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CLOSED~LOOP COMPUTATIONAL SCHEMES OF ROBOT INVERSE KINEMATICS

Abstract

This paper is aimed at surveying a class of computational inverse kinematic schemes
for robots of arbitrary architecture. The supporting idea is to reformulate the
inverse kinematic problem as a control Problem for a simple closed-loop dynamic
system. First-order and second-order schemes are formally derived. They can be
distinguished into two categories, namely those which utilize the inverse of the
robot's Jacobian and those which are based on the transpose of the Jacobian matrix.
The former are, analogous to widely used resolved-rate and resclved-acceleration
controls. The latter are more efficient from the computational viewpoint. Algorithm
convergence for the latter is guaranteed from Lyapunov stability analysis.

Introduction

The solution of the inverse kinematic problem has been a research topic investigated
by many roboticists in the last decade. It has been well-known, since one of the
earlier works in inverse kinematics [1], that analytical inverse kinematic solutions
exist only for special manipulator geometries. For all those structures which are
not solvable in closed-form, a number of computational schemes have been proposed in
the literature most of which are based on the computation of the robot's Jacobian.
The pioneering resolved motion rate control [2] solves the linearized kinematic
equation for joint velocities which are integrated to obtain joint displacements.

ants in the rotational part of the closure equations [4] is yet another solution to
the problem. Another numerical method for the solution of systems of nonlinear
equations is described in [5]. The approach based on the use of continuation methods
[6] differs, indeed, from the previous methods.

In the context of solving for inverse kinematics, it is usually desired to
generate not only joint displacements but also joint velocities, and accelerations
eventually. This would provide the setpoints for the control system in the joint
space. Here, computation time becomes an important concern for those on-line
Ssensor-driven tasks when it is required to compute the inverse kinematics at the
Same rate as the joint servo rate {7]). Special computer architectures have been
introduced for inverse kinematic position computation [8]. Also, for simple manipu-
lator geometries msuch as six d.o.f. wrist-partitioned architectures, closed-form
solutions have been found for joint velocities [9] as well as for joint
accelerations [10] which avoid the explicit inversion of the Jacobian matrix. On the
other hand, if it is desired to control the robot directly in the task space, the
solution of the inverse kinematics is apparently avoided, but the control becomes
more sophisticated [11].

A rather different approach to the solution of the inverse kinematic problem is
obtained by constructing a simple closed-loop stable dynamic system, whose input is
the desired end-effector trajectory and whose outputs are the joint displacement,
velocity (and acceleration) trajectories. The original idea has been independently
proposed in [12) and [13] for solving the position component of the end-effector
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trajectory. There, a first-order scheme based on the computation of the transpose of
the Jacobian is devised which generates the joint displacements and velocities while
guaranteeing a null positional error and a norm-bounded tracking error. The exten-
sion of the scheme to account for the orientation component of the end-effector has
been described in [14,15) ana the investigation of a special non-solvable structure
has been presented in [14,16]. The application to the case of robots with redundancy
has been discussed in [14,17,18,19,20), ana recently also in [21,22]. The issue of
kinematic singularity robustness of the scheme has been addressed in [23]. The
convergence of all above schemes is ensured by Lyapunov stability analysis which
leads to establishing estimates of the region of attractiveness of the solutions.
Also, the algorithms are remarkably based on the sole computation of direct
kinematic functions, and therefore avoid the numerical instabilities associated with
any matrix inversion or Pseudo-inversion.

Alternatively, first-order schemes based on the computation of the inverse of
the Jacobian have been suggested in [24,25]. but they are useful only as positional
schemes (e.g. constant end-effector location). A tracking scheme based on the same
concept has been designed in [12,14], which is formally analogous to resolved-rate
control [2]. Moreover, a second-order scheme corresponding to resolved-acceleration
control [27) has been given in [26]. 1f the inversion of the Jacobian is to be
avoided, the solution proposed in [22] can be adopted which serves as a second-order
positional scheme, A new tracking scl ¢+ instead, is derived here from sliding mode
control [28]. 1In .the following, this class of first-order and second-order schemes
based on the closed-loop formulation of the inverse kinematic problem is surveyed.
Advantages and limitations of each solution are discussed.

