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A b s t r a c t  

The goal of this work is to provide an overview of major control techniques that manage 
the occurrence of singularities for robotic systems. The common feature of these methods 
is a modification of the inverse differential kinematic mapping which is ill-oonditioned 
in the neighbourhood of a singularity. The following solutions are discussed; namely, the 
Jacobian transpose, the Jacobian pscudoinverse, and the damped leant-squares Jacobian 
inverse. 

I n t r o d u c t i o n  

At a singular configuration the linear mapping which relates the joint-space velocity 
vector to the task-space velocity vector through the Jacobian matrix of a given ma- 
nipulator becomes rank-deficient and the solution of the inverse kinematics problem is 
undefined; furthermore, very high values and discontinuities of the joint-space velocity 
result in the neighbourhood of the singularity due, respectively, to the unfeasible com- 
ponents of the assigned task-space velocity vector and to sudden crossings through the 
singular configuration itself. 

When a preprogrammed reference task-space trajectory is to be tracked, it is nor- 
mally possible to plan the trajectory so that singular configurations are avoided. Alter- 
natively, it is possible to interpolate the joint-space solution close to the singularities. 
On the other hand, sensory control applications --where the reference trajectory is 
not known in advance--- demand for singularity-robust inverse kinematics algorithms 
to guarantee the effectiveness of the robot control system all over the manipulator's 
workspace. 

In order to overcome singularities, the basic numerical solution to the inveme kine- 
matics problem which can be obtained by simply inverting the direct kinematic mapping 
is replaced by suitably-defined mappings relating the task-space to the joint-space; these 
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are designed to ensure well-behaved joint-space solutions close to a singularity, while 
guaranteeing accurate trajectory tracking fax from singularities. 

The present work is aimed at surveying the most effective inverse differential kine- 
matics techniques which allow control of robotic systems through singularities. We will 
focus our attention only to the singularity handling issues, while eventual kinematic 
redundancy will not be exploited. 

A very simple inverse kinematics solution can be obtained by using the transpose of 
the Jacobian matrix to relate the joint-space velocity vector to the task-space location of 
the manipulator [1]; this corresponds to adopting an impedance control law for an ideal 
manipulator of simplified dynamics [2]. The approach leads to a closed-loop formulation 
which offers an iterative solution to the inverse kinematics problem; the solutlon is 
exact for a given constant task-space location while is approximate in the trajectory- 
tracking case. The solution is computationally inexpensive and performs very robust 
behaviour close and through singular configurations; as a drawback, optimal tuning of 
the algorithm is required [3] and degraded accuracy is experienced when tracking fast 
task-space trajectories. 

A more accurate solution can be obtained by using a pseudoinverse of the Jacobian 
matrix to transform desired task-space trajectory into the corresponding joint-space 
motion [4]. This solution is defined even at singular configurations, but high joint ve- 
locities may result in the neighbourhood of singularities [5]. Compared to the transpose 
solution, the pseudoinverse solution is computationally demanding in view of real-time 
applications. An efficient procedure to compute the pseudoinverse of the Jacobian ma- 
trix can be devised by taking advantage of the kinematic analysis of the manipulator 
structure. In order to avoid excessive joint velocities close to singularities, the manip- 
ulator can be treated as singular in a suitably defined region around each singularity; 
inside the region the available extra degree(s) of freedom is used to achieve a continuous 
joint velocity solution [6]. 

Another approach to solve the inverse kinematics problem is the damped least- 
squares technique giving an approximate solution which is well-conditioned and defined 
everywhere in the manipulator's workspace [7,8]. The approach seems to be promising 
for real-time applications, as it implicitly removes the unfeasible motion components 
while it requires less computation than the previous method. A problem is to select a 
damping factor which results in a satisfactory trade-off between tracking accuracy and 
feasibility of the resulting joint-space solution. A varying damping factor gives better 
performance but is, in general, expensive to compute on-line [9]; simplified computation 
has recently been proposed [10]. Geometrical insight may prove very useful to perform 
the tuning of the damping factor [11]. 

D i f f e r e n t i a l  k i n e m a t i c s  

A velocity ¢1 E R ~ in joint-space coordinates is related to the corresponding velocity 
E R"  in task-space coordinates through the equation 

~: = J ( q ) c l ,  (1) 
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where J(q) is the (rn x n) Jacobian matrix of the manipulator considered. In all cases 
of interest it is n _> rn; when n > rn the manipulator is said to be redundant and there 
exists an (n - rn)-dimensional subspace of R" in which any joint-space velocity gives a 
null velocity in the task space. 

