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Abstract. An adaptive force/position controller for robot manipulators in contact with a compliant surface is
presented in this paper. The control law is designed in the task space and contains a nonlinear model-based term
and a linear compensator action. This is obtained as a linear combination of the position error, the velocity error and
the integral of the force error. The scheme is adaptive with respect to the dynamic parameters of the model of the
robot manipulator. By using the classical Lyapunov method it is demonstrated that the proposed control law ensures
tracking of the unconstrained components of the desired end-effector trajectory with regulation of the desired contact
force along the constrained direction. Numencal case studies are developed for an industrial robot manipulator.
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1. INTRODUCTION

In recent years several strategies for controlling both
force and position of the end effector of a robot ma-
nipulator in contact with the environment have been
proposed. The most widely adopted one is the hy-
brid force/position control strategy (Raibert and Craig,
1981; Khatib, 1987; Yoshikawa, 1987) where either a
position or a force is controlled along each task space
direction through the use of proper selection matrices.
Adaptive hybrid force/position control laws have also
been developed (Seraji, 1987; Lozano and Brogliato,
1992; Arimoto, Liu and Naniwa, 1993).

A different approach is the parallel control (Chiaverini
and Sciavicco, 1988) where force and position vari-
ables are used along each task space direction without
any selection mechanism. The conflict between force
and position along the constrained task directions is re-
solved by ensuring the dominance of the force control
loop above the position control loop.

The performance of a parallel controller with inverse
dynamics compensation in the case of contact with a
compliant frictionless surface was studied by Chiave-
rini and Sciavicco (1993). Recently a parallel regulator
with gravity compensation has been proposed (Chia-
verini and Siciliano, 1991; Chiaverini, Siciliano and
Villani, 1994) which guarantees that the force error is
driven to zero at the expense of a steady-state position
error along the constrained task direction. An adap-
tive version with respect to gravity parameters has also
been developed (Siciliano and Villani, 1993).

In Siciliano and Villani (1994) a passivity-based par-
allel control scheme ensuring tracking of the uncon-
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strained components of the desired end-effector tra-
jectory with regulation of the desired contact force
along the constrained direction has been proposed. The
scheme is naturally made adaptive with respect to the
dynamic model parameters of the manipulator. The
stability analysis based on the passivity of the manipu-
lator dynamics does not allow establishing stability
in the sense of Lyapunov (Ortega and Spong, 1989;
Spong, Ortega and Kelly, 1990).

This work presents a complete stability proof based on
the Lyapunov direct method; only boundedness of the
desired force, position, velocity and acceleration are
required to guarantee convergence to zero of the force,
position and velocity errors.

An industrial robot manipulator is considered to de-
velop numerical examples aimed at analyzing the per-
formance of the proposed scheme both in the known
parameter case and when an unknown payload mass is
considered.

2. MODELLING

The dynamics of a rigid robot manipulator are de-
scribed in the task space (Khatib, 1987) by the equation

B.(z)t + Cy(z,2)x + gz(x) =u—Ff, (1)
where x is the (m X 1) vector of task variables (usually
the end-effector location), B, is the (m X m) sym-
metric inertia matrix, C. & is the (m x 1) vector of
Coriolis and centrifugal generalized forces, g. is the
(m x 1) vector of gravitational generalized forces, u is
the (m X 1) vector of driving generalized forces, and



f is the (m x 1) vector of contact generalized forces
exerted by the manipulator on the environment; all task
space quantities are expressed in a common reference
frame.

The (n x 1) vector T of joint actuating generalized
forces can be computed as
r=JT(q)u, )
where g is the (n x 1) vector of joint variables and J
is the (m % m) manipulator Jacobian matrix.
In this work, the case of non-redundant (m = n) non-
singular manipulators is treated. Then the vector =
represents a set of Lagrangian generalized coordinates
and the matrix B, is positive definite.
Two notable properties of the dynamic model (1) can
be established (Slotine and Li, 1987):

o There exists a choice of the matrix C; such that
the matrix

S(a:,:e) = B.(z) - 2C.(z, &) 3)

is skew-symmetric.

