mine the eigenfrequencies of the beam and the ex-
pression of the eigenfunctions.

By considering a finite number m of modal
terms, the dynamic equations for the one-link flex-
ible arm of Fig. 1 can be written in compact matrix
form as
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where 0 is the joint variable, d = (6, ...6m)7, u
is the control torque at the joint location, M is the
inertia matrix, f and g are nonlinear terms, K is the
diagonal spring constant matrix, and F is the con-
stant input matrix. The expressions of these quanti-
ties can be found in [13], where clamped-mass bound-
ary conditions are assumed. In that case, there is no
input force in the equations for the flexible dynam-
ics and the input matrix takes on the particular form
F =diag(1 0 0) [s).

Since the inertia matrix in (2) can be shown to
be positive definite, it can be inverted and partitioned
as follows: .
s

- —
M=t g (%)
with H of order m x m. Eq. (2) then becomes
=—sf-tTg—tTEKd+su {4)

—tf — Hg — HKd + tu. {5)
In order to put the system (4-5) in two-time scale
form, the smallest spring constant of K in (2), say
ki, can be regarded as the inverse of a perturbation
parameter, i.e. 4 = 1/k;. Note that for a given arm
geometry, the limit 4 — O corresponds to the case
of a rigid arm. Then, factoring K as K = X/u and
defining the new variables

Kd (6)

-

yields the equations of the system in two-time scale
form — singularly perturbed system — i.e.
=—af ~tTg—tTs+su
= ~tf —~ Hg — Hs + tu.

(7
(8)
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where it is understood that, without loss of generality,
the terms on the right side of (8) have been scaled by
K, by virtue of the definition in (6).

At this point the typical steps of a singular per-
turbation formulation can be taken [14]. Because of
the presence of u, the system (7-8) exhibits a bound-
ary layer phenomenon in the fast variables 5. For-
mally setting 4 = 0 accomplishes a model order re-
duction from m+1to 1. The differential equations (8)
degenerate into the algebraic tramnscendental equa-

tions
0=-Hz+ta (9)

where the upper bar is used to indicate that the vari-
ables belong to the so-called slow subsystem with
p = 0. It can be seen [13] that f(u =0) = 0 and
gp=0) = 0. Also in (9) H = H(u = 0) and
f = t(u=0). Since H is positive definite, it is possi-
ble to find the distinct quasi steady-state solution &
to (9),

g =Hta. (10)

Using this solution in (7) formally yields the slow sub-
system

(11)

which turns out to be the equivalent rigid system;
1 = myy (u=0).

To derive the fast (boundary layer) subsystem,
the slow variables are treated as constant in the
boundary layer. Defining the fast state variables
sy = 5 — 8, and the fast control u; = u ~ @, the
fast subsystem of (7-8) becomes

§ = (—ETH-! =1
§=(-tH E+s)a-mua

d’sp _

dr?

where r = t/,/4i is the fast time scale.

—Hsz; + tuy (12)

3. Composite Control Design

Under the results of the previous section, the design
of a feedback control for the system (7-8) can be per-
formed on the basis of a composite control strategy
as [14]
> ds 7

w=a(0,) + sy, T2) (13)
with the constraint that us(0,0) = 0, so that uy is
inactive along the solution (10).

Since the slow subsystem coincides with the
equivalent rigid linear system (11), it is straightfor-
ward to design the slow control as it is usually done
for rigid arms, i.e.

8= mua [ + ky(§ — 6) + kp(f - 9)]

which allows the system (11) to track a reference tra-
jectory specified by (4,4,9).

(14)



At this point singular perturbation theory re-
quires that the fast time scale subsystem (12) be uni-
formly stable along the equilibrium trajectory 2 given
in (10). A state space representation of the subsys-
tem (10) can be simply obtained as

i=Ax+bu,

0o 1 0

a-[& o] »-[E]
where xT = [s] (ds;/dr)T], O is the (m x m) null
matrix, O is the {mx 1) null vector and 1is the (mxm)
identity matrix. This is a linear system with m/2
couples of poles on the imaginary axis in the s-plane.
Since the pair (A, b) is completely controllable, a fast
state feedback control of the type

(15a)

(15b)

can be used to arbitrarily place the poles of the sys-
tem (15). The synthesis of the control (16), however,
would require full state feedback. In practice, Hast-
ings and Book [4] showed that the deflection variables
d can be reconstructed, by a simple low cost method,
from strain gage measurements e via
e=Ed (17)
where E is an (m x m) invertible matrix which de-
pends on the mode shapes ¢;. Then s can be com-
puted from (6) and 8 from (10), so that 3; is available.
The rates of the deflection variables, instead, cannot
be measured so that dsy /dr is not available. In order
to overcome this drawback, in the following an output
feedback controller for the system (15) is designed.

