NATO Advanced Research Workshop on Robots with Redundancy, Sald, I, June-July 1988

ON THE SOLUTION OF INVERSE KINEMATICS
OF REDUNDANT MANIPULATORS

Lorenzo Sciavicco and Bruno Siciliano
Dipartimento di Informatica e Sistemistica
Universita di Napoli
Via Claudio 21
80125 Napoli
Italy

Abstract

Kinematically redundant manipulators have been recognized by the
robotics research community as offering greater flexibility and dexterity
in robot design, planning and control. One common way of solving for
redundancy in an inverse kinematics setting is to require that the robot
meets a sef of functional constraints which characterize an increased
dexterity. This work addresses this issue and proposes two closed-loop
inverse kinematic schemes obtained by a suitable "dynamic" reformulation
of the constrained problem. Similarities and differences with other
proposed approaches are also discussed.

This work is the result of research supported by the Ministero della
Pubblica Istruzione under MPI 40% and 60% funds.

Throughout the paper, underlines denote vectors while capitals indicate
matrices.




Introduction

In recent years a great deal of research work has been devoted to the
adoption of redundancy in robot design as a successful strategy towards a
more dexterous manipﬁlator structure.lﬁg The human arm constitutes a
tangible model of the ability of a redundant arm to execute more dexterous
motions. Despite of this, there appears to be a great reluctance in
industry to produce redundant geometries. The reason perhaps is that
redundancy involves mechanical and control complexity and then increased
costs. When a manipulator is redundant with respect to a given task, the
space of redundancy can be conveniently exploited to meet a number of
constraints on the solution of the kinematic control problem. Typical
goals are the avoidance of obstacles in the workspace,l’2 mechanical joint

]imits,3 kinematic singu1ar1‘t1‘es,4

or the minimization of actuator joint
forces,5 kinematic and dynamic manipulability measures,ﬁ’? dexterity
measures,8 position/force task compatibility 1'nd1'ces,9 and so forth.

Previous approacnes in the literature were aimed at solving redundancy
in terms of optimizing quadratic type criteria along with the use of
generalized inverses of the manipulator Jacobian. The joint velocity
solution vector is formed by two terms, a lTocally minimum norm term plus a
term in the space of redundancy (the null space of the Jacobian matrix)
which is used for local optimization pur‘poses.?”m’11

An alternative approach applicable to any robot geometry was proposed
by Balestrino et a1.12 and Wolovich and ElTiott13 which is based on a
closed-loop system formulation. A simple "dynamic" system, when driven by
a specified end-effector trajectory, yields a joint displacement and
velocity trajectory solution of the inverse kinematic problem. In
particular, the tracking error is bounded while the positional error is
null. The scheme is computationally efficient since it only requires the
on-line computation of the end-effector direct kinematic function and the
transpose of the Jacobian. Nonetheless, it was shown that the adoption of
the (pseudo)inverse of the Jacobian in lieu of it's transpose, though more
computationally demanding, is an attractive alternative in order to obtain
a null tracking error.l :

This  technique has lately been extended by Sciavicco and
Sicilianol4-16 to the solution of the inverse kinematic problem for
redundant manipulators by imposing a set of differentiable functional
constraints on the joint displacements. This approach results in defining

an augmented task space vector which can be used as input to the above



dynamic system. Similar task augmentation approaches have been proposed by
Bai11ieu11? and Ege1and.18

In general, however, it is not possible to arbitrarily choose such
constraints so that the joint displacements satisfy the constraints and
depend continuously dh the trajectory assigned at the end-effector.19 A
task-priority based strategy has been suggested by Maciejewski and K]ein1
and Nakamura et aT.20 along with the use of pseudoinverses, in the sense
that priority is given to the primary task (typically the end-effector
trajectory) and the secondary task (typically the constraints) is
satisfied only on condition that it does not disturb the primary task. It
is shown here that, in an augmented task space setting, this approach
leads to adopting a modified augmented Jacobian in which the constraint
Jacobian is projected onto the null space of the end-effector Jacobian so
that priority to the end-effector task is ensured. A similar scheme,
though only for the simple positioning task, has been lately given by Das
et a1.21

The difficulty of imposing a specified set of functional constraints
is overcome by the approach presented by Baﬂlieu1,17 and Tlately
generalized by Chang,22 which is aimed at seeking the constrained local
minimum for a scalar criteria function whose gradient with respect to the
joint displacements is projected onto a basis of the null space of the
end-effector Jacobian. It is shown here how the same inverse kinematic
scheme with task space augmentation can be formally applied also in this
case. Finally, a comparison between the two approaches is discussed.