The dynamic model (1) is linear in terms of a
suitable set of manipulator and load constant pa-
rameters, i.e.

B,(x)& + Ca(z, &) + g-(x) = Ya(, &, £)6

“4)
where Y,.(z, &, &) is an (m x p) matrix and 6 is a
(p x 1) vector of manipulator and load parameters.

3. CONTROL DESIGN

Consider the following control law

u = B, (z)7 +Cul(z, &)r +9a(2) —kp(@ —7) + f,

(&)
where B., C., g. are the estimates of B;, C;, g
respectively, f is the measured contact force, = is an
(m x 1) reference vector and kp > 0.

Assuming that B,, C,, g- have the same functional
form of B, Cs, g. with a (p x 1) vector of estimated
parameters @, the control law (5) can be written as

u=Y,(z, 2,770 ~kpE—-r)+F (6
where the property expressed by (4) has been used.
Notice that the matrix C; in (5) must satisfy a property
analogous to the skew-symmetry of the matrix in (3).
Combining (1) with (6) gives

B,(x)é+ Co(z,&)e + kpe =Y,(-)0 (D
where @ = 6 — 6 and

r=x&-—e (8)

r=3a-e. (9

To obtain a force/position controller, the error vector e
should be properly related to the force and position er-
rors. The parallel control strategy (Chiaverini and Scia-
vicco, 1988) suggests to relate the error vectorin (8) to
both a position and a force error, without any selection
mechanism as in (Slotine and Li, 1987; Lozano and
Brogliato, 1992) instead. Along the constrained task
directions the conflict between the position and force
actions must be managed by imposing dominance of
the force action above the position one.

Let &4, %4, &4 denote the time-varying desired end-
effector position, velocity and acceleration respec-
tively. Let also f; denote the constant desired force.
Then indicate by Az = & — x4 the error between

- the actual and desired end-effector position, and by
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Af = f — f4 the error between the actual and desired
contact force.

A keen choice for the error vector in (8) is
t
e=Ai+A1Aa=+,\g/ Afdo (10)
0

where A1, A2 > 0.

By virtue of this choice, from (8) and (9) the reference
vector 7 and its derivative become

t
r=:i:—e=:i:¢—z\14a:—,\2/ A_fdo' (11)

' 0
rF==&—é=&4— M AT — \2AF. (12)

These expressions reveal that the control law (5) re-
quires only joint position and velocity and end-effector
contact force measurements.

It is worth noticing that Az and Af are not inde-
pendent since they are constrained by the contact with
the environment. Without loss of generality, the case
of m = n = 3 is taken, i.e. only translational mo-
tion and force components are considered. Also the
environment is thought of as a frictionless, elastically
compliant plane. Hence, the model of the contact force
takes on the simple form

)

where z is the position of the contact poin't,. xg is a
point of the plane at rest, and K is the (3 x 3) constant
symmetric stiffness matrix that can be expressed as

- (14

where k > 0 is the stiffness coefficient and n is the
unit vector orthogonal to the contact plane which are
assumed to be constant.

The elastic contact model (13),(14) reveals that a nuil
force error can be obtained only if the vector of desired
force f; is alighed' with n. If no information about
the geometry of the environment is available, i.e. n is
unknown, it ‘is advisable to choose f; = 0. Analo-
gously, it can be recognized that null position errors
can be obtained only on the contact plane, while the
component of & along n has to accommodate the force

f=K(z — x),

K=knnT



requirement specified by fa; thus x4 can be freely
reached only along the unconstrained directions of the
operational space. In the remainder it is assumed that
a constant component of x4 along n is assigned; then
nTey = 0, nT@&, = 0. If n is unknown, x4 is as-
sumed to be a constant vector and &4 = 0,24 = 0.
As a further assumption, it is supposed that the contact
between the manipulator and the environment is not
lost.