4. Output Fast Feedback Stabilization

It is well known that LQR synthesis methods have
guaranteed stability margins. Unfortunately, this
property holds only in the case of full state feedback.
As pointed out above, instead, the stabilising con-
troller for the fast subeystem (15) must be based on
the sole measurements of flexible variables x;. To
this purpose, the fixed order dynamic compensator
formulation introduced by Kramer and Calise [16] is
adopted in the following. This is based on a canonical
form for the compensator representation which pro-
vides a minimal parameterisation. It also excludes
the use of direct feedthrough of the output, which
is undesirable both from the point of view of sensor
noise reduction and robustness.

The output equation for the fast subsystem (15)
can be expressed as

y=0Cx (18a)
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C=[I O] (18b)

where the {m x m) identity matrix I and the (m x m)
null matrix O simply account for the fact that
the variables x; are available, whereas their rates
are not. A fixed order compensator without direct
feedthrough of the output can be formulated in ob-
server canonical form as

uy = -hTw (193)
w =P°w + Iu, (19b)
u, = pets — Ny (19¢)

where 1 is the (p % p) identity matrix, h° is the (1x p)
row vector

hT =0 0 1] (20)
and P is the (p X p) matrix
00 00
10 00
P°=1}0 1 00 (21)
00 ..10

In (19¢) N and py are respectively a (p X m) matrix
and a (p X 1) vector of free parameters.

Defining X7 = [xT wT], §7 = [yT -uy]
and @ = u,, the dynamic compensator design can
be expressed in terms of a standard output feedback
problem for the augmented system

%= A% + Bid (22a)
§=0x (22b)
4 =-Gy (22¢)
A= [3 “;,‘:,"’] = [‘,’] (22d)
&= [g h?,] G=[N pa] (22¢)

where the number of free parameters is minimized
and no sero elements in G appear.

The output feedback problem is then optimized
according to the following augmented quadratic per-
formance index

[--]
J=Es| / (KTQx+aTRA)d  (23)
o
where Q > O, R > O and the expectation is taken
over some initial distribution on Xg.

The necessary conditions for optimality require

the solution of the triple {G,P,L) satisfying:

ATP+PA.+ Q+CTGTRGC =0  (24a)

AL+LAT+X,=0 (24b)



RGCLCT - BTPLET =0 (24¢)
for a stable closed loop system matrix
A, =A-BcC. (25)

In (24b), Xo = Ej%o%I] is the variance matrix as-
sociated with the distribution assumed for the initial
conditions. A convergent algorithm for solving (24a-
24c) can be found in Moerder and Calise [17}.
Fhllstaefeedbackduign'uo&ennnduaﬁm
step in designing an ontput feedback controller. The
most popular a.pprou:h is LQR deugn, which also
yields guaranteed gain and phase margins when mea-
sured at the plant input. If the fixed order compen-
sator is designed to approximate the loop transfer
properties of the full state design, then the closed
loop system should contain a set of eigenvalues and
eigenvectors that approximate those of the full state
design. More importantly, the multivariable gain
and phase margin properties should also be approx-
imated. The return signal in the case of full state
design is —k*Tx, where k* is the optimal gain vec-
tor. Referring to (19a), the return signal in the case of
fixed order compensator design is —h°Tw. Thus, as
in Calise and Prasad [18], the objective in designing
the compeasator should be to minimise
n=kTx-h7Tw (26)
for a suitably chosen input and for sero initial condi-
tions. This naturally leads to selecting the following

index of performance:
7=Bul [ 67+ "Gt
Substituting for y; from (26), and rewriting (27} in

the form of (23) leads to the following expressions for
the weighting matrices:

ey

ktkol' _k.hcﬂ' _
Q = {-h‘k"' hohd’ ] BR= pl' (28)
Selecting the input waveforms as impulses with mag-
nitudes uniformly distributed on the unit sphere, re-
sults in the following expression for Xo:

bbT 0] (29)

%-[%
Eqs. (28) and (29) uniquely define the structure of the
weighting matrices needed for the fixed order com-
pensator design. Note that, unlike the design of a
full order observer, the design of a fixed order com-
pensator depends on the gair matrix from the full
state design step. Moreover, this gain matrix is not
implemented as a part of the final controller.
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5. Numerical Results

