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Abstract— Controlling aerial vehicles motion considerably
relies on the measure of their velocity. Yet, obtaining the
translational part of such information from solely the on-board
sensors is still an open issue to envisage fully autonomous
applications. In this paper, we present a nonlinear observer
based on the images from a single on-board camera to on-line
estimate the translational velocity. Spherical image coordinates
are adopted. Then, through Backstepping design, the result
is exploited in a visual servo controller, thus endowing the
vehicle with the capability of fully autonomously positioning
on visual targets. The stability and convergence of the closed-
loop system are established through Lyapunov synthesis. By
means of computer simulations, the validity and robustness of
the proposed system are shown.

I. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) have be-
come subject of intensive research work, due to numerous
advantages they afford. They flight without a pilot onboard,
and thus they might be of amenable size and can oper-
ate in hazardous environments. Especially, Vertical Take-
off and Landing (VTOL) UAVs present remarkable assets.
This is due to their ability of holding stationary, like aerial
vessels, allowing different potential applications: moving in
relatively narrow and cumbersome areas, surveillance and
exploration, interaction with humans as search and rescue,
aerial manipulation [1], [2], to name but a few. Different
sensing modalities can be considered to relay the necessary
environment information required by autonomous vehicle
motion control. We can cite for example Global Positioning
System (GPS), Inertial Measurement Units (IMUs), and
vision. GPS however suffers from signal loss at low altitudes,
does not operate in urban areas [3], [4], and does not provide
measures with enough accuracy to envisage fine motion
control. Vision nevertheless presents noticeable advantages.
Besides providing wealthy information with a resolution of
pixel order, it is passive, light-weight, and cheap [5]. In
this paper we adopt this modality as the main source of
information. Vision has been extensively investigated in the
field of robot manipulators and ground vehicles control,
referred to as visual servoing [6].
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To control UAV motion, a reliable measure of its transla-
tional velocity is needed to close the servo loop (e.g. see [7]).
Yet, existing sensors do not provide a measure of the velocity.
The issue sparked different research works. In [8], virtual
states are introduced in the controller for UAV stabilisation.
Vision was not considered. In [9], scanning laser range sensor
measurements and IMU are fused through simultaneous
localization and mapping (SLAM) and Extended Kalman
Filter (EKF) algorithms for pose and velocity estimation
and control. Adopting laser sensors restricts the height at
which the UAV might operate, in addition to the limited
bandwidth. As for EKF, its performance heavily relies on
the tuned parameters, such as the covariance matrix and
the initial conditions, with no guarantee of convergence
though. In [10], vision-based guidance and control of UAV
for indoor environment is presented. However, an external
Vicon localisation system is employed for vehicle state
determination, thus yielding non-autonomous flight. In [11]
air pressure sensors, vision, and IMU are used for UAV
hovering control. Vision is used to localize the vehicle using
the SLAM technique, while air pressure sensor is used to
obtain its height. Data are fused with an EKF algorithm. A
linear model is adopted to predict the UAV behavior. Linear
models in contrast to nonlinear ones present a restricted
reactivity and domain of convergence.

A technique for velocity determination of a moving cam-
era equipped with an IMU is presented in [12]. The camera
image coordinates are combined with the IMU accelerometer
readings through three consecutive positions to perform
the estimation. Robustness to image noise is however not
reported. Similarly, but using spherical image coordinates,
the velocity of a camera-attached UAV is extracted in [13]. In
[14]–[17] IMU accelerometer readings are used in nonlinear
observers for velocity, pose, and pose and velocity estima-
tion, respectively. In [14] and [15], vision is not adopted.
In this work we focus on vision information rather than
IMU accelerometers, whose measures are known to be very
noisy and biased. Only rotational parts of the IMU data
are considered. Work [18] presents a velocity-free controller
for a fleet of UAVs without vision. It needs the position of
each vehicle, a requirement though not readily met by on-
board sensing. Other works considered optical flow. In [19],
the continuous homography constraint presented in [20] is
applied to estimate UAV velocity, which is then used for
motion control. It is assumed that the ground terrain is planar
and textured. The stability of the closed-loop system is not
provided. In [21], velocity measures are replaced by optical
flow in an image-based UAV controller. Optical flow suffers
from image noise, is not easy to compute from real images,
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and is prone to drifts [11], in addition to the constraint of a
well-textured environment for image matching.

