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Abstrct

This paper preanb an appch to de ing a con-
tl syvtem with output feedback for a lightweight
flexbk arm. A two-time wale dynamic model is ob-
tained, which allows the adoption of a composite con-
trol strategy. First a slow control can be deigned for
the slow (rigid) subysem, then a fast stabiliing con-
trol for the fast (flexble) subsytem. The problem of
the lack of hfu state measurements concerned with
the fast control design issolved. An output feedback
low order dynami compenntor is deigned, whose
optimal gains am computed via a convergent numer-
ical algoithmz. Alo, a more robust design can be
acheved if a loop transer recovery procedure is in-
toduced. The deign procedure is finaly tsed by
means ofnoinew imulation results for the flexibk
arm.

1. Introduction

Flexible arms may offar long term solution to ma-
nipulation problems in applicat where high per-
formance is not guaranteed by the ue of today's rigid
maip arms. Lower arm cost, higher motion
speed, better energy efficiency, saer operation and
improved moblity are on some of the benefits whih
are potentialy achievable with lighter arms [1J. The
structural flexibility of a lightweight mchan cal sys-
tem, however, complicates the modeling and control
problem.

A solution to the modeling problem is given by
the Lagrangian-asumed mode method established by
Book 121 where the flexible motion of a single link
is obtained via a truncated seies of asumed mode
shapes [3). The result is an extended number of gen-
alized coordinates, and then state variables, to han-

dle for control purposes.
Previous research efforts aimed at de g lin-

ear control sytems for active control of flexible vibra-
tions have been produced by Hastings and Book [4],
Cannon Jr. and Schmis [51, Meldrum and Bales [61,
Fukuda 171, Sakawa et al [81, Bayo 191, and Siciliano

et aL 110). Nonlinew control srategies, insead, have
been proposed by Singh and Schy [11], and D Luca
and Sidiliano 1121.

The approach pursued here is based on a two-
time sle model of the flexible arm, as derived by
Siciliano and Book [13). This allows the definition
of a slow subMstem corresponding to the rigid body
motion, and a fast subsystem describing the flexible
motion. A composite control strategy 1141 is then
applied. First a slow control is designed for the slow
subsystem as it would be done for an equivalent rigid
arm, then a fast control stabilizes the fast subsystem.

The main contribution of this work is to address
the problem of the lack of ful state availability, as the
rates of the flexible variables cannot be directly mea-
sured. Preliminary work can be found in Siciliano et
al. [151, where a fixed order dynamic compenator for
the fast subsystem is designed 1161 and a convergent
numerical algorithm for calculating LQ optimal out-
put feedback gains [171 is used. Here, a loop trans-
fer recovery formulation [181 is shown to lead to a
straightforward design procedure, with excellent ro-
bustness properties. An example is finally worked out
for the flexible arm in the Flexible Automation Lab-
oratory at the Georgia Institute of Technology and
nonlinear simulation results are presented.

2. Two-Time Scale Dynamic Model

The one link flexible arm of Fig. 1 is considered im
this work. The arm moves on the horizontal plane
and is stiff with respect to torsional effects. This flex-
ible beam can be also regarded as the last member of
an open kinematic structure whose previous links are
rigid. It is believed that analyzing first the simple
one link case is the necessary step towards the goal
of designing an effective control "stem for multi-link
flexible manipulators.

The derivation of the dynamic model follows
from Siciliano and Book 113) and is briefly sum-
marized below. The link is modeled as an Euler-
Bernoulli beam with uniform density. A solution to
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the lexibk moto of the link can be obtained amm-
ig separability in time and space [31, ie.

s4qt) = Zs(t)du() (1)
i=1

where O, is the admisbe enfuction expresing
the displacement of the 'th assmed mode of link
deflection and is the time-varying amplde of the
i-th mode. The boundary conditions will then deter-
mine the eigenfrequencie of the beam and the a-
pression of the eigenfunctions.

By considering a fizite number m of modal
terms, the dynamc equations for the one-link fex-
ible arm of Fig. 1 can be written in compact matrix
form s

M(9,d) [a] + [ I,d) ]+[d]=hs (2)

where 9is the joint variable, d= (61 *. 6,, )T,U
is the control torque at the joint location, M is the
inertia matrix, f and g ae nonlinear terms, K is the
diagonal spring constant matrix, and F is the con-
stant input matrix. The expressions of these quanti-
ties can be fond in 113], whee clamped-mass bound-
ary conditions are mumed. In that case, there is no
input force in the equations for the fexible dynam-
ics and the input matrix taes on the particulr form
F=diag(1 0 ... 0)[5s.