Closed-loop formulation of the inverse kinematic problem

It is well-known that the Vector of end-effector coordinates x (usually position +
orientation) is described as a function of the vector of joint displacements q by
the direct kinematic transformation

uniquely determined for each given robot ([7]. A sufficient condition for an analyti-
cal closed-form solution to exist is that three consecutive joint revolute axes
intersect at a common point [1]; the so-called elbow manjipulator, however, is an
example of solvable structure which does not satisgfy that condition [7]. The majori-
ty of computational npproachu. in robot inverse kinematics are based on the differ-
ential linear mapping between x and q

x = J(q)q (2)

where J(q) 4 8£f/3q is the joint configuration-dependent Jacobian matrix; the upper
dot indicates time-derivative, although time-dependence is not explicitly evidenced
in (1) ana (2). Thus, the so-called resolved rate or Jacobian control [2] is given
by

q =3 Ygx (3)

which is integrated over time to provide q. In (3) it is assumed that an inverse to
J does exist; a pseudo-~inverse must be used if the Jacobian degenerates or if the
manipulator is redundant [29].

A different approach to the inverse kinematic problem which is independent of
the particular robot geometry is illustrated in the following. The idea is to
reformilate the problem as a tracking problem for a simple dynamic system [22,13].
Let

e-‘-xd-x-xd-f(q) (@




116

denote the error vector between the desired end-effector location vector x, and the
vector x which is thought as computed from the current joint configuration vector q
via (1). The definition of the error for and-effector position is immediate, whereas
for end-effector orientation the reader is referred to [14,15,16,27]. The
closed-loop scheme of Fig. 1 can be constructed. If the control § is chosen so that
the system is guaranteed to be stable, i.e. e + 0, it can be concluded that the
system performs a first-order kinematic inversion; namely, given x (and X, if
needed), it generates q and q. In addition, differentiating (4) with rglp.ct to kime
gives

inid—i-id-.:(q)& s)

where the vector x is computed via (2). Similarly to Fig. 1, the closed-loop scheme
of Fig. 2 can be constructed. If the control 4 is chosen so that the system is
guaranteed to be stable, i.e. e + 0, it can be concluded that the system performs a
second-order }inem%?ic inversion; namely, given Xs and id (and ;d if needed), it
generates q, q and q.

First-order schemes

Theorem 1. If x belongs to the class of C1 functions, and the matrix J(q) has full
rank for all jngnt configurations q's, the control law

q= J_ltq) [id + Ke) (6)

with K a positive definite matrix (all its eigenvalues are strictly in the right
half complex plane), ensures that e » 0 {12,14].

Proof. Direct substitution of (6) in (5) gives
e+ Ke=0 : n

which, in force of the positive definiteness of K, guarantees that e + 0. Notice
that a pseudo-inverse of J must be used if dim (@) > dim (x) in {1).

End of proof.
Theorem 2. If X belongs to the class of C1 functions, the control law

G = (1+ exTs /€ K 337ke) I Ke (8

with X a (not necessarily symmetric) positive definite matrix, ensures that e + 0
[12,14]. Note that the dependence on q in J has been dropped for the sake of nota-
tion compactness.

Proof. Define the Lyapunov function candidate of the error vector e in (4) as

V = JeTke. . (9)
Its time derivative along the trajectories of the system (5) results in

Vo= K% g - eTx%34. : (10)
Direct substitution of (8) in' (10) gives

V= —e'x7337ke < 0 1)

?hich in turn implies that e + 0. According to Lyapunov stahilit¥, however, the case
V = 0 must be analyzed. From (11) it is seen at the condition V = 0 implies e = 0,
except when Ke belongs to the null space of J, where the algorithm may in principle
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get “"stuck". This is possible, for example, when the desired trajectory x,. extends
cutside the workspace, so that the manipulator will converge to the closest peint on
the boundary of the workspace, with the remaining error Perpendicylar to the bounda-
ry [30]). on the other hanad, if the manipulator is at an internal singularity, one
can sasily show that such equilibrium point is unstable, and the time evolution of
X, will contribute to decrease V again.

End of proof.

Corollary 1. If the desired end-effector location is constant, i.e. x
control law (8) ensuring that e + 0, reduces to [14,21]

G-O,t.h.

g = 37Ke. : (12)

Proof. Direct substitution of (12) in (10) with 17:d =0 t:ivi.auy leads to (11). In
this case, however, if ke belongs to the null Space of J°, x, must be slightly
perturbed in order to avoid that the solution gets stuck at e ¢ tJd

End of proof.