In this paper, we propose a nonlinear observer that uses
vision as the main source of information to perform trans-
lational velocity estimation. IMU is used only to obtain the
attitude and angular velocity of the vehicle. These informa-
tions are known as being reliable. The scenario consists of a
camera facing downward, attached to the UAV, observing
motionless visual targets, consisting of 3D points in this
study. Spherical image coordinates are adopted. As shown
hereinafter, two points are enough to ensure the stability of
the observer. Then, we consider automatic control, where
the objective is to stabilize the vehicle with respect to these
visual targets. We make use of the observer results, thus
building upon previous work [22] by endowing the vehicle
with the capability of fully autonomously tracking visual
targets, without the need of any exteroceptive sensor to
obtain the velocity. The system design and stability proof
are derived through Lyapunov synthesis using Backstepping
design [23].

II. SYSTEM DYNAMICS

We adopt the model used in [24], [25] to characterize
the dynamic behaviors of the vehicle, namely VTOL micro-
aerial craft. Consider a quadrotor of mass m and inertia I.
The equations of motions of the vehicle are thus given by v̇ = −ω × v +

1

m
f

Iω̇ = −ω × (Iω) + Γ ,
(1)

with
f = −u e3 +mgR⊤ e3 , (2)

where × denotes the cross product. v = (vx, vy, vz)
⊤ and

ω = (ωx, ωy, ωz)
⊤ represent respectively the translational

and rotational velocity of vehicle-fixed-frame {Rs} relative
to fixed Cartesian base frame {Rb} (see Fig. 1). Note that v
and ω are expressed in Cartesian frame {Rs}. The latter is
assumed to be located at the center of mass of the vehicle,
with Z axis fixing downward. f ∈ R3 and Γ ∈ R3 correspond
to the total linear forces and total torques acting on the craft,
respectively. Scalar u represents the thrust control input to
the vehicle, g the gravity term, and e3 = (0, 0, 1)⊤, i.e. the
Z axis of the vehicle. R denotes the rotation matrix defining
the orientation of {Rs} with respect to inertial frame {Ri}.
The latter has its z-axis fixing downward. We assume that
R can be estimated using literature techniques, e.g. [26].

III. VISUAL INFORMATION

The choice of the type of visual features plays a predom-
inant role in such a way as to condition the stability and
behavior of the designed image-based robotic system. In this
paper, we build upon previous work [22], where we employ
spherical visual features. More precisely, we adopt spherical
centroid visual information. Such features lead to a passivity
property, in such a way as to make the system amenable from
the control design point of view [25]. In addition, they do
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Fig. 1. Vehicle associated frames.

not necessitate a matching of the observed points through
the successive acquired images, because of the summation
(integration), and are robust to image noise.

We assume without loss of generality that {Rs} coincides
with the camera frame. Consider an object (target) character-
ized by a set of n stationary points Pi, whose coordinates in
{Rs} are sPi = (Xi Yi Zi)

⊤ (see Fig. 2). The unnormalized
spherical centroid is

q =

i=n∑
i=1

si with si =
sPi

|sPi|
, (3)

where si represents the spherical image coordinates of point
Pi, when considering without loss of generality a unitary
sphere radius. Term | · | denotes the Euclidean norm. Con-
sidering pi ∈ R2 as the perspective image coordinates of
Pi (Fig. 2), one can notice that si can be solely expressed
as a function of pi as si = p̄i/|p̄i|, where p̄⊤

i = [p⊤
i 1].

This result is in fact obtained by dividing by Zi both the
numerator and denominator of si in (3). The feedback visual
error used in [25] is δ = q − q∗, where q∗ is the desired
spherical feature. It is expressed as q∗ = R⊤b, where b
represents the known desired direction of the visual feature
in the inertial frame. Feedback error δ as formulated above
suffers from the fact that it leads to a system which is not
well-conditioned. To cope with this, another version δ1 is
used [22]:

δ1 = q∗
0 × q + λ q∗

0q
∗⊤
0 δ , (4)

where q∗
0 = q∗/|q∗|, and λ > 0 is a constant scalar. One can

verify that time variation of δ1 can be obtained as follows:

δ̇1 = −ω × δ1 −AQv , (5)

where

Q =
n∑

i=1

1

|sPi|
(I3−sis

⊤
i ), and A = [q∗

0]×+λq∗
0q

∗⊤
0 . (6)

[ a]× denotes the skew-symmetric matrix of vector a, and
I3 the 3× 3 identity matrix. Note that matrix Q ∈ R3×3 is
positive definite as long as more than one point is observed
(n > 2) [25]. Note also that it encloses the image point depth
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|Pi|. One also has

A−1=−[q∗
0]×+

1

λ
q∗
0q

∗⊤
0 and

d

dt
A−1=A−1[ω]×−[ω]×A

−1.

