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Abstract-The kinematic control problem for a sys-
tem of two cooperative 6-dof manipulators is addressed
in this paper. First, a kinematic model of the system is
obtained which allows a clear description of the task in
terms of absolute and relative variables. Then, a suit-
able inverse kinematics scheme is designed to compute
the joint variable trajectories correspon-ding to a given
trajectory for the above cooperative task variables. The
effectiveness of the technique is demonstrated by two
case studies for two cooperative PUMA 560 robot ma-

nipulators; one regards a typical coordinated motion
for the system, the other is aimed at illustrating the
redundancy resolution features of the scheme.

1 Introduction
An effective control strategy for a system of two robots
holding a common object must properly take into ac-

count the mechanical constraints imposed by the con-

tact between each arm and the object. It can be rec-

ognized that both the absolute motion of the object
and the internal forces acting between the two end-
effectors should be controlled. Also, the presence of
kinematic redundancy into the system should be prop-
erly handled.

Several works addressed the problem of coordi-
nated control of a two-arm robot system, e.g. [1],
which designed control systems that improve on the
performance of previous schemes of master/slave fash-
ion [2], or else of leader-follower type [3]. Further
schemes were developed which regarded the coopera-
tive system from a global point of view, i.e. operating
with object space coordinates, and allowed control of
absolute object motion and of internal forces [4-6].

A drawback of the above schemes is that the in-
terpretation of cooperative task space variables is not
always straightforward; from the user's point of view,
it would be preferable to define variables that are di-
rectly related to the assigned cooperative task. In this
context, a two-stage kinematic control strategy can be
devised which presents the cascade of a kinematic in-
version block for the task variables characterizing the
cooperation and a conventional control in the joint
space. One advantage of a two-stage control strategy
is also the capability of solving kinematic redundancy.
This approach was developed for two planar arms [7,8]
and is here generalized to the case of two cooperative
6-dof manipulators.

The contribution of this work is to obtain a kine-
matic model of the cooperative system which allows a

clear description of the task in terms of absolute and
relative components. In particular, an effective defini-
tion of meaningful (absolute and relative) orientation

variables is given which overcomes the major difficulty
in previous cooperative task descriptions.

Further, a closed-loop inverse kinematics scheme
[9,10] is developed to compute the joint variable tra-
jectories corresponding to a given trajectory for the
above cooperative task variables. The scheme uses

the Jacobians relative to the task variables which, by
virtue of the above kinematic description, can be ex-

pressed in terms of the end-effector Jacobians for the
single arms.

A system composed by two cooperative PUMA
560 robot manipulators is considered to work out two
case studies. In the first one, a trajectory is assigned
to the task variables realizing a coordinated motion
for the system. In the second one, the system is
made kinematically redundant by considering a re-

duced number of task variables, and the features of the
scheme to perform redundancy resolution are demon-
strated.

2. Task description
The choice of a functional task description for multiple
arm systems manipulating a common object is crucial
to the development of effective control systems that
achieve true cooperation between the arms.

Consider a system of two spatial manipulators.
The location of each end-effector can be described by
six task space variables, three for position and three
for a minimal representation of orientation. This in-
dicates that if the manipulators have to cooperate, a

number of twelve task space variables should be de-
fined to fully describe the kinematics of the system.

The trivial choice would be to consider the two
end-effector locations. However, in this way the sys-

tem is regarded as composed by two independent ma-

nipulators and management of coordination is left to
the user.

Another possibility would be to adopt as task vari-
ables those derived from a kineto-static object level
description of the system which is based on the so-

called grasp matrix mapping end-effector forces into
external object forces [4]. One drawback of this de-
scription regards the representation of orientation. In
fact, the kinematic variables are originated from the
composition of linear and angular velocities of the two
end-effectors; a problem then arises in view of the non-

integrability of angular velocities. Further, even if a

minimal representation of orientation is found, this
would not-have a clear meaning to the user.