Since the inetia matrix in (2) can be shown to
be positive definite, it can be inverted and partitioned
asfolkwr: - --

where it is understood that, without ls of generality,
the term on the right side of (8) have been scaled by
K, by virtue of the definition in (6).

At thi point the typical steps of a singular per-
turbation formulation can be taken [14]. Because of
the prence of p, the system (7-8) exhibits a bound-
ary layer phenomenon in the fast vables s. For-
mal etting p = 0 accomplishes a model order re-
duction from m+1 to 1. The differential equations (8)
degenerate into the algebraic transcendental equa-
tions

O= -t + to (9)
whaee the upper bar is used to indicate that the vari-
ables belong to the s-called slow ubsysem with
p= 0. It can be seen[131 that f(p=0)=Oand
g(;=) = Also in (9) A = H(p=0) and
t = t(p=0). Since H is positive definite, it is possi-
ble to find the distinct quasi steady-stae solution I
to (9), i =3-If. (10)
Using this solution in (7) formally yield the slow sub-
"Stem

~l1i = (-Fll si + I)a = - fimhl, (11)

whih turns out to be the equivalent rigid system;
thi = ml(p=0).

To derive the fast (boundary layer) subsstem,
the slow variables are treated as constant in the
boundary layer. Defining the fast state viables

= - 3, and the fas control us = u- - 0, the
fast subsystem of (7-8) becomes

M-1= tI

with H of orde m x m Eq. (2) then becomes

i = -sf - tTg - tTKd +sU
d= -tf - Hg-Hd + tu.

(3)
(12)dr2 E;2 + ts;

(4)
(5)

In order to put the sstem (4-) in tn-time scalk
form, the smalest spring constant of K in (2), say
kl, can be regarded as the inver of a perturbation
parameter, i.e. p = 1/ki. Note that for a given arm
geometry, the limb p-1 0 corresponds to the case
of a rigid arm. Then, factoring K X / and
defining the ew variables

s :=-ld (6)

yiels the equations of thk system in tn-time cle
form - g ly pertbed systm - i

where r = t//li is the fat time scale.

B. Composite Control Deign

Under the results of the previous section, the desig
of a feedback control for the system (7-8) can be per-
formed on the basis of a composite control sategy
a [141

(13)

with the constraint that uj(O,O) = 0, so that uf is
inactive along the solution (10).

Since the slow subsytem cocid with the
equialent rigid linea system (11), it is sightfor-
ward to desig the slow control as it is- usually done
for rigid ms, i.e.

0= mnll + k,(I - i) + (I -D)J (14)

i = -sf - tTg - tTs + aJ
pi= -tf - Hg - HB+ tu.

(7)
(8)

wih aows the System 111) to track a reference tra-

jecti7 speciid by (1,1,1).
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At this point sngular perturbation theory re-
quires that the fat time sale subsystem (12) be uni-
formly stable along the equdibrium trajectory 3 given
in (10). A state space repreentation of the subsys-
tem (10) can be simply obtained as

* = Ax + buf (15a)

where the (m x m) identity matrix I and the (m x m)
naU matrix 0 simply account for the fact that
the variables sf are available, whereas their rates
are not. A fixed order compensator without direct
feedthrough of the output can be formulated in ob-
server canonical form a

A= [% ] b=[] (15b)

wherxT = Tf (dsj/dr)T ,Ois the (mx m) null
matrix, 0 is the (mx 1) aull vector and I is the (mxim)
identity matrix. This is a linearsystem with m/2
couples of pols on the imaginary axis in the e-plane.
Since the pair (A, b) is completely controllable, a fast
state feedback control of the type

u-k7Sf +kT dZfuf=kpf '¼i7r

u, =-hOTw
* = P°w + Inp
up,= P.,tt -Ny

(lOa)
(19b)
(19c)

where I is the (p xp) identity matrix, h° is the (1 x p)
row vector

ho =[O ... 01°

and Pr is the (p x p) matrix

(16)

can be ued to arbitrarily place the poles of the sys-
tem (15). The synthesis of the control (16), however,
would require full state feedback. In practice, Hast-
ings and Book [4] showed that the deflection variables
d can be reconstrcted, by a simple low cost method,
from strain gage measurements e via

e = Ed (17)

where E is an (m x m) invertible matrix which de-
pends on the mode shapes Oj. Then s can be com-
puted from (6) and s from (10), so that zf is available.
The rates of the deflection variables, instead, cannot
be measured so that dzf/dr i not available. In order
to ov&come this drawback, in the follwing an output
feedback controllr for the system (15) is deigned.

