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Abstract— An experimental setup for visual servoing appli-
cations on an industrial robotic cell is presented in this paper.
The setup is composed of two industrial robot manipulators
equipped with pneumatic grippers, a vision system and a belt
conveyor. The original industrial robot controllers have been
replaced by a single PC with software running under a real-
time variant of the Linux operative system. A vision-oriented
software environment named VESPRO has been developed on a
PC running under Windows NT operating system, which allows
programming image processing and visual tracking tasks, using
one or more cameras. Advanced user interfaces permit fast, safe
and reliable prototyping of control schemes based on visual
measurements both for the single robots and for the dual-arm
robotic cell.

I. INTRODUCTION

The development of advanced sensor-based control algo-
rithms for industrial robots requires open control architec-
tures where software modules can be modified and extero-
ceptive sensors like force/torque sensors and vision systems
can be easily integrated.

Various open control architectures for industrial robots
have already been developed by robot and control manu-
facturers as well as in research labs (see, e.g., [1], [2]).
Most of them are based on a standard PC hardware and a
standard operating system. In fact, a PC-based controller can
more easily integrate many commercially available add-on
peripherals and allows standard software development tools
(e.g., Visual C++, Visual Basic, Delphi, etc.) to be used.

An important issue of control software architectures
deals with real-time operating systems. In recent years the
hard real-time variants of the Linux operating system (RT-
Linux [3] and RTAI-Linux [4]) are becoming widely adopted,
especially in research labs [5], [6].

A common problem encountered in control architectures
embedding visual measurements is that the time constraints
of motion controllers are hardly met by the vision systems.
This is especially true for position-based visual servoing [7],
more than for image-based visual servoing [8]. In fact, the
first approach requires computationally expensive operations
to achieve the estimation of the pose (position and orienta-
tion) of objects moving in the robot workspace. This problem
is usually solved by adopting a so-called “indirect” visual
servoing scheme [9], based on an inner/outer feedback loop
where the inner position feedback loop runs at a frequency
higher than the outer visual feedback loop, to guarantee
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Fig. 1.

The dual-arm industrial robotic cell at PRISMA Lab

stability and disturbance rejection. This allows the time
constraint of the visual feedback loop to be partially relaxed,
so that non-hard real-time operating system can be adopted
for the vision software.

In this paper, an environment for visual servoing appli-
cations on the industrial cell of PRISMA Lab, based on
two robots Comau SMART-3 S, is presented. The control
architecture is an open version of the industrial Comau
C3G 9000, developed at the PRISMA Lab, which allows
controlling both the robots using a standard PC working
with RTAI-Linux operating system. The open controller,
named RePLiCS [10], allows advanced control schemes to
be designed and tested, including dual-arm cooperation, force
control, as well as visual servoing.

The visual system runs on a separate PC working with
Windows NT operating system. A vision-oriented software
environment named VESPRO has been developed to manage
a multi-camera system and to perform visual pose estimation
of objects moving in the cell.

As an example of application, a position-based visual
servoing task, involving both robots of the cell, is described.

II. THE EXPERIMENTAL SETUP

The setup in the PRISMA Lab consists of two industrial
robots Comau SMART-3 S (see Fig. 1). Each robot ma-
nipulator has a six-revolute-joint anthropomorphic geometry
with nonnull shoulder and elbow offsets and non-spherical
wrist. One manipulator is mounted on a sliding track which
provides an additional degree of mobility. The joints are
actuated by brushless motors via gear trains; shaft absolute
resolvers provide motor position measurements.
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Fig. 2. Schematic of the C3G open control architecture for one robot

Each robot is controlled by the C3G 9000 control unit
which has a VME-based architecture with two processing
boards (Servo CPU and Robot CPU) both based on a
Motorola 68020/68882. The Robot CPU includes a shared
memory area accessible by the other boards connected to
the VME bus. Two BIT3 bus adapter boards allows the
connection of the VME bus of the C3G 9000 unit to the ISA
bus of a standard PC with RTAI-Linux operating system, so
that the PC and C3G communicate via the shared memory of
the Robot CPU. In this way the PC can be used to implement
control algorithms, and time synchronization is achieved by
means of a flag set by the C3G and read by the PC.

A schematic of the open control architecture for one robot
is sketched in Fig. 2.