Kinematics

For any manipulator with known geometrical parameters, the kinematic
equation specifies the relation between the (n x 1) vector q of Jjoint
displacements and the (m x 1) vector X, of end-effector location 3523

Xo = f.(q) | (1)

where je is a continuous nonlinear function which associates to each q a
unique Xqe

Differentiating eq. (1) with respect to time yields the relation
between the vector g of joint velocities and the vector ie of end-effector
velocities, i.e.



%, = 9, (a)a (2)

where Je(g) = afefag is the (m x n) end-effector Jacobian matrix.23

If the manipulator 1is kinematically redundant with respect to a
certain task, it is m < n. Assuming that the Jacobian matrix Je(g) has
full rank for almost all g's, (n - m) DOF's are available for solving
redundancy. If for some @, Je(g) has rank less than m, the manipulator is
said to be at a singular configuration. In this configuration the
manipulator loses its ability to move along or rotate about some direction
of the space, meaning that its manipulability is reduced.7

The Inverse Kinematic Scheme

It is uniformly recognized that the solution of the inverse kinematic
problem, i.e. given Xo solve eq. (1) for g, is of fundamental importance
for robot manipulator contr01.23 In case of redundant manipulators, the
most common approach that was proposed in the robotics literature is based
on the instantaneous inversion of the mapping (2). It can be shown that a
solution to (2) is given by

. + .
q = Jo(a)xg (3)

where JZ is usually the (n x m) pseudoinverse matrix of matrix Je defined
as J+ - JT(J JT)-l 24

e e'"ee’ °

A conceptually different approach to the inverse kinematic problem for
redundant manipulators is given by a recently proposed general solution
scheme which is obtained via a "dynamic" reformulation of the
prob]em.12’13 The method is summarized in the following.

Let g4 be a solution to (1) relative to a given end-effector location
Xod A vector N of end-effector Tocation errors can be defined between
the reference vector Xod and the actual vector Xo computed from the
current joint vector g via eq. (1),

S T Xeg ™ Xe: W

Here the explicit dependence on time is not evidenced. However,
differentiating with respect to time yields



€e = Xoq - Jo(Q)0. (5)

It can be formally proved, by choosing as candidate Lyapunov function Ve =
5§£Ke§e’ where Ke s a positive definite matrix (usually diagonal), that
the choice

. T
3= 9p(a)ke, (6)

ensures that:

a) If €, at time t = 0 is null (i.e. the initial configuration q(0) of
the manipulator is known), the tracking error is confined to a region
of the error space containing the origin which is attractive for all
trajectories ied € R(Je), where R(Je) denotes the range space of
matrix Je; the larger the norm of Ke and the inverse of the norm of
ged’ the smaller the reg'ion.12

0, is nu1n.12:13,21

b) The positional error, i.e. when ied =0

The resulting closed-loop scheme is illustrated in Fig. 1. In view of the
preceeding, the above scheme can be used either on-line for continuously
solving an end-effector trajectory into a joint trajectory while
guaranteeing an upper-bounded tracking error and a null positional
error,12 or off-lTine to find a joint solution corresponding to a given
constant end-effector location with guaranteed null positional error.13’21

If a null tracking error is desired, the solution (6) can be modified
into the more computational demanding so]ution12 (see the scheme in Fig.
2)

d = 93(@) %y + Ke,] (7)

which resembles the pseudoinverse solution of eq. (3), but it is
inherently closed-loop, i.e. it avoids cumulative errors associated with
the instantaneous inversion of the mapping Je. A solution similar to (7)
has been recently proposed by Vaccaro and Hi]1,25 but it was set ied =0
which ensured only a null positional error.