(7)

IV. NONLINEAR OBSERVER AND CONTROL SYSTEM

In this section, we propose a nonlinear observer to estimate
online the translational velocity of a quadrotor, then derive a
low-level controller to automatically stabilize it with respect
to visual targets. It is assumed that the vehicle is equipped
with an onboard camera, which has in view a stationary
object. We propose to exploit δ1, introduced by (4), as the
main information to update the observer, as well as feedback
to the controller. The stability and convergence of the system
is demonstrated by means of Lyapunov analysis.

A. Observer and controller

Let v̂ be the estimate of vehicle velocity v. We propose
the following nonlinear observer:

δ̃1o = δ1 − δ̂1

ṽo = v − v̂

˙̂
δ1 = −ω × δ1 −AQv̂ + k1o δ̃1o

v̂ = ẑ − k2o A
−1δ̃1o

˙̂z = −ω × v̂ + 1
m f − k2o Gδ̃1o − ξ

G = k1o A
−1 − Ȧ

−1
and ξ = Q⊤ A⊤δ̃1o.

(8)

Gains k1o and k2o are positive scalars to tune the observer
convergence rate. A−1 and Ȧ

−1
are expressed as (7). We

show afterwards that the above observer yields the estimation
error ṽo, as well as δ̃1o, to converge to zero. Note that in
the proof it is assumed that the image depth, namely Zi,
is known since |sPi| is enclosed in matrix Q. The latter is
involved in (8). Such a depth measure can in fact be retrieved
by employing stereo vision and using algorithmes such as
triangulation [27]. Nevertheless, we found that the control
algorithm we propose is robust with respect to the image
depth. This is reported and more detailed later in Sect. V.

Then let us propose the following controller:

ū =
(
uωy − uωx u̇

)⊤
:= mc21 c2 A

⊤
(
− (c1c2 + c3) δ3 − 1

c1
A3 δ̃1o

+ c1H (δ1 − δ2)
)
∈ R3 ,

(9)

where c1, c2, and c3 are positive scalar gains to tune the
controller. (δ2, δ3) ∈ R3 are Backstepping errors as follows:

δ2 = δ1 −
1

c1
A−⊤v̂ , and δ3 = δ2 −

1

mc21 c2
A−⊤f , (10)

where A3 = A−⊤Q⊤A⊤. The above controller yields
feedback visual error δ1 to converge to zero using only the
on-board camera and IMU angular data, as long as{

k1o > µ1o , k2o > µ2o q
−1
min , c1 > µ1c h

−1
min ,

c2 > hmax + c−1
1 µ2c , c3 > µ3c ,

(11)

Fig. 2. Spherical projection: spherical si and perspective pi image
coordinates of 3D point Pi.

where
µ1o = 1

2c
−1
1 ∥A3∥F , µ2o = 1

2∥Q∥F (∥A∥F + 2 ∥A2∥F )

µ1c =
1
2∥Q∥F ∥A∥F , µ2c =

1
2 c1

∥A3∥+ 1
2∥A2∥F ∥Q∥F

µ3c =
1
2 ∥A2∥F ∥Q∥F ,

(12)
and such that qmin represents a bound on the minimal
eigenvalue of Q, while hmin and hmax are bounds on
respectively the minimal and maximal eigenvalues of matrix
H = AQA⊤. Note that H is positive definite, since it is the
case for Q. Matrix A2 is given by A2 = A+(k2o/c1)A

−⊤.
Finally, ∥ · ∥F denotes the Frobenius norm.

B. Proof

The convergence of both observer and controller is now
established. First, consider the following Lyapunov candidate
function related to the observer:

Vo =
1

2
|δ̃1o|2 +

1

2
|ṽo|2. (13)

The time derivative of (13) writes

V̇o = δ̃
⊤
1o

˙̃
δ1o + ṽ⊤

o
˙̃vo. (14)

Time differentiating the first equation of (8) and taking into
account kinematics (5) of visual error δ1 yields

˙̃
δ1o = −k1o δ̃1o − AQṽo. (15)

Similarly for the second equation of (8), and taking into
account result (15), yields

˙̂v = −ω × v̂ + k2o Qṽo +
1

m
f − ξ. (16)

Then, subtracting the above relationship from the first equa-
tion of (1), it follows that:

˙̃vo = −ω × ṽo − k2o Qṽo + ξ. (17)

Plugging (15) and (17) into (14), we have

V̇o = −k1o|δ̃1o|2 − k2o ṽ
⊤
o Qṽo , (18)

which is negative definite (V̇o < 0), since Q > 0, provided
that more than one point is observed in the image. This shows
that the estimation error ṽo, along with δ̃1o, converges to
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zero. Therefore, the observer we propose by (8) ensures the
estimation of the vehicle translational velocity.