If for some configuration £I it happens that rank(J(~l)) = r < m, the configuration 
is termed as singular. At a singular configuration the subspace of the joint velocity space 
which maps into the null velocity vector in the task space increases its dimension, as 
dim()/(J(£1))) = n - r  > n - r n .  On the other hand, since dim(R(J(~)))  = r < r n ,  only 
an r-dimensional subspace of task-space velocities can be spanned at a singularity; this 
subspace is the space of feasible motion for the manipulator. In general, at a singular 
configuration an assigned velocity vector in the task space may thus have both  Iea~ible 
components, lying in .~(J(~)), and degenerate components, belonging to £~ (J(£1)). It 
is clear that  no joint velocity can provide a task-space velocity'having components in a 
degenerate direction. 

An effective tool to analyze the linear mapping from the joint velocity space into 
the task velocity space defined by (1) is offered by the singular value decomposition of 
the Jacobian matrix; this is given by 

n t  

J - -  u r v  T = ( 2 )  

i = 1  

where U is the rn x rn matrix of the output  singular vectors u , ,  V is the n x n matr ix  
of the input singular vectors v , ,  and P, = ( S 0 ) is the rn x n matr ix whose ( m x  m) 
diagonal submatrix S contains the singular values o~ of the matr ix  J .  If r denotes the 
rank of J ,  the following hold: 

a) ol _>o2 > . . .  >or, > o , + 1  . . . .  = o , ,  = 0  

b) ~ (a) = span{ul,..., u,  } 

c) )4(J) = span{v,+1,... ,v,) 

Notice that the m - r output singular vectors associated to the null singular values 
represent the degenerate directions in the given configuration. The singular value de- 
composition is continuous and well-behaved not only in singular values but also in the 
direction of the singular vectors; the u, and vd vectors will thus not change much in the 
neighbourhood of a singularity. 

The solution of the inverse differential kinematics problem requires to find the joint 
velocity Cl associated to an assigned task-space velocity )i. In the remainder, even if the 
robotic system is redundant with respect to the given task, redundancy will not be 
exploited in solving the inverse kinematics. 

T h e  J a c o b i a n  t r a n s p o s e  m e t h o d  

In the previous section the differential kinematic mapping from the joint velocity space 
into the task velocity space was described in terms of the range space and null space 
of the Jacobian matrix. Therefore, the inverse mapping is characterized by the range 
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space and null space of the transpose of the Jacobian matrix. In particular, the following 
well-known relations hold: 

(3) 

which somewhat indicate the possibility of building an inverse mapping based on the 
Jacobian transpose matrix. 

On the other hand, it is also known that  the Jacobian transpose describes the static 
mapping from the task force space into the joint torque space, i.e. 

t = J T ( q ) f  (4) 

where t E R n is the vector of joint torques and f E R m is the vector of end-effector 
forces. Notice that  eq. (4) can be derived by application of the principle of virtual work 
to eq. (1). As a consequence, the relations in (3) fully characterize the inherent duality 
existing between the kinematic mapping and the static mapping. 

In view of solving the inverse kinematics problem, the mapping (4) can be conve- 
niently adopted to devise an iterative solution algorithm [2]. In detail, let 

e = x ~  - x ( 5 )  

denote the difference between an assigned task-space position Xd and the task-space 
position x that  can be reconstructed from the current joint space solution. This differ- 
ence can be used to construct an elastic force vector K e  - -wi th  K positive definite and 
usually constant, diagonal-- which has to be applied at the end effector of a 'virtual' 
manipulator, with the same kinematics vs the actual manipulator but with null mass 
and unit viscous damping, in order to drive its end-effector position x to the given 
position xa. 

Upon these premises, one may adopt an impedance cofxtrol law for the virtual 
manipulator which in turn will provide the inverse kinematics solution for the actual 
manipulator. The sought law then results in 

~- JT(q)Ke.  (6) 

A simple Lyapunov argument can be used to prove the stability of the closed-loop 
feedback virtual system and then the convergence of the inverse kinematics algorithm [1]; 
notice that  jT  K determines the convergence rate. 