An important remark is in order concerning the occurrence of rank
deficiency in the Jacobian matrix Je(g) of both schemes of Figs. 1 and 2,
as well as in the open-loop solution of eq. (3). For the first scheme, it



can be recognized that when K (L N(JZ) with e, # 0, where N(JZ)
1nd1cates the null space of matr1x JT the scheme yields Q 0. Thus, if
—ed = 0, the solution gets stuck and e no further decreases. If x Xoq 7 0,
1nstead the solution gets stuck as 1ong as x Xod does take K €e out of

N(J ).

Un the other hand, for the second scheme and the open-loop scheme
based on eq. (3), a generalized inverse must be used in lieu of the
pseudoinverse, since the matrix JeJZ in the definition of the
pseudoinverse is no longer invertible. The expression of the generalized
inverse is given by Jg = JZJeb(JZbJ%qe eb)-l lb where J . is a matrix of
vectors which form a basis of R(J ). For the second closed~loop scheme,
it can be recognized that when [K e, + —ed] € N(Je) with e o # 0 the scheme

y1e1ds g = 0, since N(J b) = N(J . Thus similarly to the above case, if

Xad = 0, the solution gets stuck and e, no further decreases. If x d 0,
1nstead the solution gets stuck as 1ong as x Xoq does take [K oCa ] out
of N(J ).

Inclusion of Constraints

As discussed in the introduction, redundancy can be conveniently
exploited to meet additional constraints in order to obtain greater
manipulability 1in terms of manipulator kinematical configuration and
interaction with the environment. To this purpose, the human arm
constitutes a tangible model of this ability.

If the robot is required to move in a cluttered environment, for
instance, obstacle avoidancel’2 and limited joint range3 represent two
types of constraints to account for in the trajectory planning and inverse
kinematics solving. Of interest could also be the minimization of actuator
joint forces5 along any given trajectory.

The other important point in purposely making a manipulator redundant
is the avoidance of singular configurations.4’19 The manipulability
measure defined by Yoshikawa® and more generally the dexterity measures
surveyed by Klein and Baho,8 such as the matrix condition number, the
minimum singular value, all based on the matrix J (g)d (q), constitute
indices of the ability of a manipulator to av01d encountering a
singularity, and more generally quantitative measures of manipulating
ability in positioning and orienting the end-effector. The dynamic

manipulability measure introduced by Yoshikawa,7 instead, takes the arm




dynamics into consideration. Related to the above points is also the

concept of task compatibility,’ according to which the matrix J, (QJJ (q)
is utilized to determine quantitative indices of the ability to execute a

certain exertion/control task along a given direction.

Without going into any further details about the definition of
measures characterizing redundant manipulator dexterity, for the purpose
of the following discussion, it can be said that the above measures are
usually adopted to determine a number of constraints on the solution of
the inverse kinematics of redundant manipulators.

Reconsidering the pseudoinverse solution of eq. (3), it can be shown
that the general solution to (2) is given by

4= 9(Q)kgq + [T - 93(@)dy(2)14, (8)

where 1 is the (n x n) identity matrix and éo is an (n x 1) arbitrary
vector of joint velocities. It is worth emphasizing that the solution (3),
which represented the least-square minimum norm solution to (2), has been
suitably modified into the solution (8) by the addit1on of the homogeneous
term created by the projection operator (1 - J J ) which selects the
components of éo in the null space of the mapp1ng J 10 Usually, the
vector 90 was chosen as the gradient of some scalar quadrat1c function of
the joint displacements obtained via the above discussed constraints, with
the purpose of locally minimizing such function.l™11

On the other hand, the inverse kinematic schemes of Figs. 1 and 2 can
be easily extended by formally embedding a set of constraints on the joint
displacements, characterizing for instance any of the above discussed
dexterity measures. More specifically, a functional constraint equation
can be considered in the form

x. = f.(a) (9)

where f. is an (r x 1) vector with continuous first-order partial
derivatives with respect to joint displacements; also it is r < (n - m,
S0 as to span at most the whole redundant space. As a consequence, the
augmented kinematic equation becomes '