In the following an effective description is estab-
lished which unambiguously characterizes the cooper-
ative task as well as allows the user to give an imme-
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diate specification of the task in terms of meaningful
variables.

It can be recognized that the typical task of a co-
operative two-arm system is to manipulate a common
object. Therefore, it is natural to define not only a
set of variables specifying the absolute motion of the
object but also a set of variables describing the rela-
tive location between the end-effectors which in turn
characterizes the object grasp. Obviously, both the
absolute and relative variables include position and
orientation.

Consider a system of two cooperative manipula-
tors. For each manipulator (i = 1,2), let pi be the
(3 x 1) vector denoting the end-effector position. Let
also Ri be the (3 x 3) rotation matrix expressing
the end-effector orientation. Both quantities are ex-
pressed in a common base frame (superscript W").

The end-effector linear velocity is directly given as
the time derivative of the position vector, that is pj.
The end-effector angular velocity is given by the (3 x 1)
vector wt, which is related to the time derivative of
the rotation matrix RM through the relationship

can be defined as
= pb_ b

Pr -PPI$ (7)
whose time derivative is

pbr=P P1 (8)

Nevertheless, notice that for the user it is more con-
venient to assign the relative position in the object
frame, i.e. Pr If this is the case, the relative position
in the base frane can be computed as

Pr= Pr(9)
with Rb. as in (5). Further, the relative linear velocity
in the base frame is given by

Pr= RaPj + S(wapW (10)

with wb as in (6).
The relative orientation between the two end-

effectors can be defined in the end-effector frame of
either manipulator ay the first one according to
the above choice for the relative position, i.e.

R = R4. (11)
(1) The resulting relative angular velocity is

where S(.) is the (3 x 3) skew-symmetric operator per-
forming the vector cross product.

The absolute position of the cooperative system
can be defined as the origin of a suitable frame at-
tached to the object (denoted by subscript "a"), which
has to be expressed as a function of the positions of
the two end-effectors. One simple choice is

b 1 (2)

whose time derivative gives the absolute linear velocity

plb _ (b + p6b), 3

In order to define the absolute orientation of the
system, consider the matrix operator Rk(t) express-
ing the rotation by the angle V about the axis aligned
with the unit vector k = ( k4 ky, kz )T. Note also
that the following property holds:

it,(A9) = ARk(0), (4)
where A is a constant. The rotation matrix giving the
absolute orientation is then defined as

Rb = RRl1 (?9N2/2), (5)a I 12

where kl2 and 012 are respectively the unit vector
and the angle that realize the rotation described by
R4. Therefore, the above choice corresponds to make
a rotation about the axis k12 by an angle which is half
the angle needed to align 15 with R'. By differen-
tiating (5) and using (1,4), it can be shown that the
absolute angular velocity is given by

Wa = 2(W, + W2)' (6)

The relative position between the two end-effectors

w1= Wb -b (12)
which is notefully related to quantities expressed in
the base frame.

3. Closed-loop inverse kinematics scheme
The above task space description constitutes the basis
for a kinematic control scheme. This requires the solu-
tion of an inverse kinematics problem, that is finding
the joint variable trajectories corresponding to given
trajectories for the absolute and relative task vari-
ables. These trajectories will then constitute the ref-
erence inputs to some joint space control scheme.

Any algorithmic solution to the inverse kinemat-
ics problem is based on the computation of the Jaco-
bian relative to the task variables of interest. Since
these variables have been expressed as a function of
the position and orientation of the two end-effectors,
the sought Jacobian can be related to the Jacobians
of the single manipulators.

