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Summary. The problem of controlling the interaction of a flexible link arm with
a compliant environment is considered. The arm’s tip is required to keep contact
with a surface by applying a constant force and maintaining a prescribed position
or following a desired path on the surface. Using singular perturbation theory, the
system is decomposed into a slow subsystem associated with rigid motion and a
fast subsystem associated with link flexible dynamics. A parallel force and position
control developed for rigid robots is adopted for the slow subsystem while a fast
control action is employed to stabilize the link deflections. Simulation results are
presented for a two-link planar arm under gravity in contact with an elastically
compliant surface.

1.1 Introduction

Lightweight flexible robots offer many advantages over conventional industrial
robots, like high speed, large workspace and high payload-to-arm weight [1].
In fact, they are conveniently employed in a large variety of fields including
teleoperation, space robotics, and nuclear waste manipulation.

The dynamics of multilink flexible arms is however much more complex
than rigid robot dynamics, due to the distributed flexibility of the links [2].
As a consequence, several challenging problems are still open, regarding both
modelling and control aspects.

From the modelling standpoint, the dynamics of a flexible structure is de-
scribed by infinite dimensional model. Various techniques have been proposed
to achieve approximate finite dimensional models, e.g. the assumed modes
method, the finite elements method and the Ritz-Kantorovch expansion. In
the case of multilink flexible arms, a recursive procedure can be set up for dy-
namic model computation by using a Lagrangian formulation in conjunction
with the assumed mode technique [3].

The inherent difficulty of the control problem can be ascribed to the fact
that the number of controlled variables is strictly less than the number of
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mechanical degrees of freedom. Moreover, the dynamic relation between the
input torques of the joint actuators and the tip position reveals a behavior
which is the nonlinear counterpart of the non-minimum phase phenomenon of
linear systems. Hence, inversion-based control strategies would normally lead
to instability in the closed-loop. See [4] and the references therein for further
discussion about modelling and control problems for flexible link arms.

An effective approach to motion control design is based on singular pertur-
bation theory [5]. When the link stiffness is large, a two-time scale model of the
flexible arm can be derived [6], consisting in a slow subsystem corresponding
to the rigid body motion and a fast subsystem describing the flexible motion.
A composite control strategy can then be applied, based on a slow control
designed for the equivalent rigid arm and a fast control which stabilizes the
fast subsystem. Further developments of perturbation techniques for flexible
arms can be found in [7, 8, 9, 10].

When the arm interacts with an external environment, suitable strategies
have to be adopted to control both the tip position and the contact force. In
fact, during the interaction, the environment sets constraints on the geometric
path that can be followed by the end effector, and high contact forces may
arise if purely motion strategies are adopted. The higher the environment
stiffness and position control accuracy are, the easier an unstable behavior
with damage to the robot or to the environment may occur. Hence, interaction
control should ensure a suitable compliant behavior to the robotic arm to keep
limited the contact forces.

Notice that the intrinsic compliance of a flexible link arm may contribute
to reduce the value of the forces that can be generated when the interaction
task is executed by a rigid robot. This means that by using flexible robots to
perform interaction tasks some benefits may arise, even though the distributed
flexibility of the links makes the interaction control problem more complex
than for rigid robots.

The most common solution to interaction control is the use of a force/torque
sensor, mounted between the last link and the end effector, which provides
force measurements that can be suitably exploited by the robot controller.

While several control schemes have been proposed to force and position
control of rigid robot manipulators [11], only few papers on interaction control
of flexible arms have been published so far.

Early works addressing stability problems in force controlled flexible ma-
nipulators are [12, 13]. Models for multilink constrained flexible robots have
been developed in [14, 15] where a hybrid position and force control approach
is adopted. Hybrid control is used in [16] and [17] to design robust and adap-
tive control strategies respectively as well as in [18, 19] to control a flexible
macro manipulator carrying a rigid micro. In most of these papers ([13, 15, 17])
singular perturbation techniques are exploited to cope with link flexibility; a
singular perturbed model for a constrained multilink flexible arm was devel-
oped in [20].
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The singular perturbation method is adopted in this chapter to design a
force and position control for flexible arms based on the parallel approach
developed in [21, 22] for rigid robots in contact with compliant environments.
As opposed to the hybrid control strategies where force and position are con-
trolled in reciprocal subspaces [23, 24], both force and position variables are
used in each subspace without any selection mechanism. This makes paral-
lel controllers suitable to manage contacts with non-perfectly known envi-
ronments and unplanned collisions, which represent a drawback for hybrid
controllers. Moreover, differently from previous works tackling the problem of
force and position control of flexible manipulators (e.g.,[13, 15, 17, 20]), the
equations of the constraint environment have not to be taken into account for
control design.