If the assigned endoeffector position is time-varying, that  is one is interested to 
inverting a task-space trajectory into a corresponding joint-space trajectory, two possi- 
bilities exist for the application of solution (6): Get a significant sampling of the given 
trajectory, let the algorithm solve for each point, and then interpolate between solutions 
in the joint space. Let the algorithm run on-line along the given trajectory, thus directly 
generating the joint-space trajectory. In both cases, inversion errors must be tolerated: 
In the former, those are due to the interpolation. In the latter, those descend from the 
'dynamic'  formulation of the problem, i.e. from the tracking properties of the algorithm. 

As a matter  of fact, the on-line solution is more appealing for control purposes. 
In that  case, it can be recognized that  the problem of algorithm tracking performance 
becomes crucial; the matrix jT(q)K and the given velocity ~ are the relevant quantities 
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affecting performance. In particular, in practical discrete-time implementation of the 
algorithm, an upper bound exists on the norm of jT K which varies with the current 
configuration. 

An enhancement of the algorithm can be achieved by rendering the matrix jT K less 
sensitive to variations of joint configuration along the trajectory; this is accomplished 
by choosing a configuration-dependent K which compensates for variations of J ,  for 
instance see [3]. 

At a kinematic singularity Cl, when Ke E At(JT(~I)) with e ~- 0, it is cl = 0 and 
the algorithm may in principle get 'stuck'. It can be easily shown, however, that such 
an equilibrium point is unstable as long as the time evolution of xa drives Ke  outside 
At(JT). This result is not surprising since, in force of the relations in (3), vectors 
belonging to the subspace of the degenerate components cannot be accomodated by 
both the virtual and the actual manipulator. 

Further insight into the features of this solution can be gained by considering the 
singular value decomposition of the Jacobian transpose; from (2) it is 

= a,v, uT 
i = t  

which reveals a continuous, smooth behaviour of the solution close and through singular 
configurations. 

T h e  J a c o b i a n  p s e u d o i n v e r s e  m e t h o d  

The most natural approach to solve differential kinematics is based on the inversion of 
the mapping (1) using [4] 

dl = jr(q) (j(q)jT(q))-' ~. (8) 

Notice that when n = m solution (8) simplifies to/l = J-%L Solution (8) presents two 
major limitations: It is not defined at a singular configuration. In the neighbourhood 
of a singularity, it gives an exact solution that may result in high joint velocities. 

For this reason, an improved solution is obtained using the pseudoinverse of the 
Jacobian. The pseudoinverse jt of J is a unique matrix satisfying the conditions [12] 

J i j a  = a 

S'fb = 0 

St(a + b) = Jta + Jib 

Solution (8) is then modified into 

and satisfies the condition 

va e ,v i (J) (9) 

vb e (J) (lO) 

Va E .R,(J) Vb E ,P,," (J). (11) 

(12) 

rain Ilqll (13) 
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of all ~l that  fulfill 
rain J[5 -- J(q)£11[. (14) 

q 

Although solution (12) is defined even for singular configurations, high joint velocities 
will still result in the neighbourhood of singularities [5]. This happens because eq. (12) 
is equivalent to eq. (8) at  non-singular configurations, while it discontinuously offers an 
approximate solution at singularities; the latter aspect is a source of additional problems 
since it implies discontinuous solutions in joint space. In detail, by using (12), first the 
set of all joint velocities ensuring best accuracy, is determined via (14) and then the 
minimum norm joint velocity in that  set is chosen via (13) as the solution. Since a 
minimum norm criterion is used after the accuracy requirement" has been satisfied, it 
is difficult to guarantee feasibility of the solution. This issue becomes crucial when t h e  
manipulator attains near-singular configurations; in these cases, indeed, the Jacobian 
matrix is full-rank but ill-conditioned. As a consequence, an exact solution is possible 
but very large joint velocities are required if the assigned ~ has components along 
directions which become degenerate at the singularity. 

In the framework of the singular value decomposition, with reference to eq. (2), the 
pseudoinverse solution (12) can be written in the form 

1 T -  
Cl = - - v , u ~  x .  ( 1 5 )  

a l  

When a singularity is approached, the smallest singular value tends to zero; this makes 
the solution very sensitive to the component of the commanded velocity in the u~ 
direction which thus requires a large joint velocity to be performed. On the other hand, 

T becomes degenerate and joint velocity discontinuity at the singularity the direction u, ,  
is experienced if a non-null task velocity is specified in that  direction. 

In order to exploit the potential of solution (12), a systematic and efficient pro- 
cedure to compute the pseudoinverse of the Jacobian matrix is needed as well as the 
continuity of the joint-space solution must be ensured. 