Theorem 3. If x belongs to the class of Cl functions and its time derivative is
norm-bounded, i.e. Ix.| S ¥, the control law (12) ensures that e can be made arbi-
trarily small by increasing the minimum eigenvalue of x [12,13,14].

Proof. Define the i.ylpuncw function candidate as in (9). Its time derivative along
the trajectories of the system (5) under the control (12) results in

V- eTKTid - ex%357xe. (13)

Let A_ denote the minimum eigenvalue of JJT (A_ > 0). Also, let AK denote the
minimum eigenvalue of K (A¢ > 0). By the assumptidh on Iidl. it follows that

s 2,2

V< lellxv - lel Ax".'_l (14)
which implies that V¥ < 0 as long as

el > v/AKAJ (15)

i.e. the error enters an attractive region of the error space containing the origin
e = 0 which can be made arbitrarily small by increasing AK‘ Notice that at
steady-state (id = 0}, it is trivially e = 0.

End of proof.

A few comments are in order concerning the three first-order schemes suggested
above. The first scheme (6) resembles resolved-rate control with additional feedback
Ke which avoids the typical drawback of cumulative errors of (3). Notice, howéver,
that the error e for all the schemes presented here is not to be intended as actual-
ly measured at the end-effector (or computed from joint measurements via (1)) it is
just an "algorithmic® error computed from the outputs of the scheme of Fig. 1 via
(1). The second and the third schemes have in common the nice feature over the first
scheme that they are based on the transpose of J, They avoid the numerical instabil-
ities associated with matrix inversion as well as their computational burden is
reduced. One drawback of the second scheme (8), however, is that it introduces, in
the neighborhood of e = 0, an equivalent gain which tends to =. The analysis of the
second term generated on the right hand side of (8), indeed, reveals that this is
given by the ratio of two quantities that go to zero, as e + 0, with the same order
two. Therefore, in order to avoid so-called "chattering” time evolution in the joint
velocities q, it seems more convenient to adopt the third scheme (12) which is also
less computational-demanding. Furthermore, an appealing feature of the solution (12)
lies in the following physical interpretation [12,21]. It is well known that the
relationship between the joint torque vector t and the end-effector force vector Y
is given by [7]
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- Jrlq)v (16)

which is dual of (2). As a consequence, the control law (12) is analogous to apply-
ing an elastic force Ke at the end-effector of an ideal manipulator with the same
structure as the manipulator of interest, but having an inertia matrix equal to the
identity matrix, and operating in the absence of gravity or friction. In force of
this analogy, igrcnn be recognized, for instance, that in the case when Xe is in the
null space of J discussed above, this corresponds to applying end-effector forces
in a direction along which the manipulator cannot move. ’

The solution (12) suggests that the tracking error can be made arbitrarily small
by choosing A large enough. It should be emphasized, however, that the implementa-
tion of the d{lcrete—tine solution algorithm, and then the sampling rate, limits the
maximum value of A_. In order to establish an optimum for that value, a
discrete-time ltahifity proof should be undertaken, as done for instance in [22],
but this goes beyond the scopes of the present work.

Second-order sch

Theorem 4. If x, belongs to the class of C2 functions, and the matrix J(g) has full
rank for all jognt codfigurations q's, the control law
. -1 .. . . .
- - 17
q=J (Cﬂ[xd J{glg + Kpa + Kde] an
with 3(q) H d/dt[J(q]]and Kp, Kd positive definite matrices such that the matrix

0 1 :
M (18)
K, K

is a Hurwitz matrix, ensures that e + 0 [26].
Proof. Differentiating (5) with respect to time yields
.= Xy - X = ﬁd - J(q)q - J(gq)q. (19)

Direct substitution of (17} in (19) gives

e+Ke+Ke=0 (20)
a P
which, in force of (18), guarantees that e + 0.
End of proof.
Theorem 5. If x4 belongs to the class of Cz functions, the control law
= (1+8K2/8"kT35Tks) 3 Tks, (21)

where K is a (not necessarily symmetric) positive definite matrix,

8 =¢ + Ae (22)
with A being a (not necessarily symmetric) positive definite matrix, and

z =X, - Jq + Ae, (23)

ensures that s + 0, which in turn implies that e + 0 [28].