Seven different operating modes are available in the C3G,
allowing the PC to interact with the original controller both
at trajectory generation level and at joint control level. The
most useful operating modes are number 4 and number 6.

In operating mode number 4, the joint position servos
managed by the C3G are opened and the PC is in charge
of acquiring data from the resolvers, computing the control
algorithm and passing the references to the current servos
at 1 ms sampling time. Hence, the C3G is only used as
an interface between the PC and the resolvers and the
brushless motors of the robot. In operating mode number 6,
the PC computes the joint position references for the micro-
interpolator of the Servo CPU of the C3G at 2 ms sampling
time. Therefore, the PC is in charge of trajectory planning
and kinematic inversion, while the native joint position
servos of the C3G are used to move the robot.

Each robot can be also equipped with a pneumatic gripper
with two parallel jaws. The completion of the open and
close operations are detected using Hall-effect sensors. The
grippers can be directly commanded by the C3G industrial
controller, or by the PC through a SMARTLAB ISA interface
board. Through this board it is also possible to operate a belt
conveyor.
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Fig. 3. Position-based visual servoing scheme

A force/torque sensor ATT FT30-100 can be mounted at
either arm’s wrist. The sensor is connected to the PC by
a parallel interface board which provides readings of six
components of force/torque at 1 ms.

A vision system composed of a standard PC with Windows
NT operating system, equipped with two MATROX Genesis
boards and two SONY 8500CE B/W cameras is available.
The MATROX boards are used as frame grabbers as well
as for image processing (e.g., windows extraction from the
image), while the PC host is in charge of executing vision-
based algorithms and guarantees communication with the
PC performing robot control via a serial and/or parallel
connection.

III. VISUAL SERVOING

The experimental setup may be used to perform both
position-based and image-based visual servoing. For brevity,
only position based visual servoing is considered here. This
approach requires the estimation of the pose of a target object
with respect to a reference frame by using the vision system;
the estimated pose is then fed back to a pose controller.
Hence, the two main operations to be performed are pose
control and pose estimation (see Fig. 3).

Notice that pose estimation is a computationally demand-
ing task, because it requires processing of the measurements
of some geometric features extracted from the images of
one or more cameras. Hence, the sampling time of the pose
estimation algorithm is usually higher than the sampling time
of the pose control loop. In the best case, the pose estimation
can be performed at camera frame rate (between 25 Hz and
60 Hz).

Pose control is performed through an inner-outer control
loop. The inner loop, running at 2 ms sampling time (i.e.,
500 Hz frequency), implements motion control (independent
joint control or any kind of joint space or task space control).
In the outer loop, the block named dynamic trajectory
planner computes the trajectory for the end-effector on the
basis of the current object pose and on the desired task.
The input of this block is updated at 26 Hz frequency,
corresponding to the frame rate of the employed cameras, the
output is available at 500 Hz frequency, thanks to a second
order interpolating filter. The control software implementing
pose control is RePLiCS.



The pose estimation algorithm provides the measurements
of the target object pose at 26 Hz frequency and is imple-
mented by the software platform VESPRO.

The vision system can be based on eye-in-hand cameras,
i.e., one or two cameras mounted on the robot end-effector, or
on eye-to-hand cameras, i.e., fixed cameras. Hybrid configu-
rations, including both eye-in-hand and eye-to-hand cameras
are possible as well.

The use of a multi-camera system requires the adoption
of intelligent and computationally efficient strategies for
the management of highly redundant information (a large
number of object image features from multiple points of
view). This task has to be realized with real-time constraints
and thus the extraction and interpretation of all the available
visual information is not possible. To solve this problem,
an efficient technique has been developed which is able to
improve the accuracy and robustness of the visual system by
exploiting a minimal set of significant data suitably selected
from the initial redundant set.

This technique, implemented in VESPRO, is described
in [11], [12]; here only the main features are outlined.

The pose estimation algorithm can be decomposed in three
main parts: geometric modelling, redundancy management,
motion estimation.

The geometrical modelling part allows building computa-
tionally efficient geometrical representations of 3D polyedral
objects using Binary Space Partitioning (BSP) tree struc-
tures [11] starting from simple CAD models. These are
hierarchical data structures that provide an ordered repre-
sentation of a 3D space containing one or more objects.
Computationally efficient visit algorithms are available to
evaluate the position of all the visible features of the objects
(corners, holes, contours, etc.) in the image planes of the
cameras, if an estimate of the object poses is available.