The first problem can be faced by suitably transforming the Jacobian matrix as 

where P is an (rn x rn) transformation matrix such that  Jx is an (r x n) matrix of full 
rank, and J2 is the ( ( m  - r) x n) matrix resulting from the above transformation. Once 
J l  has been derived, it is straightforward to compute the pseudoinverse of the Jacobian 
as [131 

j t  _- j,T (z, jT j j T ) - I  z,z  . (17) 

The problem thus remains to find the transformation matrix as simply as possible. It 
can be recognized that P is a projector onto a base of the task velocity space, whose first 
r rows span the subspace of feasible motion and last (m - r) rows represent directions 
of motion that  linearly depend on the first. 

Geometrical insight into the kinematic structure is helpful to derive, case by case, 
the required projector. For typical manipulators it is possible to identify classes of 
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singular configurations which allow the determination of P in a systematic manner; to 
this end, it is convenient to analyze the singularity in a suitable link-fixed frame. This 
has been demonstrated, for instance, for a six-degree-of-freedom PUMA-like geometry 
with zero offsets [6]: For the three well-known types of  singularities (wrist, elbow, and 
shoulder) it turns out that  the projectors can be expressed in terms of the two rotation 
matrices from the base frame to the frames of links 5 and 2, respectively. In these cases, 
the computation of P is inexpensive as those matrices are already available for Jacobian 
computation. 

Secondly, the problem of continuity of the joint-space solution can be tackled by 
treating the manipulator as singular in a suitably defined region around each singularity; 
this implies that  only r task space directions are accomplished. Thus, (n - r) degrees of 
freedom are available in the region, of which (n - m) are the usual redundant degrees 
of freedom - - t h a t  are of no interest for the present work--  and (m - r) are the extra 
degrees of freedom generated by regarding the manipulator as if it were singular. The 
latter are exploited to ensure the continuity of the joint velocity solution. 

In order to accomplish the above, the computation of the pseudo inverse is carried 
out as in (17), using a matrix J l  which has the same structure in the whole region as in 
the singularity. Let J l  denote such matrix; the modified pseudoinverse is computed as 

_ (is) 

Continuity can be accomplished by interpolating between the singularity and a border 
point qb. Inside the region, the solution (12) is modified into 

dl = J - (q )~  -k (I -- J - (q ) J (q ) )  dlo (19) 

where ( I -  J - J )  is a projector onto ~ ( J l )  which approximates X(J)  inside the region 
but coincides with it at the singularity. 

In the case of a single singularity, a simple choice for qo is. 

¢I0 = a J t (qb )x  (20) 

where a is the interpolation factor which is zero at the singularity and unity at the 
border of the region. In the case of multiple singularities, one interpolation factor 
has to be used for each singularity to ensure continuity when the manipulator transits 
from one restricted region to another region associated with a singularity of different 
dimension; a continuous solution could be obtained using multiple border points, but 
this gives a complex solution with increased computation. In a PUMA-like structure, 
the wrist singularity is of primary concern since it is difficult to predict at  the trajectory 
planning level. In this case, one may think of interpolating only for that  singularity, 
tolerating instead discontinuities due to elbow and shoulder singularities; in fact, those 
singularities are naturally characterized in the task space and thus they can be avoided 
during the planning [6]. 
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The damped least-squares Jacobian inverse method 

Another method which is especially directed to overcoming the problem of control 
through singularities makes use of the damped Ir~ast-squares inverse of the Jacobian 
matrix for solving the inverse differential kinematics problem [7,8]. The method corre- 
sponds to using 

cl = j r (q )  ( j (q) jZ(q)  + Asi) - l  )k (21) 

in lieu of solution (12); in (21) A E R is the damping factor. It is easily seen that  when 
A is zero, solutions (8) and (21) become identical. 

Solution (21) satisfies the condition 

min II~ - J(q)q[I 2 + A 2 ll~lll s (22) 

which, differently from (13,14), accounts for both accuracy and feasibility in choosing 
the jolnt-space velocity required to produce the given task-space velocity. In this regard, 
it is essential to select a suitable value for the damping factor; small values of A give 
accurate solutions but low robustness to the occurrence of singular and near-singular 
configuration~ high values of ~ result in low tracking accuracy even where a feasible 
and accurate solution would be possible. 