4. Output Fast Feedback Stabilliation
It is well known that LQR sythesis methods have
guaranteed stability margins. Unfortunately, this
property holds only in the case of full state feedback.
As pointed out above, instead, the stabilbing con-
troller for the fast subystem (15) must be based on
the sole measurements of flexible variables sf. To
this purpose, the fixed order dynamc compensator
formulation introduced by Kramer and Calse [16] is
adopted in the folbowing. This is based on a canonical
form for the compensator representation which pro-
vides a minimal parameterization. It also excludes
the ue of direct feedthrough of the output, which
is undesirable both from the point of view of sensor
noise reduction and robustness.

The output equation for the fast subsystem (15)
can be expresed as

(20)

Io o ... o o'
1 o ... o o

o o ... 1 Oj

(21)

In (l9c) N and p., we respectively a (p x m) matrix
and a (p x 1) vector of free parameters.

Defining jT = [xT wTJ, yT = [YT -uf I
and fi = up, the dynam compensator design can
be expressed in terms of a standard output feedback
problem for the augmented sytem

x = Ai + Bf

6= -Gj

e-[gC ho]

(22a)
(22b)
(22c)

G=[N p.]

(22d)

(22e)

where the number of free parameters is minimized
and no zero elements in G appear.

The output feedback problem is then optimed
according to the folowing augmented quadratc per-
formance index

J = Er.[f (iTQ +nTR)dtj (23)

where Q > 0, R,> 0 and the expectation is taken
ove some initial distribution on*x.

The necessary conditions for optimality require
the solution of the triple (G,P,L) satisfying:

ArP + PAc + Q +CTGTRGC = 0 (24a)

A.L + LAT +±ko = Oy = Cx (18a) (24b)
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RGrCLCT =pLCO7 o

for a stable coed loop system matrix

A, = AL- fGC4

(24c)

(25)

In (24b), o = Eiogl is the viance matrix as-
sociated witi the distnbutia aum ed for the initial
conditions. A convergent algorithm for solving (24&.
24c) can be found in Moeder and Cause 1171.

FNl state feedback design is often used as a first
step in desing an output feedbak controller. The
most popula approach is LQR design, which also
yields guaranteed gain and phae margins when mea-
sured at the plant input. If the fixed order compen-
saor is designed to ap loop ftanser
properties of the full ste desig, then the cloed
loop system should contain a set of eigenvalues and
egenvocto that approxkiat thoe of the full state
design. More importatly, the multivariable gain
and phame margin propeties should also be approx-
imated. h return sigal in the cas of ful state
design s -k*Tx, where c is the optimal gain vec-
tor. Referring to (19a), the reu signal in the c of
fixed order compensato degn is -h w. Thus, as
i Caie and Prsd [18g the objective deng
the comp sor ould be to minimise

xi = k*"x- hCw (26)
for a suitably chose input and forw iitil CO
tions. Tis leads to selcting-the following
index of pdormanw

(27)

Substig for it from (26), and rwiting (27) ai
the form,of (23) lads to the following expess for
th weit mat

5. NumerIcl Results

A case study is caried out to i tae he eective-
nessof the design procedue. The ctual Sexible arm
is the prootp in the Flexible Automation Labora-
tory at Georgia Tech. The modal seies (1) is trun-
cated at m = 2 and camped-ma boundary condi-
tions are impoeed. The dynamic parameter of the
model (2) can be fond in 1131. It is worth reporting
here that the first two modal frequencies of the beam
are at 2.12 and 14.3 Hi, repectivy. Also the pertur-
bation parameter in (6) is = 0.012 whLih justifies
the two-time sale separat-on.