The redundancy management part is in charge of dynam-
ically selecting an optimal set of visible image features of
the object, provided by the BSP tree visit algorithm. This is
obtained by minimizing an optimal cost function based on a
combination of suitable quality indexes ensuring an optimal
spatial distribution of the projections of the feature points on
the image plane of the camera. Moreover, in a multi-camera
system, it is important to achieve an optimal distribution of
the features among the different cameras, considering their
different resolutions and focuses [12].

The motion estimation part is based on the Extended
Kalman Filter, which provides an estimate of the pose
and velocity of an object starting from a dynamic set of
measurements of image features. The Kalman filter provides
good robustness to noise and disturbances affecting visual
measurements. Moreover, it allows exploiting redundancy of
the information because the measurement set can be changed
during the operation. This latter feature is implemented in
VESPRO by generating on-line the equations of the filter
output model on the basis of the features selected by the
redundancy management algorithm. An adaptive formulation
of the Extended Kalman Filter is also available to cope with
the uncertainties of the statistics of the measurement noise

and of the object motion.

IV. REPLICS

The control software of the robotic cell, named RePLiCS
(REal-time PrismalLab LInux Control System), can be struc-
tured into a real-time module, which is a driver for the kernel
of RTAI-Linux, and a set of non real-time applications that
provide a user interface for the real-time module. This is pe-
riodically activated by an external interrupt signal generated
by the C3G controller.

The real-time module of RePLiCS implements all the real-
time functions required for the control of the robotic cell.
All those functions are collected in an API (Application
Programming Interface) software library written in the C
language. These functions can be grouped in:

o communication with the C3G controllers
« synchronization for cooperative control
« robot kinematics

« robot control

e trajectory planning

« serial and parallel communication

« force sensors reading

« safety checks

« data storage

e I/O functions (file or console).

The functions for the communication with the C3G con-
trollers implement the drive on/off commands and have
access to the shared memory area of the Robot CPUs to
read the joint positions and write the current or the position
set-points, depending on the selected operating mode.

To implement cooperative control of the two robots, the
PC should write the positions or the current set-points for
both robots at the same time, on the basis of the motor
angular positions read at the same time. This ideal behavior,
however, is difficult to achieve because the two C3G con-
trollers have two separate clocks. A synchronization module
of RePLiCS has been developed to overcome this problem;
details can be found in [10].

The functions used for robot kinematics allow the com-
putation of the direct and inverse kinematics of the robots
and their Jacobian matrices. Several utility functions are
available, e.g., for unit conversion of the joint variables
(degrees, radians, Bit resolvers), for coordinate conversion
between different frames, for representation of the orientation
(Euler angles, angle/axis, quaternion).

The robot control functions implement decentralized joint
control as well as centralized control, e.g., inverse dynamics
or resolved acceleration in the task space. New control
schemes can be easily programmed by modifying the control
module of a template program file (written using the standard
C language), which includes the API library.

As for trajectory planning, a set of functions are available
for the point-to-point motion, both in the joint and in the
task space (along straight lines for the position) which use
time laws with trapezoidal velocity profile. A function which
allows generating a path (in the joint space or in the task
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Fig. 4. A screen-shot of all the RePLiCS GUI windows

space) through assigned via points is also implemented. Spe-
cial functions have been realized to achieve synchronization
of the two robots at trajectory planning level, and generate
smooth trajectories when the target is not known in advance
(e.g., in visual servoing applications).

The serial and parallel communications allow the con-
troller to communicate with an external device (e.g., the PC
used for the vision system) using the standard serial and
parallel port. A set of functions have also been developed
to command the two grippers and the belt conveyor through
the SMARTLAB interface board.

Details on the other functions available in the API library
can be found in [10].

The applications in the user space are aimed at helping the
human user to communicate with the robotic cell through
a Graphical User Interface (GUI). In Fig. 4 all the GUI
windows are collected in the same graphical page.