Now we also show the stability and convergence of the
velocity-free visual servo controller presented above. Con-
sider first the following Lyapunov candidate function related
to feedback visual error δ1

V1 =
1

2
|δ1|2. (19)

Time differentiating (19), taking into account (5), and notic-
ing that x⊤(x× y) = 0, it follows that:

V̇1 = δ⊤1 δ̇1 = −δ⊤1 AQv. (20)

Now, substituting v according to the second expression of
(8) yields

V̇1 = −δ⊤1 AQv̂ − δ⊤1 AQṽo. (21)

We have shown earlier that the observation errors converge
to zero. Thus assume, without loss of generality, and only
for analysis purpose, that ṽo ≈ 0. We thus would have V̇1 =
−δ⊤1 AQv̂. Therefore, reaching

v̂ := c1A
⊤δ1 (22)

would yield V̇1 := −c1δ
⊤
1 AQA⊤δ1 = −c1δ

⊤
1 Hδ1, a

negative definite function, because of H . Accordingly a new
Lyapunov error, namely δ2, is considered. It has already been
introduced by (10). Taking into account δ2, V̇1 of (21) is re-
written as

V̇1 = −c1 δ
⊤
1 Hδ1 + c1 δ

⊤
1 Hδ2 − δ⊤1 AQṽo. (23)

Similarly, δ̇1 becomes

δ̇1 = −ω × δ2 −
1

c1
[ω]×A

−⊤v̂ −AQv̂ −AQṽo. (24)

To the aim of nullifying δ2, define the following Lyapunov
candidate storage function:

V2 =
1

2
|δ2|2. (25)

From (10), time differentiating δ2, replacing d
dtA

−⊤ accord-
ing to (7), while δ̇1 and ˙̂v are substituted by (24) and (16),
respectively, we have

δ̇2 = −ω × δ2 − c1H(δ1 − δ2)− 1
mc−1

1 A−⊤f

+ c−1
1 A−⊤ ξ −A2 Qṽo.

(26)

Plugging (26) into time variation V̇2 of V2 given by (25)
yields

V̇2 = −c1δ
⊤
2 H(δ1 − δ2)− 1

mc−1
1 δ⊤2 A

−⊤f

+ c−1
1 δ⊤2 A

−⊤ξ − δ⊤2 A2 Qṽo.
(27)

A command candidate to make V̇2 negative is 1
mA−⊤f :=

c21c2δ2. Thus another control error is adopted, i.e. δ3 previ-
ously introduced in (10). Therefore, consider the Lyapunov
candidate function

V3 =
1

2
|δ3|2. (28)

From (10), time variation of δ3 is

δ̇3 = δ̇2 −
1

m
(c21c2)

−1

(
d

dt
(A−⊤) f +A−⊤ ḟ

)
. (29)

Note that the classical relationship Ṙ = R[ω]× is used. With
the new error δ3 introduced, from (26) δ̇2 becomes:

δ̇2= −ω ×
(
δ3 +

1
m (c21c2)

−1A−⊤f
)
− c1H(δ1 − δ2)

+ c1c2(δ3 − δ2) + c−1
1 A−⊤ξ −A2 Qṽo.

(30)
Similarly, V̇2 becomes

V̇2 = −c1δ
⊤
2 H(δ1 − δ2) + c−1

1 δ⊤2 A
−⊤ξ

− c1c2|δ2|2 + c1c2 δ
⊤
2 δ3 − δ⊤2 A2 Qṽo.

(31)

Updating (29) according to (30) yields

V̇3 = −c1 c2 δ
⊤
3 δ2 − δ⊤3 A2 Qṽo − c3 |δ3|2. (32)

Finally, consider the following Lyapunov function that en-
closes the errors of both the observer and controller:

V= Vo + V1 + V2 + V3

= 1
2 |δ̃1o|

2 + 1
2 |ṽo|2 + 1

2 |δ1|
2 + 1

2 |δ2|
2 + 1

2 |δ3|
2.