The proposed control scheme guarantees force regulation and position
tracking for the slow dynamics. An additional control action is required in
both cases to stabilize the fast dynamics related to link flexibility.

Simulation results have been carried out on the model of a two-link planar
arm developed in [25]; interaction with an elastically compliant plane have
been considered. The numerical case study confirms the results anticipated in
theory.

1.2 Modelling

Consider a robot arm composed by a serial chain of n flexible links connected
by rigid revolute joints subject only to bending deformations in the plane
of motion, without torsional effects. A sketch of a two-link arm is shown
in Fig. 1.1 with coordinate frame assignment; the tip of the robotic arm is
assumed to be in contact with a planar surface. The rigid motion is described
by the joint angles ϑi, while wi(xi) denotes the transversal deflection of link i
at xi with 0 ≤ xi ≤ `i, being `i the link length.

1.2.1 Kinematics

Let pi
i(xi) = [xi wi(xi)]T be the position of a point along the deflected link i

with respect to frame (Xi, Yi) and pi be the position of the same point in
the base frame. Also let ri

i+1 = pi
i(`i) be the position of the origin of frame

(Xi+1, Yi+1) with respect to frame (Xi, Yi), and ri+1 its position in the base
frame.

The joint (rigid) rotation matrix Ri and the rotation matrix Ei of the
(flexible) link at the end point are, respectively,

Ri =
[
cos ϑi − sin ϑi

sin ϑi cos ϑi

]
(1.1)

and
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Fig. 1.1. Planar two-link flexible arm in contact with a planar surface

Ei =
[

1 −w′ie
w′ie 1

]
, (1.2)

where w′ie = (∂wi/∂xi)|xi=`i
, and the approximation arctan w′ie ' w′ie, in

the hypothesis of small deflections, has been made. Hence the above absolute
position vectors can be expressed as

pi = ri + W ip
i
i (1.3)

and
ri+1 = ri + W ir

i
i+1, (1.4)

where W i is the global transformation matrix from the base frame to (Xi, Yi)
given by the recursive equation

W i = W i−1Ei−1Ri = Ŵ i−1Ri, (1.5)

with
Ŵ 0 = I. (1.6)

On the basis of the above relations, the kinematics of any point along the
arm is completely specified as a function of joint angles and link deflections.

A finite-dimensional model (of order mi) of link flexibility can be obtained
by the assumed mode technique [2]. Links are modelled as Euler-Bernoulli
beams of uniform density ρi and constant flexural rigidity (EI)i, with deflec-
tion wi(xi, t) satisfying the partial differential equation

(EI)i
∂4wi(xi, t)

∂xi
4 + ρi

∂2wi(xi, t)
∂t2

= 0, i = 1, . . . , n. (1.7)

Exploiting separability in time and space of solutions of (1.7), the link deflec-
tion wi(xi, t) can be expressed as the sum of a finite number of modes
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wi(xi, t) =
mi∑

i=1

φij(xi)δij(t), (1.8)

where φij(x) is the shape assumed for the j-th mode of link i, and δij(t) is its
time-varying amplitude. The mode shapes have to satisfy proper boundary
conditions at the base (clamped) and at the end of each link (mass).