The window on the top-left of Fig. 4 is the GUI of the
main user application, which allows performing the most
important operations on the system. In particular, by using
the menu bar or the toolbar, it is possible: to select one of
both the robots, to select the operating mode (4 or 6), to
send drive on/off commands, to select the type of motion
(joint space or task space) and to select the real or the
virtual mode of operation. This latter feature is of the utmost
importance, because it allows testing all the functionalities
of the controller in a simulation environment which respects
the real-time constraint and includes the C3G controllers,
the robot dynamics and the interaction with a virtual envi-
ronment. Hence, the whole control prototyping process can
be developed off-line in a very fast, safe and reliable way;
moreover, the same code developed in the virtual mode can
be executed in the real mode without any modification, also
using the real measurements of the exteroceptive sensors, if
connected.

A detailed description of the functionalities of all the GUI
windows of RePLiCS can be found in [10].

From the main window it is also possible to compile and to
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Fig. 5. Schematic of the VESPRO software architecture

execute the control modules (linked to the real-time kernel)
written by the user. For the execution of visual servoing
tasks, a suitable visual task module is available as a user
control module, which realizes the high level communication
with VESPRO using the serial or parallel communication
functions of RePLiCS. This module collects a number of
functions that can be used for programming and executing
visual servoing tasks, e.g., acquisition of object pose estima-
tion, dynamic trajectory planning, check of workspace limits,
check of consistency of the visual measurements, supervisory
control.

V. VESPRO

VESPRO (Visually Enhanced System for Prismal.ab
Robot Operation) is a software environment able to manage
a multi-camera visual system and to perform visual pose
estimation of moving objects. It can be used both with eye-
in-hand and eye-to-hand cameras.

It is structured into a low level driver (entirely written in C
and in C++ languages) and a GUI for Windows NT operating
system.

The software architecture of VESPRO is represented in
Fig. 5. It can be recognized that the driver is composed by
a collection of software modules that can be activated and
configured by a Driver Manager which translates the high
level commands form the GUIL

The Hardware Interface allows interfacing with the two
MATROX Genesis boards, used as frame grabbers and
image pre-processing. In particular, the low level functions
of the boards are organized in high level functions that
allows, e.g., image acquisition, image windows extraction,
image preprocessing as binarization, convolution, etc. This
is the sole VESPRO module to be hardware dependent (i.e.,
depending on the boards used as frame grabbers). It includes
also a software library for the characterization of the cameras
and the compensation of the main geometrical distortion
phenomena.



The Modelling module is in charge of managing a library
of CAD model of objects and building BSP-tree geometric
representations. The input of this module is an ASCII file
containing a simplified description of the objects geometry
based on a representation of increasing complexity. First of
all, the coordinates of the feature points of each object are
given, then these points are composed to define the object
surfaces, and finally the surfaces are composed to achieve
the object representation. The library allows building the
representation of a single object and of a set of objects
(that may also form a kinematic chain as a robotic arm)
in a form suitable to derive a BSP-tree representation. Two
functions are available to build a BSP-tree: one that use
a dynamic memory allocation, and one that use a static
memory allocation, which is faster but memory expensive.

The Feature Selection module performs the dynamic
choice of features that, at a given sampling time, have to
be found and extracted from the image plane. This module
includes occlusion prediction algorithms to locate the image
feature that will be visible at the next sampling time, based
on the BSP-tree representation of the cell built by the
Modelling module. From the set of visible features, a subset
of optimal features is selected, on the basis of some optimal
criteria. For each optimal feature, an algorithm computes the
optimal size of the window of the image plane to be used
for feature extraction.

The Feature Extraction module includes primitive func-
tions for high level image processing, as edge detection (So-
bel, Prewitt, Canny, Rothwell), corner detection (intersection
of lines extracted using one of the previous methods, Susan,
Sojka), holes and lines detection (under development). These
functions depend on parameters that can be set form the GUI
of VESPRO.

An Object Recognition module is under development,
that allows recognizing all the objects of the library of the
Modelling module that are present in the cell. This module
also allows the estimation of the pose of the recognized
object. Graphical primitives are available for the manual
selection and positioning of the graphical objects on the real
objects in the scene.

The Motion Estimation module is devoted to the real-
time pose estimation based on the Extended Kalman Fil-
ter. This module includes also two independent adaptation
mechanisms for updating the statistical parameters of the co-
variance matrices of the modelling and measurement errors.
The equations of the output model of the Kalman filter are
dynamically generated on the basis of the measurements cur-
rently available, independently from which camera provides
the measurements.