(33)

Time differentiating (33), and replacing results (18), (23),
(31), and (32), we have

V̇ = −k1o|δ̃1o|2 − k2o ṽ
⊤
o Qṽo − δ⊤1 AQṽo

−c1δ
⊤
1 Hδ1 − c1 δ

⊤
2 (c2I3 −H)δ2 − δ⊤2 A2 Qṽo

+ c−1
1 δ⊤2 A−⊤Q⊤A⊤ δ̃1o − δ⊤3 A2 Qṽo − c3|δ3|2 .

(34)

Noticing that x⊤ y 6 |x| |y|, |Mx| 6 ∥M∥F |x|, and a b 6
1
2 (a

2 + b2), for any matrix M , vectors (x,y), and scalars
(a, b), we can upper bound V̇ as follows:

V̇ 6 −k1o|δ̃1o|2 + 1
2 c1

∥A3∥F (|δ2|2 +|δ̃1o|2)− c1δ
⊤
1 Hδ1

+ ∥A∥F ∥Q∥F ( 12 |δ1|
2 + 1

2 |ṽo|2)− k2oṽ
⊤
o Qṽo

+ 1
2∥A2∥F ∥Q∥F (|δ2|2 + |ṽo|2)− c1 δ

⊤
2 (c2I3 −H)δ2

+ 1
2∥A2∥F ∥Q∥F (|δ3|2 + |ṽo|2)− c3|δ3|2.

(35)
The above inequality is finally recast as

V̇ 6 −(k1o − µ1o)|δ̃1o|2 − ṽ⊤
o (k2o Q− µ2o I3) ṽo

− δ⊤1
(
c1H − µ1cI3)δ1 − (c3 − µ3c)|δ3|2

−δ⊤2

(
c1(c2I3 −H)− µ2cI3

)
δ2 ,

(36)

where µ1o, µ2o, µ1c, µ2c, and µ3c have been introduced by
(12). Taking into account the lower bounds of observer and
control gains set by (11), one has V̇ negative definite (V̇ <
0). Accordingly, the convergence statement of the controller
presented earlier in this section follows.
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V. RESULTS

The velocity-free controller proposed in the presented
paper is tested via computer simulations using C++ program-
ming language. The robotic task consists in automatically
positioning the UAV with respect to an observed object. The
object is represented by a set of four points. In this section,
we report results of both ideal and error-noisy environments.

The quadrotor considered for the study is of mass m =
0.55 kg and inertia I = 9 e−3 diag(1, 1, 2) kg ·m2,
operating in an environment of gravity g = 9.8 m/s2. As for
the communication, the vehicle accepts control commands
at a rate of 1 KHz, while the images are provided by
the on-board camera at a rate of 25 Hz. The target points
are placed in the 3D space at the following positions with
respect to base frame {Rb}: bP1 = (0.5, 0.5, 2)⊤m; bP2 =
(0.5,−0.5, 2)⊤m; bP3 = (−0.5,−0.5, 2)⊤m; and bP4 =
(−0.5, 0.5, 2)⊤m. As for the UAV locations, its desired
position with respect to {Rb} is set to bts = (0, 0, 4)⊤m,
while the initial one to (−1.3, 1, 7)⊤ m . We empirically
tune the controller gains to k1o = 7, k20 = 0.5 , c1 = 0.4,
c2 = 9, and c3 = 10. Constant λ involved in definition (4) of
visual feedback δ1 is set to 7. The observer initial values on
the velocity are randomly set to v̂|t=0 = (10, 10, 10)⊤ cm/s.
As for the initial values of δ̂1, they are set to δ1|t=0, since
the latter is obtained from the camera image.

We first consider an ideal case, where neither error nor
noise is introduced. This is interesting to deduce the main
outcome of the controller. The corresponding results are
shown in Fig. 3. In Fig. 3(f), estimated translational velocity
v̂ follows actual one v, besides the observer runs 40 times
slower than the vehicle control update rate. Note that by
increasing gains k1o and k2o we obtained even better tracking
of velocity v. Nevertheless, we preferred to keep the reported
gain values to make a trade-off with robustness to image
noise and modeling errors. Especially, we can see that the
feedback visual errors converge to zero and that the UAV
automatically reaches the desired position [Figs. 3(a) and
3(b)]. The vehicle trajectory in the 3D space is depicted in
Fig. 3(d), while the variation of the image points in 3(c).
The control inputs, thrust u and torque Γ to the UAV, are
acceptable [see Fig. 3(e)]. These results thus validate the
proposed controller in the ideal case.