Proof. Define the Lyapunov function candidate of the error "sliding” vector in (22)
as
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Ve §s'ks. (24)

Its time derivative along the trajectories of the system (19) results in

V= 8'x"z - s k754 (25)

with z defined in (23). Direct substitution of (21) in (25) gives

Ve -s"x"3Tks < 0 (26)

which implies that s + 0. Since V is lower bounded by zero, s is bounded and then e
and e in (22) are bounded. Thus, in force of the positive definiteness of K, (26)
also implies that e + 0 (28]. The occurrence of rank deficiencies in J leads to
similar considerations as those for the first-order schemes above.

End of proof.

Corollazx 2. If the desired end-effector location is constant, i.e. id = ?d = 0, the
control law (21) can be modified into

= 3Tks (2n

which ensures that e + 0 and q + 0 [21].
Proof. The proof is somewhat not as straightforward as for corollary 1. Define the
Lyapunov function candidate .

V= §(d"q + eTxhe). (28)

Its time derivative along the trajectories of the system (5), with x_ = 0, under the

control (27) results in d

Ve -eTks + eTkpe (29)
which, by vi;tue of (22) becomes

Ve -é'ké <O (30)

implying that é + 0, and then ¢ + 0 and e + 0 [21].

End of proof.

Theorem 6. If x. belongs to the class of c? functions and the quantity z in (23) is
norm-bounded, i.e. |z| X a, the control law (27) ensures that 8, and then e, can be
made arbitrarily small by increasing the minimum eigenvalue of K.

Proof. Define the Lyapunov function candidate as in (24). Its time derivative along
the trajectories of the system (19) under the control (27) results in
V= sTKTz - sTKtJJTKs. (31)

Let A_ and A_ denote the minimum eigenvalues of JJT and X, respectively. By the
assumption on Iz§, it follows that

. 2.2 .
Ve Isllxa e [1] AKIJ (32)
which implies that V < 0 as long as

ist > a/J\x.li‘:r (33)

i.e. the sliding vector enters an attractive region containing the sliding Burface s
= 0 which can be made arbitrarily small by increasing A . At steady-state (id =X, =
0), it is e = 0 from corollary 2. Also, notice ihat the assumption on @he
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norm-boundedness of ¢ can in turn be relaxed to the assumption that x, is
norm-bounded. This can be explained as follows. Since V is lower bounded by zerc and
8 is bounded in force of (33), then e and ¢ in (22) are bounded. This implies that g
and q are bounded too. Since J(q) can be factored as H(q)q with H(g) bounded [11],
in sum the second and third terms on the right hand side of (23) are bounded, and

thus the only requirement is that 3 3 be bounded.

End of proof.

Similar remarks as for the first-order schemes are in order also for the
second-order schemes just presented. In short, the first scheme (17) resembles
resolved-acceleration control as in [27]. The second and third schemes both avoid
the inversion of J, but the third scheme (27) is to be preferred over the second
(21) from the implementation viewpoint since it avoids chattering accelerations §
and is less time-consuming. In the light of the velocity/force duality described by
(2)/(16), the control law (27) is analogous to applying an elastic/damping force Ks
at the end-effector of a simple manipulator having a unitary inertia matrix and no
gravity or friction. The minimum eigenvalue ) in (27) is upper bounded by the
finite sampling rate of the discrete~time algor&hm.

Conclusions
——_5~ons

A class of computational schemes of robot inverse kinematics have been illustrated
which are originated from a closed-loop dynamic reformulation of the problem,
First-order schemes which solve for joint displacements and velocities and
second-order schemes which solve for joint accelerations too have been formally
derived. 1t ip easy to recognize that all the schemes presented do not require any
special assumption about the kinematic structure. For the formal derivation of
inverse kinematic schemes for redundant manipulators, however, the reader is re-
ferred to [14,17,18,19,20) where a so-called task space augmentation strategy is
proposed to solve for the redundant d.o.f.'s. Also, due to lack of space, no case
studies for practical robot structures have been developed in this work, Extensive
numerical results, however, can be found in [11,15,16,17,18,20,23,26,30] which
demonstrate the effectiveness of applying the closed-loop computational schemes to
solve the inverse kinematic problem for a variety of manipulator architectures.
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Fig. 1 - Block diagram of a lst-order closed-loop inverse kinematics scheme.

J(q) ‘

-

e S CO:JS’OI. L J 4 J q

1(:)

Fig. 2 - Block diagram of a 2nd-order closed-loop inverse kinematics scheme.