In view of (1.8), a direct kinematics equation can be derived expressing the
(2×1) position vector p of the arm tip point as a function of the (n×1) joint
variable vector ϑ = [ϑ1 . . . ϑn]T and the (m × 1) deflection variable vector
δ = [δ11 . . . δ1m1 . . . δn1 . . . δnmn ]T [3, 25], i.e.

p = k(ϑ, δ). (1.9)

For later use, also the differential kinematics is needed. The absolute linear
velocity of an arm point is

ṗi = ṙi + Ẇ ip
i
i + W iṗ

i
i, (1.10)

with ṙi
i+1 = ṗi

i(`i). Since the links are assumed inextensible (ẋi = 0), then
ṗi

i(xi) = [0 ẇi(xi)]T. The computation of (1.10) takes advantage of the recur-
sion

Ẇ i = ˙̂
W i−1Ri + Ŵ i−1Ṙi (1.11)

with
˙̂

W i = Ẇ iEi + W iĖi. (1.12)

Also, note that
Ṙi = SRiϑ̇i, Ėi = Sẇ′ie (1.13)

with

S =
[
0 −1
1 0

]
. (1.14)

In view of (1.9)–(1.14), it is not difficult to show that the differential
kinematics equation expressing the tip velocity ṗ as a function of ϑ̇ and δ̇ can
be written in the form

ṗ = Jϑ(ϑ, δ)ϑ̇ + Jδ(ϑ, δ)δ̇, (1.15)

where Jϑ = ∂k/∂ϑ and Jδ = ∂k/∂δ.

1.2.2 Dynamics

Using the assumed modes link approximation (1.8), a finite-dimensional La-
grangian dynamic model of the planar arm can be obtained as a function of
the n + m vector of generalized coordinates q = [ϑT δT]T in the form [3, 25]

B(q)q̈ + c(q, q̇) + g(q) +

[
0

Dδ̇ + Kδ

]
=

[
τ

0

]
(1.16)
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where B is the positive definite symmetric inertia matrix, c is the vector of
Coriolis and centrifugal torques, g is the vector of gravitational torques, K is
the diagonal and positive definte link stiffness matrix, D is the diagonal and
positive semidefinite link damping matrix and τ is the vector of the input
joint torques.

In the case that the arm’s tip is in contact with the environment, by virtue
of the virtual work principle, the vector f of the forces exerted by the arm
on the environment performing work on p has to be related to the (n × 1)
vector JT

ϑf of joint torques performing work on ϑ and to the (m× 1) vector
JT

δ f of the elastic reaction forces performing work on δ. Hence, the dynamic
model (1.16) can be rewritten in the form:

[
Bϑϑ(ϑ, δ) Bϑδ(ϑ, δ)

BT
ϑδ(ϑ, δ) Bδδ(ϑ, δ)

][
ϑ̈

δ̈

]
+

[
cϑ(ϑ, δ, ϑ̇, δ̇)

cδ(ϑ, δ, ϑ̇, δ̇)

]

+

[
gϑ(ϑ, δ)
gδ(ϑ, δ)

]
+

[
0

Dδ̇ + Kδ

]
=

[
τ

0

]
−

[
JT

ϑ (ϑ, δ)f

JT
δ (ϑ, δ)f

]
(1.17)

where the matrix and vectors have been partitioned in blocks according to
the rigid and flexible components.

1.3 Singularly perturbed model

When the link stiffness is large, it is reasonable to expect that the dynamics
related to link flexibility is much faster than the dynamics associated with
the rigid motion of the robot so that the system naturally exhibits a two-time
scale dynamic behaviour in terms of rigid and flexible variables. This feature
can be conveniently exploited for control design.

Following the approach proposed in [6], the system can be decomposed in
a slow and a fast subsystems by using singular perturbation theory; this leads
to a composite control strategy for the full system based on separate control
designs for the two reduced-order subsystems.

1.3.1 Unconstrained motion

In the absence of contact with the environment, assuming that full-state mea-
surements are available, the joint torques can be conveniently chosen as

τ = gϑ(ϑ, δ) + u, (1.18)

in order to cancel out the effects of the static torques acting on the rigid part
of the arm dynamics; the vector u is the new control input to be designed on
the basis of the singular perturbation approach.
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The time scale separation between the slow and fast dynamics can be de-
termined by defining the singular perturbation parameter ε = 1/