Without loss of generality, consider a system of
two cooperative 6-dof manipulators. For each manip-
ulator, let qi indicate the (6 x 1) vectors ofjoint vari-
ables. The geometric Jacobian Ji(qi) is the (6x6) ma-
trix relating the joint velocity vectors 4i to the linear
and angular end-effector velocities in the base frame
as

(P) = Jb(qi)i
i = 112. (13)

At this point, combining (3,6) and taking into ac-
count (13) yields

(14)

where the (6 x 12) absolute Jacobian matrix is defined
as

(15)
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Further, combining (8,12) and taking into account
(13) yields

(14 = Jb(qj I
q . ) (16)

where the (6 x 12) relative Jacobian matrix is defined
as

(17)Jr' = ( Jl J2 )

The inverse kinematics algorithm used is the
closed-loop scheme based on the computation of the
inverse of the manipulator Jacobian [9]. In the general
case, the joint velocity solution can be written in the
form

q=J1I(Vd+ Ke) (18)

where q is the vector of joint variables, J is the Ja-
cobian -assumed to be square and singularity-free-
associated to the velocity mapping, Vd is the desired
task velocity, K is a suitable diagonal positive gain
matrix, and e is the error between the desired and
actual task variables.

The closed-loop inverse kinematics scheme based
on (18) avoids the typical numerical drift of open-loop
resolved-rate schemes. The solution can be made ro-
bust with respect to singularities of J by resorting to
a damped least-squares inverse of the matrix [11].

Further, if the system possesses redundant de-
grees of freedom -due either to the presence of ad-
ditional joixnt variables or to relaxation of some task
variables-'the Jacobian becomes a low rectangular
matrix. In this case, the solution is modified into [10]

q-=Jt(vd+ Ke) + (I Jt J)io (19)

where bd is the desired absolute position specified by
the user in the base frame, pb is the actual absolute
position that can be computed as in (2), nb, bd abd
are the column vectors of the rotation matrix Rad
giving the desired absolute orientation specified by the
user in the base frame, and nb ab,4 are the column
vectors of the rotation matrix R6 in (5). The relative
error Ls given by
e-{ Rb~~p prb-r
= (\2(S(nr)nrd + 4(7l)Zrd + S(Q)ard)P

(24)
The rotation R4 is aimed at expressing the desired rel-
ative position Pr4d, assigned by the user in the object
frame, in the base frame; in this way, if an error occurs
on the object frame orientation this does not affect the
specification of the desired relative position between
the two end-effectors. Further in (24), pb can be com-
puted as in (7), nid, Sid' ald are the column vectors of
the rotation matrix R14d giving the desired relative ori-
entation specified by the user in the end-effector frame
of the first mfianipulator, and n4 X -r, ar are the column
vectors of the rotation matrix R1l im (11). Finally, the
desired velocity is

(v \

kVr/.

The absolute velocity term is given by

(Pbd)

(25)

(26)

where Pkd and w d are respectively the desired abso-
lute linear and angular velocities specified by the user
in the base frame. The relative velocity term is given

where Jt denotes the pseudoinverse of J, and the op-
erator (I- JJ) projects the vector of arbitrary joint
velocities qo (aimed at exploiting the redundant de-
grees of freedom) into the null space of J so as not to
interfere with the primary end-effector task.

The above algorithms can be keenly applied to
solve the inverse kinematics for the cooperative sys-
tem at issue. In detail, define

(qm\

q2
(20)

If the system is non-redundant, solution (18) is am
plied. The Jacobian is

(21)

where J,, Jb are given as in (15,17). The error is

e( .eCr (22)

by

(27)Vr- (R4 + S(3MP~Wid
where Prd- S the desired relative linear velocity spec-
ified by the user in the object frame and w4d is the
desired relative angular velocity specified by the user
in the end-effector frame of the first manipulator. No-
tice that the expression of the translational part of the
relative velocity presents an additional term which is
a consequence of having assigned the relative position
in the object frame.

On the other hand, if the system is redundant,
solution (19) is applied. In this case, the rows- in
the Jacobian matrix (2-1) corresponding to the relaxed
task variables have to be canceled and J becomes a
low-rectangular matrix. The analogous components
in the error vector (22) and desired velocity (25) have
to be canceled accordingly; the dimension of matrix
K is reduced accordingly. Concerning the choice of
qo in (19), this is taken as

The absolute error has a translation and an orienta-
tion component and is given by

ea -- 1
Pad PaA

= (-(S(n')n'ad + S(58%Dad +S(a')aad)
(23)

qO = kcVqc(q) (28)
where c is a constraint function of the joint variables-
that is optimized locally and k, is a signed constant.