Resorting to the singular value decomposition (2), the damped least-squares solu- 
tion (21) can be rewritten as 

wa 

cl = o r Jr ),' v ,u~ ~. (23 I 

It is clear that  the components for which ai ~> A axe little influenced by the damping 
factor as it is 

at 1 
a~ + A 2 ~ --'a~ (24) 

On the other hand, when a singularity is appro~hed,  the smallest singular value tends 
to zero while the associated component of the solution is driven to zero by the factor 
a jA2;  this progressively reduces the joint velocity required to achieve near-degenerate 
components of the commanded task velocity. In comparison with the previous pseu- 
doinverse method, solutions (12) and (21) behave identically as long as the singular 
values are significantly larger than the damping factor. 

The damping factor serves as an index for the minimum singular value to establish 
whether the current configuration can be treated as near-singular. Further, it determines 
the degree of approximation introduced with respect to the pure least-squares pseudoin- 
verse solution. Therefore, an optimal choice for A requires consideration of the smallest 
non-null singular value experienced along the whole trajectory and of the minimum 
damping needed to ensure feasible joint velocities. The use of a configuration-varying 
damping factor is advisable to achieve good performance in the entire manipulator's 
workspace. 

The natural choice is to adjust A as a function of some mea0ure of closeness to a 
singularity at the current configuration; the closer the arm is to the singularity, indeed, 
the higher the need is for damping. One proposal has been brought up in [7] as to use 
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the manipulability measure to determine an appropriate value for the damping factor 
at each configuration; in order to avoid unnecessary damping far from the singularity, a 
threshold value of manipulability is assigned above which a pure pseudoinverse is used. 
The manipulability measure alone, however, does not constitute an absolute measure of 
closeness to a singularity; this is otherwise provided by the minimum singular value of 
the Jacobian matrix. A solution that tunes the damping factor according to numerical 
estimates of the minimum singular value has been developed in [9]; a selective filtering 
of the directions defined by the singular vectors is also accomplished by isolating the 
contribution pertaining to the minimum singular value, which has the advantage of 
removing velocity transformation errors along the feasible directions. A recent study [10] 
has shown that the singular value decomposition is considerably simplified when applied 
to the manipulator Jacobian matrix, and this appears prom/sing in view of an on-line 
computation of the minimum singular value. 

An effective solution has been proposed in [11] which attempts to combine the 
advantages of both the above techniques; namely, the analytical simplicity of a closed- 
form adjusting law for the damping factor as in [7] and the correctness of shaping the 
damping factor according to an estimate of the minimum singular value as in [9 I. The 
key of the solution is to exploit kinematical insight and then define a region inside 
which a very simple estimate of the minimum singular value is devised to be used in the 
damped least-squares inverse; for instance, in the case of the wrist singularity, the angle 
itself causing the singularity has been recognized as a good estimate of the minimum 
singular value [11]. 

C o n c l u s i o n  

In the above sections we have reviewed --what we believe-- the most relevant methods 
for solving the differential kinematics of a manipulator in the neighbourhood of singular 
configurations. 

The Jacobian transpose method utilizes the differential kineto-static mapping to 
solve the inverse kinematics problem for a given task-space position. For this reason, 
it necessitates of a feedback correction term in a closed-loop setting. The advantage is 
that it provides a computationally cheap solution which is also robust to the occurrence 
of singularities, although the tracking performance is inherently lower than any exact 
inverse differential kinematics solution. 

The Jacobian pseudoinverse method and the damped least-squares 3acobian inverse 
method provide a possibly exact inversion of the differential mapping; this implies, 
however, that, if a joint position solution is desired, a feedback correction is needed 
to eliminate numerical drift arising from open-loop integration of the joint velocity 
solution. On the other hand, they are both computationally more demanding than the 
Jacobian transpose method; this point must be considered in sensory-based real-time 
applications. 

Two counteracting parameters are at issue when evaluating the performance of 
either of the above two methods; namely, accuracy versus robustness of the solution. In 
this respect, it can be recognized that the pseudoinverse originates from the desire of 
finding an accurate solation to the differential kinematic mapping, which though needs 
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to be relaxed in order to get satisfactory behaviour in the neighbourhood of singularities. 
On the contrary, the damped least-squares inverse arises from the necessity of devising a 
singularity-robust inverse solution to the differential kinematic mapping, which though 
needs to be properly tuned in order to increase its accuracy. 

From the discussion in this work, it has emerged that there exist effective refine- 
ments of both the pseudolnverse and the damped least-squares inverse solutions which 
allow to trade accuracy off robustness. To this end, it is often decisive to perform 
a case-by-case analysis by taking advantage of geometrical insight into the kinematic 
structure under investigation. 
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