√
km, where

km is the smallest coefficient of the diagonal stiffness matrix K, and the new
variable

z = Kδ =
1
ε2

K̂δ, (1.19)

corresponds to the elastic force, where K = kmK̂. Considering the inverse H
of the inertia matrix B, the dynamic model (1.17), with control law (1.18),
can be rewritten in terms of the new variable z as

ϑ̈ = Hϑϑ(ϑ, ε2z)
(
u− cϑ(ϑ, ε2z, ϑ̇, ε2ż))

)

−Hϑδ(ϑ, ε2z)
(
cδ(ϑ, ε2z, ϑ̇, ε2ż) + gδ(ϑ, δ)

+ε2DK̂
−1

ż + z
)

(1.20)

ε2z̈ = K̂HT
ϑδ(ϑ, ε2z)

(
u− cϑ(ϑ, ε2z, ϑ̇, ε2ż)

)

−K̂Hδδ(ϑ, ε2z)
(
cδ(ϑ, ε2z, ϑ̇, ε2ż) + gδ(ϑ, δ)

+ε2DK̂
−1

ż + z
)

, (1.21)

where a suitable partition of H has been considered

H = B−1 =

[
Hϑϑ Hϑδ

HT
ϑδ Hδδ

]
. (1.22)

Equations (1.20) and (1.21) represent a singularly perturbed form of the
flexible arm model; when ε → 0, the model of an equivalent rigid arm is
recovered. In fact, setting ε = 0 and solving for z in (1.21) gives

zs = H̄
−1
δδ (ϑs)H̄

T
ϑδ(ϑs)

(
us − c̄ϑ(ϑs, ϑ̇s)

)
− c̄δ(ϑs, ϑ̇s)− ḡδ(ϑs), (1.23)

where the subscript s indicates that the system is considered in the slow
time scale and the overbar denotes that a quantity is computed with ε = 0.
Plugging (1.23) into (1.20) with ε = 0 yields

ϑ̈s = B̄
−1
ϑ,ϑ(ϑs)

(
us − c̄ϑ(ϑs, ϑ̇s)

)
, (1.24)

where the equality

B̄
−1
ϑ,ϑ(ϑs) =

(
H̄ϑϑ(ϑs)− H̄ϑδ(ϑs)H̄

−1
δδ (ϑs)H̄

T
ϑδ(ϑs)

)
(1.25)

has been exploited, being B̄ϑϑ(ϑs) the inertia matrix of the equivalent rigid
arm and c̄ϑ(ϑs, ϑ̇s) the vector of the corresponding Coriolis and centrifugal
torques.
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The dynamics of the system in the fast time scale can be obtained by
setting tf = t/ε, treating the slow variables as constants in the fast time
scale, and introducing the fast variables zf = z − zs; thus, the fast system
of (1.21) is

d2zf

dt2f
= −K̂H̄δδ(ϑs)zf + K̂H̄

T
ϑδ(ϑs)uf , (1.26)

where the fast control uf = u− us has been introduced accordingly.
On the basis of the above two-time scale model, the design of a feedback

controller for the system (1.20) and (1.21) can be performed according to a
composite control strategy, i.e.,

u = us(ϑs, ϑ̇s) + uf (zf , dzf/dtf ) (1.27)

with the constraint that uf (0, 0) = 0, so that uf is inactive along the equi-
librium manifold specified by (1.23).

Notice that the fast system (1.26) is a marginally stable linear slowly time-
varying system that can be stabilized to the equilibrium manifold żf = 0
(ż = 0) and zf = 0 (z = zs) by a proper choice of the control input uf . A
reasonable way to achieve this goal is to design a state-space control law of
the form

uf = K1żf + K2zf (1.28)
where, in principle, the matrices K1 and K2 should be tuned for every con-
figuration ϑs. However, the computational burden necessary to perform this
strategy can be avoided by using constant matrix gains tuned with reference
to a given robot configuration [6]; any state-space technique can be used, e.g.,
based on classical pole placement algorithms.

1.3.2 Constrained motion

When the arm’s tip is constrained by the environment, a similar model can
be derived provided that the contact force is measured by using a force sensor
mounted on the tip.