In view of the above consideration and of (13),(14), the
following equilibrium trajectory is obtained:

z. = (I —nnTzy + nn? (lfd + 330) (15)

k
& = (I —nnT)ig = @4 (16)
&, = (I —nnT)&q = &4 (17
fe = knnT(z. — z0) = fa. (18)

4. STABILITY PROOF
In order to study stability of the system (7),(10),(13),
(14) around the equilibrium trajectory (15)—(18) with
a proper parameter estimate update law, define

s=zx -z, (19)
which, by virtue of (15), can be also written as
s=Ax-d - (20)
where
d=nnT (% fatao-— md) @1)
is a constant vector. Then, from (20) it is
8 = Az. (22)

In view of (10) and (20),(21), Equation (22) can be
written in the form

8=e—M\8—A\hn (23)
([ A1

h=n fﬁfdcl‘+—d . (24)
0 A2

Differentiating (24) with respect to time and taking into
account (13),(14),(1 8),(19) yields

h=nTAf =knTs. (25)
At this point, consider the (7 x 1) state vector
z=(eT sT n)T. (26)

The system described by Eqgs. (7),(23),(25) can be writ-
ten in the standard compact form:

-B;Y(C.+kpI) O 0
z= I —)qI —Agn z
o7 knT 0
B;'Y.6
+ 0 (¢X)]
0
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where O denotes the (3 x 3) null matrix and 0 the
(3 x 1) null vector.

Notice that an equivalent representation of the system
(7),(23),(25) can be obtained in terms of the (7 x 1)
state vector

w= (3T T h)T (28)

through a non-singular state space transformation w =

Tz where
I -MI -An
T=\|0 I 0 . (29)
of o 1
The following result can be stated:

Theorem. Consider the parameter estimate update law

8=-I'YX()e (30)
where I'is a (p X p) symmetric, positive definite matrix.
There exists a choice of feedback gains A; and A, that
makes the origin of the state space for the augmented
system (27),(30) stable. Moreover if x4, &4, &q are
bounded, then z — 0 as ¢ — oo.

Proof. Consider the Lyapunov function candidate

1 B, o 0
.V=§zT O 2MkpI - 22kpn |z
o 07 2XkpnT 2\ Aakpk~?

| +%§Tr§. 31)

Computing the time derivative of V' along the trajecto-
ries of the system (27),(30) gives -

I o 0
V=—kpzTTT| O MNI-2\knnT 0 |Tz
o7 o7 A3
- (32)
in which the skew-symmetry of the matrix B, — 2C,
has been conveniently exploited. .

Since the matrix T given in (29) is non-singular,
from (32) it follows that V is negative semidefinite
if A2 > 2X\gk. This choice inakes V" in (31) posi-
tive definite. Therefore V' is a Lyapunov function and
the system (27),(30) is stable. Moreover z and 8 are
boundedand e, s € L3, h € L.

Equations (23),(25) imply respectively that 3 and h are
bounded. It is easy to show that also & is bounded if
x4, &4, &4 are bounded. It follows that e, s and h are
uniformly continuous and 2 — 0 ast — o00.

By virtue of the state-space transformation given
by (29), the result z — 0 as ¢ — 00 is equivalent
tow — 0as ¢ — oco. Then from (19),(22) it follows



that x — x, and & — &4 as t — oo} from (25)
f— faast — oo,

If the dynamic parameters of the manipulator’ are
known i.e. 8 = 8, a stronger result can be stated.

Corollary. There exists a choice of feedback gains
A1 and A; that makes_vthe origin of the state space for
the system (27) with & = 0 uniformly asymptotically
stable.

5. JOINT SPACE IMPLEMENTATION

The above force/position control scheme has been de-
rived in the task space, which is the natural space to
describe the interaction of the end-effector with the en-
vironment. Since control actions are to be realized by
the joint actuators, the implementation of the proposed
control law shall be carried out in the joint space.