X | | fela)
X, f.(a)



whose joint vector solution g not only places the end-effector at the
desired location Xgs but should also meet the required constraints
specified by eq. (9). Hence, it would seem that an augmented task space
vector based on eq. (10) can be used as input to the schemes of Figs. 1
and 2, which basically remain the same except for a suitably augmented
Jacobian matrix

J_(a)
ig) = | e (11)
J ()

where Jc(g) = 3f ./3q. This approach has been applied to the case of
dexterity measure constraints14 and to the case of obstacle avoidance
and/or limited joint range constraints.ls’16 Conceptually similar is also
the application to a small fast manipulator mounted on a large positioning
part.l8
Nonetheless, the question is whether or not it is possible to ensure
that the joint displacements satisfy those arbitrarily defined constraints
of eq. (9) while the end-effector trajectory is tracked.® This
corresponds to the fact that the augmented Jacobian matrix J in (11) is
not guaranteed at all to have full rank (m + r) for almost all g's. In
terms of the above two schemes, when the augmented task space error Ke €
N(J ), with K = diag (Ke Kc), Kc > 0and e = (ge gz T, the solution may
get stuck while not even exactly performing the end-effector task. In
particular, even if J has full rank m and J has full rank r, the matrix
J may have rank less than (m + r) as long as R(J ) n R(J ) # 0. In order
to account for such occurrence, a so-called task- pr1or1ty strategyl’20 is
advisable, meaning that priority is given to the primary task, the
end-effector trajectory Xq in this case. The secondary task, the
constraints X, in this case, is satisfied only on condition that it does
not disturb the primary task. This is obtained by modifying the solution

(6) for the scheme of Fig. 1 into

= Jl(@)K e, + [T - 9)(a)d, () 191 (a)K e, | (12)

where the operator (I - J:Je) projects the vector Jlkcgc onto the null
space of J,, similarly to eq. (8). Under the solution (12), the

end-effector error dynamics becomes

& = og - Jla)glalKee, (13




which is apparently the same as in the case of solution (6). The
constraint error dynamics is given by

€ = Jog - I (DI4(a)K e, - I (@I - 3 (@)a(2)10] (@)K e.. (14)

By choosing as Lyapuhov function v = Vo * V. with Ve T ggEchc, it can be
recognized that the constraint tracking error is norm-bounded and the
constraint positional error (écd = 0) is null except when JIKCEC € R(JZ),
in which case the solution gets stuck as long as Xed does take JcchC out
of R(Jz). A similar result has been recently obta'ined,21 although the
inverse kinematic scheme was a purely positional scheme, and no explicit
discussion on the satisfaction of both tasks was included.

Nevertheless, if the end-effector Jacobian Je is guaranteed to have
full rank m, the solution (12) can be modified into

6= 95(a) Ty + Keggd + [T - 9%(a)3,(0) W] (a)K e, (15)

since the computation of the pseudoinverse of Je is already performed
during the computation of the projector onto the null space (I - J;Je).
The solution (15) ensures a null end-effector tracking error and a
norm-bounded constraint tracking error.

Conversely, if the scheme of Fig. 2 is adopted, the solution derived
from (7) can be applied as long as the matrix J has full rank (m + r). A
simpler computational solution equivalent to (7) can be directly derived
according to the task-priority strategy, i.e.

§ = 950 gt T+ 3000) oy - 9 (0193(0) iggrie,] + Ke)  (16)

where JC = JC(I'+- J;Je) and (I - J;Je)Jc = 3c since fhe projection
operator (I - JeJe) is both hermitian and idempotent.® The inverse
kinematic scheme based on the solution (16) can be considered as a
closed-loop extension of the schemes given by Maciejewski and K]ein1 and
Nakamura et a].20 In particular, in analogy with Nakamura et a].,zo it can
be shown that, if (m + r) < n, another term can be added to the solution
(16) of the type (I - J:Je)(l - EZEC)E where z is a vector resulting from
the addition of another constraint with lower priority.

On the other hand, if J has rank less than (m + r) the solution (7)
can no longer be adopted since no task-priority is accomplished. The
solution (16) can be utilized on condition that 5: be a generalized



inverse of Jc’ but it is apparently more computationally demanding.
Therefore, the solutions (12) and (15) seem to be preferred when J has not
full rank.