Accrding to the results of Section 3, a compos
ite control is designed first 1131, composed of a slow
control a in (14) and a fast ful state feedbak control
as in (16). The linear feedback gain are choen as
p= 8.25 and k =5, correonding to a double pole

at -2.5 for the error dynam of the rigid model.
This choke preserves the time cale separation be-
tween the slow and the fast substems. Then, a fu
state feedback desig is carried out to damp the two
fast modes. In the open loop, both mode have sero
dampig with natural frequencie at 0.94 and 6.07 Hs
in the fas timescale. A standard LQR desip isun-
daen with the folowing feedback gain:

kp =1=0.37 -5.681 k= [-2.47 -1.101

whic resulk in damping ratios of 0.4 for both mode.
Next, an output ft feedback desig with seond

ordercompeaio-p = 2 i (19)--is carid4
out using the procedure describein Secto 4. The
above fu stat eedbakas are ud to comueA
Q in (28), whie p = 1.0x 10- The desig rults
in a amp ratio of 0.35 for botk modes, wi te
gain matrix (22e) being

[-298x104 -7.72X I& 5.98x 103
6 8.07x 103 2.91x 102 7.13x 1001

R= L (28)

Seleding the input wavefms as impule with mag-
nitudes uiormly disributed on the it sphee, re-
sIts in the folling expressio for Xg:

[bbTX,==0 0 . (29)

Eqs. (28) and (29) uniquely define the strctwe of the
wighting ma needed for the fixed order com-
pensato desin Note that, lie the design of a
ful order obseve, the design of a fixed order com-
penst dpends on the gain matrix from the full
sate deign ep. Moeov, this gain matix is not
implemented as a part of the final controllr.

FIgs 2 and 3 s the recovy of the fulelsat
desig by means of orinary magnitude and phas
Bode plots. These hav bee obtained by taking the
return ga kt*x ad h tw - outputs for the two
designsrespectivey. By comparing the two figure,
it can be rcogised that the output feedbak desig
attempts to recover the robusnes of the fullsate de-
sig. In particula, the full ste desip has near 90'
of phase margin. The output feedback controller has
approximately 700 of phase margin at high frequeny,
and 9dB of gain margin at low frequency.

In the follwing, two sets of are pre-
seted. In the first set a step change from 1=0 to
i = 900 is assged, whereas in the second set a joint
motion is commanded from 1(0) = 00 to 1(T) = 900
with 1(t) = 90[1 + sin(360t/T-90)) [*/s], 0. t S Ts
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where T = 2s. In order to test the robustness of
the two contllers designed above, the whole nonlin-
ear model has been simulated. A fifth order Runge-
Kutta-Meron method has been implemented to in-
tegrate the nonlinear differential equations (2) at a
sampling rate of 5 x 10- s. The reults ae shown in
Figs. 4 through 9, where (#1) refers to ful state feed-
back design and (#2) to output feedback design. The
tip deflection reported in Fi. 5sand 8 has been com-
puted via eq. (1) evaluated at q = L. It can be rec-
ognised that the performance of the output feedback
conulle favorably compares with the performance
of the full state feedback controller.

In the case of step response, the steady-state
joint position is reached by both controllers in a time
of 2a and the tip deflection damps out in about the
same time. A high frequency component appears in
the control torque for the output feedback controller.
This effect can be attributed to the high value of the
natural fiequency of the cond order compensator.
In practice, decreasing the design parameter p in (28)
provides increased damping of the flexible modes, at
the expens of increasing the natural frequency of the
compensator [181, so that a trade-off must be sought.

On the other hand, in the cae of trajectory
response the tracking is achieved by both con-
trollers with satisfactory damping of the tip deflec-
tion. Therefore, it can be concluded that the above
design procedure represents an effective tool to design
output feedback controllers for flexible arms, and can
be also extended to multi-link arms. It can be shown,
indeed, that the fast subsystem resulting from a two-
time scale formulation always turns out to be a linear
system parameterised in the slow state variables [13],
for which an output feedback dynamic compensator
can be designed in the same formal way as illustrated
in this work.

6. Suxmmary
A two-time scale approach has been developed for the
control of a flexible arm. The main drawback con-
cerned with this kind of composite control, namely
the rates of flexible modal deflections are not mea-
srable, has been successfully overcome by designing
a fixed low order dynamic compentor in an output
feedback setting. A more robust design is achibeved if
a loop transfer recovery procedure is adopted. The
simulated example with a nonlinear model of a flexi-
ble arm illustrate the effectiveness of the formulation
and overall design methodology.
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