By using the relationship between the dynamics in the
joint space and the dynamics in the task space for non-
redundant manipulators (Khatib, 1987), the counter-
part of the control law (5) in the joint space is given
by

T = B(q)o + C(q,4)o +§(q) (33)
—kpJT(a)I(a)(g— o)+ T (q)f
= Y(q$ q’ o, 0)6
—kpJ(g)I(q)(@— &)+ IT(q)f
where
o=JYqr ' (34)
o =T (q)(+ - J(q,9)0). (35)

The parameter estimate update law in the joint space is
given by

0 =-I'Y7(q,q,0,6)(@—-0). ~(36)

6. CASE STUDY

The proposed control scheme was tested in simula-
tion on the industrial robot COMAU SMART-3 6.12R.
Only the first three joints were considered, constituting
an anthropomorphic manipulator geometry with zero
shoulder offsets. _

The Denavit-Hartenberg parameters are listed in the
table below:

Link a; o4 d; qi
1 0 -7 [2 0 a1
2 as 0 0 q2
3 as w/2 0 a3

Let m; denote the mass of the augmented link ¢ which
for i = 1,2 includes the link ¢ and the motor driving
the joint ¢ + 1; whereas for 2 = 3 includes link 3, wrist
and payload. The 3 first moments and the 6 elements of
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the inertia tensor of the augmented link ¢ with respect
to the origin of frame i — 1 are denoted respectively by
?r&iﬂcm miec.-y’ milo;: I3z, -fszy, I3z, ISyy- };ﬂ.h
I3... Let I,,; be the inertia moment of rotor 4 and
k-; be the gear ratio, ¢ = 1,2,3. A minimum set of
dynamic parameters for the manipulator is:

Ty = Tigy + Togy + I3z + a3ma + k2, In:
2 = malc,s + azmg
T3 = fZ:z - fzyg - a%ma
g = f2=z - a2m3803y
w5 = Ip,, + k2 Im2 + a3ms
g = -sz:r - fBzz
7 = maloyy
g = f2:cy
Trg = fz‘yz
10 = M3foys
T = msfcsx

m2 = f3:|:_!,-'
m3 = f3xz
T4 = fSyy
™15 = f3yz
T16 = Im3.

The elements of the (3 x 16) regressor matrix
Y(Q! QS a.'l d') arc:

Y11 =0d1
Yi2=0
Y13 = (0261 + 0142)c282 + G183
Y1,4 = —0242cy — G252
15=0
Yi6 = 61833 + ((02 + 03)dn
+01(d2 + d3)) s23cos
iz=0
Y18 = (0142 + 0261)(G — s3) + 201282
Y19 = —02c2 + 02d252
Yi1,10 = 2a361¢2¢23 — a2(03¢1 + 0143)c2 823
— a2(02¢1 + 01d2)(c232 + C2523)
Y111 = az(02G1 + 0142)(c2c23 — 82823)
+ az(03¢1 + 0143)c2ca3 + 2026102833
Y112 = —(02 + 03)(d3 + Ga)caz — (02 + 53) 323
Y113 = —((02 + 03)d1 + 01(d2 + 43)) (33 — 833)
— 20123823
Y14 =0
Y115 = (02 + 63)c23 — (02 + 03)(d2 + §3)s23
Y116 =0



Yg,l =0

Y22 = —gc2

Ya3 = —011282

Y4 = 01382

Yo5 =02

Y26 = —01G1823C23

Yo = gs2

Ya,8 = 0161 (5 — c3)

Y2,9 = —01C2

Y210 = a2(2632 + d3)c3 + a201G1(co382 + c2823)

— a3 (0243 + 03(da + ds)) 83 — geas
Y2,11 = az(03(d2 + ds) + 0243)cs

+ a2(262 + 63)s3

— az01G1(c2ca3 — 32323) + 9523
Y312 = —d1323
Y213 = —0141(835 — 33)
Y214 =02+ 03

Y515 = d1c23
Y216 = d3kr3
Y51 =0
Y32=0
Y33 =0
Y34=0
Y35 =0
Y36 = —0141823C23
Y37=0
Y38 =0
Yz39=0

Y310 = aa(d2c3 + 024283 + 01G1C2823) — gcas
Y311 = —az(02q2c3 + 01g1Cc2C23 — 0283) + 9823
Y312 = —61823

Y313 = —0141(833 — C33)
Ya,14 =02 + 03

Y315 = d1c23

Y316 = kr3(03 + d3kr3)

where the standard abbreviations s;..; and ¢;.. ; have
been used for sin (g; +...+¢;) andcos (g; +. .. +g;),
respectively.