The Communication module allows interfacing VESPRO
with the Visual Task module of RePLiCS.

Finally, the Data module is in charge of recording the
measurements and the main parameters and variables.

The GUI of VESPRO allows the configurations of all
the above modules using graphical objects. For example, it
is possible setting the parameters of the Kalman filter and
of the adaptation algorithm, the calibration parameters of
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Fig. 6. Sketch of the visual tracking experiment.

the cameras and those of the feature extraction algorithms.
Moreover, it is possible to select the target objects from those
available in the library and choosing the type of robot tool.
One section of the GUI permits sending commands to the
Visual Task module of RePLiCS (e.g., the execution of a
grasping task, the synchronization of the robot motion with
respect to the object motion).

VI. EXPERIMENT

An example of visual servoing task for the robotic cell
is described below. The two robots (see Fig. 6) execute
independent tasks. Robot 1 performs a grasping task of a
moving object localized using the visual system. For this
experiment, an eye-to-hand configuration with two cameras
is adopted. Robot 2 performs a different task and during
motion it may occlude the object with respect to the cameras.
The task assigned to Robot 1 includes the following phases:

1) Approaching — When the target object is localized,

starting from the HOME pose, approach the grasp pose
in two steps: first go over the target object (at 5 cm
height), and then descend on it.

2) Grasping — Grasp the object and check the state of the

gripper;

3) Manipulating — Return to the HOME pose carrying the
object.

4) Releasing — Go to the FINAL pose and release the
object.

The trajectory of the robot gripper and the estimated
object position (the orientation is omitted for brevity) are
shown in Fig. 7. The Approaching phase begins after about
4 sec and ends in about 11 sec. During this phase the
robot recognizes the target object and moves over it, initially
keeping a distance of about 5 cm along the vertical direction
(z component); then the robot begins the descent to the
grasping pose. Notice that the object is moving during this
phase while the gripper motion in the horizontal plane (z
and y components) matches the object motion. When the
grasping pose has been reached, the Grasping phase begins
and ends after about 2.5 sec. During this time interval the
pneumatic gripper is closed and a check of the state of the
gripper is performed using the magnetic sensors. At about
17.5 sec the Manipulating phase begins and the robot return
to the HOME pose carrying the object. At about 40 sec the
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Fig. 7. Gripper (solid) and estimated object (dashed) trajectories during
the first experiment.

robot reaches the FINAL pose and releases the object; then,
it returns to HOME (Releasing phase).

In Fig. 8 the state of the visible and selected object
feature points during the experiment are represented; the
total number of image features (object corners) is 16. For
each point, the bottom line indicates when it is visible, the
top line indicates when it is selected for feature extraction.
The maximum number of visible image features, for both
cameras, is 32, but the selection algorithm, at each sampling
time, chooses a subset of 11 optimal features to be extracted.
The A-area corresponds to the occlusion caused by the
gripper during the grasping, while the B-area corresponds to
the occlusion caused by Robot 1. Notice that the motion of
Robot 1 generates a partial occlusion (only on point remains
visible) on the Camera 2 between the Approach and the
Grasping phase. This event does not affect the accuracy of
pose estimation and allows the successful execution of the
Grasping phase. Moreover, during the Manipulating phase,
Robot 1 occludes completely the object with respect to
Camera 1. Again, the visual tracking algorithm maintains
high accuracy, even though the estimated pose is not used
after grasping (only the joint resolver measurements are used
in the Manipulating and Releasing phases).

VII. CONCLUSION

In this work an experimental setup for visual servoing
applications on an industrial robotic cell has been presented.
The software architecture includes an open controller for the
two robots of the cell, based on RTAI-Linux, and a vision
system based of multiple cameras in eye-in-hand, eye-to-
hand or hybrid configurations. The setup allows testing both
image-based and position-based visual servoing algorithms.
In this work a position-based scheme is illustrated where
the visual system is in charge of estimating the pose of
one or more target objects. A visual tracking technique has
been implemented, which guarantees accurate estimation at
camera frame rate, also in the presence of occlusions. An
experimental test where a robot grasps an object partially
occluded by the other robot has been illustrated.
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