A case study is carried out to illustrate the effective-
ness of the design procedure. The actual fiexible arm
is the prototype in the Flexible Automation Labora-
tory at Georgia Tech. The modal series (1) is trun-
cated at m = 2 and clamped-mass boundary condi-
tions are imposed. The dymamic parameters of the
model (2) can be found in {13]. It is worth reporting
here that the first two modal frequencies of the beam
are at 2.12 and 14.3 Hs, respectively. Also the pertur-
bation parameter in (6) is u = 0.012 which justifies
the two-time scale separation.
According to the results of Section 3, a compos-
ite control is designed first [13], composed of a slow
control as in (14) and a fast full state feedback control
as in (16). The linear feedback gains are chosen as
kp = 6.25 and k, = 5, corresponding to a double pole
at —2.5 for the error dynamics of the rigid model.
This choice preserves the time scale separation be-
tween the slow and the fast subsystems. Then, a full
state feedback design is carried out to damp the two
fast modes. In the open loop, both modes have sero
damping with natural frequencies at 0.94 and 6.07 Hy
in the fast time scale. A standard LQR design is un-
dertaken with the following feedback gains:
kI, =037 -568] kI, =[-247 -110}
which result in damping ratios of 0.4 for both modes.
Next, an output fast feedback design with second
order ‘compensation — p = 2 in (19) — is carried
out using the procedure described in Section 4. The
above full state feedback gains are used to compute
Q in (28), while p = 1.0x10™%. The design results
in a damping ratio of 0.35 for both modes, with the
gain matrix in (22¢) being

2.91x10% 7.13x10t]"

—2.98x 104
G- [ 8.07x 10°

~7.72x 10* 5.98x 10’]

Figs. 2 and 3 illustrate the recovery of the full state
design by means of ordinary magnitude and phase
Bode plots. These have been obtained by taking the
return signals X*Tx and h°T'w as outputs for the two
designs respectively. By comparing the two figures,
it can be recognised that the output feedback design
attempts to recover the robustness of the full state de-
sign. In particular, the full state design has near 90°
of phase margin. The output feedback controller has
approximately 70° of phase margin at high frequency,
and 9dB of gain margin at low frequency.

In the following, two sets of simulations are pre-
sented. In the first set a step change from § = 0° to
§ = 90° is assigned, whereas in the second set a joint
motion is commanded from 6(0) = 0° to 6(T) = 90°

with 6(t) = 90[1 + sin(360¢/T — 90)] [*/s], 0< ¢ < T,



where T = 2s. In order to test the robustness of
the two controllers designed above, the whole nonlin-
ear model has been simulated. A fifth order Runge-
Kutta-Merson method has been implemented to in-
tegrate the nonlinear differential equations (2) at a
sampling rate of 5x10~3s. The results are shown in
Figs. 4 through 9, where (#1) refers to full state feed-
back design and {#2) to output feedback design. The
tip deflection reported in Fige. 5 and 8 has been com-
puted via eq. (1) evaluated at n = L. It can be rec-
ognised that the performance of the output feedback
controller favarably compares with the performance
of the full state feedback controller.

In the case of step response, the steady-state
joint position is reached by both controllers in a time
of 2s and the tip deflection damps out in about the
same time. A high frequency component appears in
the control torque for the output feedback controller.
This effect can be attributed to the high value of the
natural frequency of the second order compensator.
In practice, decreasing the design parameter p in (28)
provides increased damping of the flexible modes, at
the expense of increasing the natural frequency of the
compensator [18], so that a trade-off must be sought.

On the other hand, in the case of trajectory
response, the tracking is achieved by both con-
trollers with satisfactory damping of the tip deflec-
tion. Therefore, it can be concluded that the above
design procedure represents an effective tool to design
output feedback controllers for flexible arms, and can
be also extended to multi-link arms. It can be shown,
indeed, that the fast subsystem resulting from a two-
time scale formulation always turns out to be a linear
system parameterised in the slow state variables [13],
for which an output feedback dynamic compensator
can be designed in the same formal way as illustrated
in this work.

6. Summary

A two-time scale approach has been developed for the
control of a flexible arm. The main drawback con-
cerned with this kind of composite control, namely
the rates of flexible modal deflections are not mea-
surable, has been successfully overcome by designing
a fixed low order dynamic compensator in an output
feedback setting. A more robust design is achieved if
a loop transfer recovery procedure is adopted. The
simulated example with a nonlinear model of a flexi-
ble arm illustrates the effectiveness of the formulation
and overall design methodology.
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