The numerical data of robot parameters are taken from
Caccavale and Chiacchio (1994). A load was added
at the end-effector constituted by a cylinder of 12 kg
mass and moments of inertia about central axes of
0.0475, 0.0475, 0.015 kg m?. Simulations were run
in MATLAB at a sampling time of 2 ms. -

The geometry of the contact plane is characterized
byn=1[1 0 0)T andxo = [097 0 0]" m.
The gains in (10) and (5) were set to A\; = 200 s7%,
A2 = 0.15 kg~! and kp = 400 kgs~?. This choice
guarantees a well-damped behaviour both for the un-
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constrained and constrained motion with an estimate
of the stiffness coefficient of the plane k = 10° Nm™!,

For simplicity a bidimensional task geometry in
the zz-plane was considered; thus the sole z- and
z-components of the position vector and the =z-
component of the force vector are reported.

A stable contact of the end effector with the elastic
plane was first sought, then a motion on the contact
surface was commanded by requiring a constant force
of 30 N along the normal direction. The orientation
of the contact surface was supposed to be known, but
the position of the plane at rest was supposed to be af-
fected by an uncertainty of 0.03 m. To ensure contact
starting from @4 = [0.9 0 0]7 m, the approach
phase was managed by imposing a straight line path
towards Zgm = [1 0 0]T m. A trapezoidal ve-
locity profile was assigned with maximum velocity of
0.12 ms™! and time duration of 1.5 s. The force
set point was initially set to f; = 0 and switched to
fi=1[30 0 0]T N as soon as a non-null contact
force was sensed. After a lapse of 0.4 s, by pre-
serving the force set point, a straight line path from
Tam =[1 0 0)Tmtozgy =[1 0 0.03]7"m
was commanded. A trapezoidal velocity profile was
assigned with maximum velocity of 0.1 ms™* and time
duration of 0.6 s.

Three sets of simulations were carried out using the
following controllers:

(a) control law as in (33),(34),(35),(11),(12) without
adaptation law and with compensated load mass;

(b) control law as in (33),(34),(35),(11),(12) without
adaptation law and with non-compensated load
mass;

(c) control law as in (33),(34),(35),(11),(12) with
non-compensated load mass and adaptive law
(36). \

The numerical results are illustrated in terms of the time
history of the contact force, the path of the end-effector
in the zz-plane, the time history of the z-component
of the position tracking error, and the time history of
the norm of the parameter error.

150

100

force [N]

50

time [_s]

Fig. 1. Time history of contact force.

Figure 1 shows that the contact force is practically the
same in the three cases thanks to the integral action on
the force error in the control law.
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Fig. 2.’ Desired and actual paths of end-effector position in the zz-

plane.

Figure 2 shows the actual paths in the three cases (solid
lines) with respect to the desired path (dashed line). It
can be seen that a deviation along the 2 direction occurs
in case (b) which is caused by the non-compensated
load mass, whereas good reproduction of the desired
path is obtained in the other two cases. Notice also that
the actual path along the z-direction is constrained by
the presence of the contact plane and thus a deviation
from the desired path occurs which is determined by
the amount of desired contact force and plane stiffness.

0 1 2
time [s]

Fig. 3. Time history of z-component of position error.

Figure 3 shows how the adaptation mechanism,
case (c), allows recovering the tracking position er-
ror which affected the behaviour of the control law
in case (b), and the performance favourably compares
with that of the controller with perfect compensation,
case (a). - .

R

parameter error

21

0 1 2
time [s]

Fig. 4. Time history of parameter error norm.
Finally, Figure 4 shows that the norm of the parameter

error remains bounded along the trajectory, as antici-
pated in theory.
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6. CONCLUSIONS

A force/position control scheme for robot manipula-
tors in contact with an elastically compliant surface
has been analyzed in this work. The stability of the
controller has been proved by means of the Lyapunov
direct method. A simple condition involving the feed-
back gains and the surface stiffness guarantees the sta-
bility of the controlled system in the sense of Lyapunov.

Simulation results on an industrial robot manipula-
tor have demonstrated the effectiveness of the control
scheme when the end-effector carries an unknown load
mass.
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