In the simulation above, the feature depth is assumed
known. This holds when adopting stereo vision, as high-
lighted earlier. It is not the case when using only one on-
board camera. To deal with this it is common to replace
the actual depth with the desired one Z∗; that measured
at the desired configuration [6]. We do so in the following
simulation in order to test the robustness of the system to
the corresponding error. In addition, the on-board images
are corrupted with a White Gaussian noise (WGN) of 1 cm
standard deviation (SD), the measures of angular velocity
ω are corrupted with a WGN of 2 deg/s SD, and the roll,
pitch, and yaw angles measures are corrupted with WGNs of
2 deg SD respectively. Corresponding results are shown in
Fig. 4. From Fig. 4(f), we can notice that velocity estimate v̂z

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10 12 14 16 18 20

time [s]

Visual error δ1

δ1x
δ1y
δ1z

(a)

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 2 4 6 8 10 12 14 16 18 20

time [s]

Pose error [m] and [rad]

X

Y

Z

θx

θy

θz

(b)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y
x

On-board image

(c)

3D position [m]

{Rs}t=t0
Vehicle path

Target points

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8
X -0.8

-0.4
0

0.4
0.8

1.2

Y

2
3
4
5
6
7
8

Z

(d)

-6

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 20

time [s]

Thrust [N] and torques [N.m]

u Γx Γy Γz

(e)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20

time [s]

Velocity v and estimated v̂ [m/s]

vx

v̂x

vy

v̂y

vz

v̂z

(f)

Fig. 3. Velocity-free visual control of the UAV in an ideal case: (c)
evolution of the image points. The desired, initial, and final locations are
respectively denoted by red ”×”, black ”+”, and green ”+” symbols - (d)
the UAV moves from up to down. The UAV body-fixed frame {Rs} is
depicted with the red, green, and blue axes referring respectively to its X,
Y, and Z axes.

follows well the actual one. Especially, the feedback visual
errors decrease to zero and the UAV reaches the desired
location [Fig. 4(a) and 4(b)], which is the main objective
of this work. The vehicle trajectory is depicted in Fig. 4(d),
while the evolution of the points in the image in Fig. 4(c).
Note that we tested the system for errors on Z up to for
example 300% (overestimation). The system still converges
with acceptable behavior. These results clearly show the
robustness of the proposed velocity-free controller to both
errors on image depth and sensor noise.

VI. CONCLUSION

In this paper we presented a velocity-free visual servo
controller to automatically stabilize rotary wing aerial ve-
hicles with respect to visual targets. Our algorithm does not
employ exteroceptive sensors nor IMU accelerometers. The
former yield to non-autonomy of the system, where the latter
suffer from noisy and biased measures and are considered
not reliable. Instead, in the present work only vision, along
with IMU angular readings, is employed as sensing modality.
To do so, a nonlinear observer for velocity estimation was
first proposed. Then, a low-level nonlinear controller was
derived that exploits the observer outcomes. The system

1526



-1.5

-1

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40

time [s]

Visual error δ1

δ1x
δ1y
δ1z

(a)

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

3.5

0 5 10 15 20 25 30 35 40

time [s]

Pose error [m] and [rad]

X

Y

Z

θx

θy

θz

(b)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y

x

On-board image

(c)

3D position [m]

{Rs}t=t0
Vehicle path

Target points

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8
X -0.8

-0.4
0

0.4
0.8

1.2

Y

2
3
4
5
6
7
8

Z

(d)

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

time [s]

Thrust [N] and torques [N.m]

u Γx Γy Γz

(e)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

time [s]

Velocity v and estimated v̂ [m/s]

vx

v̂x

vy

v̂y

vz

v̂z

(f)

Fig. 4. Velocity-free visual servoing in noisy case with desired Z∗ instead
of actual image depth Z in the controller.

stability proof has been established with Lyapunov theory,
where the validation has been performed with computer
simulations. Note that the system performed well albeit the
observer is updated with a slow rate compared to that at
which the vehicle operates and thus the velocity changes; 40
times slower in this case study. Although the image depth
is assumed known in the stability proof, we noticed that the
system is very robust to this measure, besides the robustness
to sensor noises. Notice nonetheless that such a depth can
in fact be retrieved using existing vision techniques of the
literature. Future works consists in testing the algorithms on
a real hardware system.
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