In detail, in lieu of (1.18), the joint torques can be chosen as

τ = gϑ(ϑ, δ) + JT
ϑ (ϑ, δ)f + u, (1.29)

in order to cancel out also the effects of the contact force f acting on the rigid
part of the arm dynamics.

By introducing the variable z as in (1.19) and following the same procedure
as in the unconstrained motion case, the rigid robot dynamics for the slow
time scale can be achieved in the same form (1.24).

As for the fast dynamics, the same expression (1.26) holds by defining the
fast variable as zf = z − z′s, where

z′s = zs − J̄
T
δ (ϑs)fs (1.30)

with zs defined in (1.23). Hence the same control law (1.28) can be adopted
to stabilize the fast dynamics.
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1.4 Compliant motion control

Control of the interaction between a robotic arm and the environment by
using a pure motion control strategy is a candidate to fail if the task is not
accurately planned. In practice, planning errors may give rise to a contact
force causing a deviation of the tip from the desired trajectory. Since motion
control reacts to reduce such deviation, the contact force may reach high
values that can lead to saturation of joint actuators or breakage of the parts
in contact.

The higher environment stiffness and position control accuracy are, the
easier a situation like the one just described can occur. This drawback can
be overcome if a compliant behavior is ensured during the interaction. This is
partially achieved in a passive fashion, due to the flexibility of the arm, but
it can be enhanced in active fashion by adopting a suitable compliant control
strategy.

In this section, a compliant control strategy that offers the possibility of
controlling the contact force to a desired value, as well as the tip position to
a desired trajectory assigned along the unconstrained directions, is presented.
This strategy is based on the parallel force/position control approach [21],
which is especially effective in the case of inaccurate contact modelling. The
key feature is that to have a force control loop working in parallel to a pos-
tion control loop. The logical conflict between the two loops is managed by
imposing a dominance of the force control action over the position one, i.e.,
force regulation is always guaranteed at the expense of a position error along
the constrained directions.

1.4.1 Position control

To gain insight into parallel force/position control applied to a flexible arm,
the position control loop is first designed. To this purpose, it is useful to derive
the slow dynamics corresponding to the tip position. Differentiating Eq. (1.15)
gives the tip acceleration

p̈ = Jϑ(ϑ, δ)ϑ̈ + Jδ(ϑ, δ)δ̈ + h(ϑ, δ, ϑ̇, δ̇), (1.31)

where h = J̇ϑϑ + J̇δδ; hence the corresponding slow system is

p̈s = J̄ϑ(ϑs)B̄
−1
ϑ,ϑ(ϑs)

(
us − c̄ϑ(ϑs, ϑ̇s)

)
+ h̄(ϑs, ϑ̇s), (1.32)

where Eq. (1.24) has been used. The slow dynamic models (1.24) and (1.32)
enjoy the same notable properties of the rigid robot dynamic models [4], hence
the control strategies used for rigid arms can be adopted.

If tracking of a time-varying position pr(t) is desired (with an order ε
approximation), an inverse dynamics motion scheme can be adopted for the
slow system, i.e.
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us = B̄ϑ,ϑ(ϑs)J̄
−1
ϑ (ϑs)

(
as − h̄(ϑs, ϑ̇s)

)
+ c̄ϑ(ϑs, ϑ̇s) (1.33)

where as is a new control input and the Jacobian matrix is assumed to be
nonsingular.

Folding (1.33) into (1.32) gives

p̈s = as; (1.34)

hence the control input as can be chosen as

as = p̈r + kD(ṗr − ṗs) + kP (pr − ps), (1.35)

giving the closed-loop equation for the slow subsystem

p̈r − p̈s + kD(ṗr − ṗs) + kP (pr − ps) = 0. (1.36)

The system (1.36) is exponentially stable for any choice of the positive gains
kD and kP and thus tracking of pr and ṗr is ensured for the slow subsystem.

As a further step, the full-order system (1.16) with the composite con-
trol law (1.27), (1.33), (1.35) and (1.28) have to be analyzed. By virtue of
Tikhonov’s theorem, it can be shown that tracking of the reference position
pr(t) is achieved with an order ε approximation.

1.4.2 Parallel force/position control

The interaction of a flexible arm with a compliant environment can be man-
aged by controlling both the contact force and the tip position.