A nice representation of the manipulable spaces and the redundant
spaces associated to the task variables defined in eq. (10) is given by
Nakamura et aI.ZO It is worth noticing, here, that not only does such
representation apply to the solution (16) but also to the solutions (12)
and (15) since R(J+) = R(JT).

In the above formulation of constraints, it is implicitly assumed that
they are set in a completely arbitrary manner. This may not be appropriate
in certain cases. It is for this reason that the approach first presented
by Baﬂh’eull7 and Tately formalized for the most general case by Chang22
represents a valid alternative to the problem of solving redundancy at
inverse kinematic level. The main difference with the previous approach is
that a scalar quadratic criteria function c(q) with continuous first-order
partial derivatives with respect to joint displacements is chosen which
describes the desired performance. Focusing directly on the formulation
given by Chang,22 the Lagrangian multiplier method is used to derive a set
of (n - m) scalar equations which are combined with the m scalar equations
(1). The resuit is a full task space augmentation, i.e.

Xe | _ fo(a) (17)
0 Z,(9)f (a)

where fc(g) = 3c/dq and Ze(g) is a vector basis of N(Je) which can be
computed in symbolic form, once the end-effector Jacobian Je is expressed
in symbolic form. It must be outlined, here, that in order that a solution
q to (17) exists, it must be jc € R(JZ). If this is the case, the solution
found minimizes c(q) subjected to the kinematic constraint (1). C.hangz2
has proposed to solve eq. (17) with a numerical package based on Powell's
hybrid method. Bai]1ieu11? has derived an extended Jacobian J(q) through
differentiation of the right half side of eq. (17) with respect to the
joint displacements; the solution is then obtained in the form ﬁ =
J"l(g){gl gT]T. The occurrence of so-called algorithmic singularities’
(when J has rank less than n, despite Je has rank m), however, is a
drawback for such solution.

Nonetheless, based on this different approach, the scheme of Fig. 1 or
the scheme of Fig. 2 with a pure inverse in lieu of the pseudoinverse, can
be formally applied to solve eq. (17), with the inherent advantage of



obtaining a closed-Toop formulation to the problem.

Concluding Remarks

A closed-Toop formulation to the inverse kinematic problem for
redundant manipulators has been given. Two computational schemes have been
obtained; one is based on the use of the transpose of the Jacobian, the
other on the pseudoinverse of the Jacobian. It has been shown how those
schemes can be suitably extended to deal with the inclusion of constraints
on the solution which describe the dexterity of the redundant arm.

If a set of independent constraints is specified, a task-priority
strategy serves as an effective means to guarantee that the primary
end-effector task is correctly executed whereas the secondary constraint
task is executed in the best compatible way with the end-effector task. It
is to be remarked that the scheme based on the transpose of the constraint
Jacobian should be preferred to the scheme using the pseudoinverse of the
constraint Jacobian, since it is less computationally demanding.

If the specification of constraints is not desired, but the
minimization of a scalar quadratic function incorporating one or more
constraints is of priwary concern, a different approach can be pursued
which leads to establish a structural condition of orthogonality between
the gradient of the above function and the null space of the end-effector
Jacobian. A closed-loop scheme can be obtained also in this case, although
it is apparently more computational demanding. This indicates that the
choice between the two approaches has to be made on the basis of a
trade-off between the necessity of specifying the constraint task and the
burden of computing power required.

A final remark seems in order regarding the issues discussed in this
work. All the techniques presented as well as most of the proposed
approaches in the robotics 1iteraturel'22 are inherently aimed at solving
redundancy instantaneously, which has the advantage of real-time
computation, but it lacks the guarantee of global optimality. The simple
reason is that the Jacobian matrix appearing in all above formulations is
configuration-dependent. Nakamura and Hanfusa26 have recently shown how to
obtain, if it exists, the global optimal joint trajectory for a redundant
manipulator with specified constraints, by using the Pontryagin's maximum
principle. This approach has also been revisited by Baillieul et a].lg
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Fig. 1 - The closed-loop inverse kinematic scheme based on the
transpose of the Jacobian.
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Fig. 2 - The closed-loop inverse kinematic scheme based on the
pseudoinverse of the Jacobian.