4. Case studies
A system of two cooperative PUMA 560 manip-

b
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Ja'
Jr, I



ulators is considered to develop two case studies.
Discrete-time simulations of the inverse kinematics al-
gorithms (18) and (19) have been run in MATLAB at
1 [ms] sampling time. To gain numerical robustness
to the occurrence of kinematic singularities, a damped
least-squares is used in lieu of the pure (pseudo)inverse
of the relevant Jacobian.

A non-redundant system is analyzed in the first
case study, i.e. twelve cooperative task variables are
considered, and a coordinated motion is specified for
the system. The bases of the two manipulators are
respectively located at (0 -0.1501 O)T [m] and
(1.4331 0.1501 O)T [m] with reference to a com-
mon base frame. The initial joint configurations

T
are q, =(0 -2r/5 94r/10 0 0 0) [rad] and
92 = (w -2w/5 9X/1 0 0 ofT [rad]. The
initial rotation matrices R4, t4 are chosen as iden-
tity matrices so as to refer to suitable tool frames
aligned with the base frame; of course, the orienta-
tion of the two end-effectors may differ but the algo-
rithms will embed proper rotation matrices to pass
from the end-effector frames to the user-defined tool
frames. With these values, the initial absolute po-
sition is pb = (0.7166 0 0.4310)1 [m] and the
initial relative position is pa = (0.1 0 O)T [m].
Also, the initial absolute rotation matrix is Rb - I
and the initial relative rotation matrix is Rr = I;
this is a direct consequence of the convenient choice
made above for R6,14. The final absolute position
is displaced at (0.05 0 0.05 )1 [m] from the initial
one while the final relative position is displaced at
(-0.02 0 o)T [m] from the initial one. As regards
the orientation, a rotation of wx/4 [rad] along the y-
axis of the base frame is assigned for the final abso-
lute orientation while a rotation of 0.1 [rad] along the
z-axis of the initial Rb is assigned for the final relative
orientation. The trajectories for the desired variables
are generated by using an interpolating polynomial of
fifth order with null initial and final velocities and ac-
celerations; the duration time is 1 [s]. The feedback
gain matrix in (18) is K = block diag{50016, 100OI6}
where 16 means the (6 x 6) identity matrix.

The results are plotted in Figs. 1-4. The norm of
position and orientation components of both absolute
and relative errors (Figs. 1,2) demonstrate the track-
ing capabilities of the inverse kinematics scheme; the
error peaks occurring in the starting phase are due
to the effort paid to exit from the wrist singularities
of both manipulators. The time history of the joint
variables is shown in Figs. 3,4.

Reconfiguration of a redundant system is analyzed
in the second case study. The cooperative system is
made redundant by relaxing the absolute position, i.e.
nine task variables are considered which have to re-
main constant. The initial configuration of the sys-
tem is the same as in the previous case study. The
constraint function in (28) is

c(q) = 1U

where the subscript "'t refers to the translational part

of the single arm Jacobians. Minimizing this func-
tion is equivalent to maximizing the intersection of
the global task space external force manipulability el-
lipsoid [16] along the task space direction specified by
the unit vector u; in this case, it is u = ( 1 0 0)T
describing the z-axis of the base frame. The constant
in (28) is kc = -10.

The results are plotted in Figs. 5-8. The time
history of the function in Fig. 5 demonstrates the ef-
fective exploitation of redundant degrees of freedom
to mininmize the given constraint. This IsS obtained by
means of a reconfiguration of the system; the absolute
position (Fig. 6) changes while the errors (Figs. 7,8)
show that all the other task variables are practically
unaffected.
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