A better insight into the behaviour of the system during the interaction
can be achieved by considering a model of the compliant environment. To this
purpose, a planar surface is considered, which is locally a good approximation
to surfaces of regular curvature, and the model of the contact force is given
by

f = kennT(p− po) (1.37)

where po represents the position of any point on the undeformed plane, n
is the unit vector along the normal to the plane, and ke > 0 is the contact
stiffness coefficient. For the purpose of this work, it is assumed that the same
equation can be established in terms of the slow variables. Such a model shows
that the contact force is normal to the plane, and thus a null force error can
be obtained only if the desired force fd is aligned with n. Also, null position
errors can be obtained only on the contact plane while the component of the
position along n has to accommodate the force requirement specified by fd.

The parallel force/position controller is based on the inverse dynamics
law (1.33) and (1.35), where pr is chosen as

pr = pd + pc (1.38)
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Fig. 1.2. Equilibrium position with parallel force and position control

and pc is the solution of the differential equation

kAp̈c + kV ṗc = fd − fs; (1.39)

kP , kD, kA, kV > 0 are suitable feedback gains. It is worth pointing out that
pc resulting from integration of (1.39) provides an integral control action on
the force error.

The stability analysis for the slow system (1.32) with the control law (1.33),
(1.35), (1.38) and (1.39) can be carried out with the same arguments used
in [11] for the case of rigid robots. In particular, the force/position parallel
control scheme ensures regulation of the contact force to the desired set-point
fd and tracking of the time-varying component of the desired position on the
contact plane

(
I − nnT

)
pd(t).

To better understand the compliant behavior ensured by parallel control,
consider for simplicity the case that pd is constant. It can be shown that the
closed-loop system has an exponentially stable equilibrium at

p∞ =
(
I − nnT

)
pd + nnT

(
k−1

e fd + po

)
(1.40)

f∞ = kennT(p∞ − po) = fd (1.41)

where the matrix (I − nnT) projects the vectors on the contact plane.
The equilibrium position is depicted in Fig. 1.2. It can be recognized

that p∞ differs from pd by a vector aligned along the normal to the con-
tact plane whose magnitude is that necessary to guarantee f∞ = fd in view
of (1.41). Therefore (for the slow system) force regulation is ensured while a
null position error is achieved only for the component parallel to the contact
plane.
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If fd is not aligned with n, then it can be found that a drift motion of the
arm’s tip is generated along the plane; for this reason, if the contact geometry
is unknown, it is advisable to set fd = 0.

As before, Tikhonov’s theorem has to be applied to the full-order sys-
tem (1.17) with the composite control law (1.27), (1.33), (1.35)–(1.39) and
(1.28); it can be shown that that force regulation and position tracking are
achieved with an order ε approximation.

1.5 Simulation

In order to illustrate the effectiveness of the proposed strategy, a planar two-
link flexible arm (Fig. 1.1) is considered:

ϑ = [ϑ1 ϑ2]T

and an expansion with two clamped-mass assumed modes is taken for each
link:

δ = [δ11 δ12 δ21 δ22]T.
The following parameters are set up for the links and a payload is assumed
to be placed at the arm’s tip:

ρ1 = ρ2 = 1.0 kg/m (link uniform density)
`1 = `2 = 0.5 m (link length)
d1 = d2 = 0.25 m (link center of mass)
m1 = m2 = 0.5 m (link mass)
mh1 = mh2 = 1 kg (hub mass)
mp = 0.1 kg (payload mass)
(EI)1 = (EI)2 = 10 N m2 (flexural link rigidity).

The stiffness coefficients of the diagonal matrix K are:
k11 = 38.79 N k12 = 513.37 N
k21 = 536.09 N k22 = 20792.09 N.

The dynamic model of the arm and the missing numerical data can be found
in [25], while the direct and differential kinematics equations are reported
in [26].

The contact surface is a vertical plane, thus the normal vector in (1.37) is
n = [1 0]T; a point of the undeformed plane is

po = [0.55 0]T m
and the contact stiffness is ke = 50 N/m.

The arm was initially placed with the tip in contact with the undeformed
plane in the position

p(0) = [0.55 −0.55]T m
with null contact force; the corresponding generalized coordinates of the arm
are:
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Fig. 1.3. Time histories of contact force and position error

ϑ = [−1.396 1.462]T rad
δ = [−0.106 0.001 −0.009 −0.0001]T m

It is desired to reach the tip position
pd = [0.55 −0.35]T m

and a 5th-order polynomial trajectory with null initial and final velocity and
acceleration is imposed from the initial to the final position with a duration
of 5 s.

The desired force is taken from zero to the desired value
fd = [5 0]T N,

according to a 5th-order polynomial trajectory with null initial and final first
and second derivative and a duration of 1 s.

The fast control law uf has been implemented with ε = 0.1606. The matrix
gains in (1.28) have been tuned by solving an LQ problem for the system (1.26)
with the configuration dependent terms computed in the initial configuration
of the arm. The matrix weights of the index performance have been chosen so
as to preserve the time-scale separation between slow and fast dynamics for
both the control schemes. The resulting matrix gains are:

K1 =
[−0.0372 −0.0204 −0.0375 0.1495

0.0573 0.0903 0.0080 −0.7856

]

K2 =
[−0.1033 −0.0132 −0.0059 −0.0053
−0.0882 0.0327 −0.0537 −0.0217

]
.

Numerical simulations have been performed via MATLAB/Simulink. In
order to reproduce a real situation of a continuous-time system with a digital
controller, the control laws are discretized with 5 ms sampling time, while the
equations of motion are integrated using a variable step Runge-Kutta method
with a minimum step size of 1 ms.
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Fig. 1.4. Time histories of contact force and position error

The slow controller (1.33), (1.35)–(1.39) has been used in the composite
control law (1.27). The actual force f and position p are used in the slow
control law instead of the corresponding slow values, assuming that direct
force measurement is available and that the tip position is computed from
joint angles and link deflection measurements via the direct kinematics equa-
tion (1.9). The control gains have been set to kP = 100, kD = 22, kA = 0.7813,
kV = 13.75.

In Fig. 1.3 the time histories of the desired (dashed) and actual (solid)
contact force are reported, together with the position error. It is easy to
see that the contact force remains close to the desired value during the tip
motion (notice that the commanded position trajectory has a 5 s duration)
and reaches the desired set-point after about 3 s, before the completion of
the tip motion. Tracking of the y-component of the position is ensured, while
a significant error occurs for the x-component; its (constant) value at steady
state is exactly that required to achieve null force error along the same axis,
according to the equilibrium equations (1.40) and (1.41).

The time histories of the joint angles and link deflections are reported in
Fig. 1.4. It can be recognized that the oscillations of the link deflections are



1 Control of Flexible Arms in Compliant Motion 15

0 2 4 6 8 10

−5

0

5

10

15

20
joint torques

time [s]

[N
m

] 1

2

0 0.1 0.2 0.3 0.4 0.5

−5

0

5

10

15

20
fast control

time [s]

[N
m

]

1

2

Fig. 1.5. Time histories of contact force and position error

well damped; moreover, because of gravity and contact force, the arm has to
bend to reach the desired tip position with the desired contact force.

Figure 1.5 shows the time history of the joint torque u and the first 0.5 s of
the time history of the fast torque uf . It can be observed that the control effort
keeps limited values during task execution; remarkably, the control torque uf

converges to zero with a transient much faster than the transient of u, as
expected.

It is worth pointing out that the simulation of both slow control laws
without the fast control action (1.28) has revealed an unstable behaviour; the
results have not been reported here for brevity.

1.6 Conclusion

The problem of force and position control for flexible link arms has been
considered in this chapter. Because of the presence of structural link flexibility,
the additional objective of damping the vibrations that are naturally excited
during task execution was considered. By using singular perturbation theory,
under the reasonable hypothesis that link stiffness be large, the system has
been split into a slow subsystem describing the rigid motion dynamics and
a fast subsystem describing the flexible dynamics. Then a force and position
parallel control has been adopted for the slow subsystem, while a fast action
has been designed for vibration damping. Simulation results have confirmed
the feasibility of the proposed approach.
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