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Abstract— The growing use of Virtual Reality (VR) in reha-
bilitation is justified by a number of advantages, such as an
increase of patient motivation, repetitiveness of learning trials,
possibility to tailor treatment to individual subject, safety of
the environment, quantitative patient improvement assessment,
and remote data access. This paper proposes a novel low-
cost evaluation method of patient performance in task-oriented
hand rehabilitation grounded on two key elements: a Virtual
Environment (VE) which the patient has to interact with, and
the Microsoft Kinect motion sensing device, which is used to
fully interact with the VE and to feed back patient movements
in order to perform an off-line analysis. To this purpose, the VE
is equipped with a virtual hand and virtual objects the patient
has to interact with. In order to make the interaction between
patient and VE possible, a robust marker-based finger tracking
algorithm has been developed by using Bayesian estimation
methods.

In the proposed framework, the hand movements involved
in daily activities are performed off-line by the therapist and
are tracked by using the Kinect camera. The estimated hand
joint trajectories are provided in input to a virtual hand model
developed with the Matlab Virtual Reality Toolbox. The virtual
hand reproduces the movements performed by the therapist and
the patient is asked to imitate them. User motor improvements
can be monitored by the Kinect camera, superimposing the
therapist finger trajectories on the patient finger trajectories.
The error between the two trajectories can be used for
evaluating the patient residual mobility. The proposed system
can be easily applied to home-based rehabilitation.

I. INTRODUCTION

The main objective of neurorehabilitation is to help patient

relearn sensori-motor capabilities by exploiting the plasticity

of the neuromuscular system: motor patterns are relearned

through repeated execution of predefined movements. Med-

ical studies [1], [2] have evidenced that, as a consequence

of a neuromuscular damage, the human motor system has to

relearn correct spatio-temporal muscle activations. In order

to improve the affected limb function, essential features

are patient motivation and intensive, goal-oriented repetitive

therapy [3]. In a task-oriented rehabilitation therapy for the

upper limb, the patient should perform functional tasks,
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such as grasping actions most commonly used in daily

living activities [4], and/or constrained-induced movements,

in which the use of the paretic limb is forced by restraining

the contralateral limb [5].

The introduction of VR in rehabilitation helped improve

patient motivation, record the patient exercises in order to

reduce the human errors in data interpretation, reduce therapy

costs and perform tele-rehabilitation, so that the patient is not

obliged to always reach the clinical setting [6]. Moreover,

the possibility to analyse patient behavioral data enables

therapists to evaluate patient performance and, thus, improve

rehabilitation efficiency.

VR-based rehabilitation uses different therapeutic ap-

proaches, e.g. teaching by imitation, video game-like and

exposure therapy. In the former approach, the required

motion trajectory is visualized while the patient tries to

perform the required action. In [7], the patient arm motion

is tracked by a haptic workstation and is reproduced in the

virtual environment where the reference motion trajectory is

constantly visualized in order to help the patient. In [8] a

tool for evaluating patient performance during rehabilitation

therapy is proposed: the patient hand centroid is tracked and

used as a computer mouse for following reference trajectories

made of curves and linear segments.

The objective of this paper is to introduce techniques

and tools necessary for realizing a low-cost system for

patient performance evaluation during task-oriented hand

rehabilitation therapy. Repetitive actions along predefined

path used in the robot-assisted rehabilitation therapy showed

improvements in stroke patients [9]. Therefore, this paper

uses a reference trajectory approach for the rehabilitation

therapy. The proposed system is composed of (i) a VE, in

which the therapist and the patient hand avatars interact with

some virtual objects in order to perform different grasping

actions, and (ii) the Kinect R© [10] motion sensing device

(developed by Microsoft), used for tracking both therapist

and patient hand finger movements. The VE inputs are

therapist and patient hand joint positions obtained by a

marker-based finger tracking algorithm. The novelty of the

proposed system is that it allows monitoring the behavior

of each joint of the patient hand by comparing it with

the reference movements performed by the therapist. The

proposed system could be useful for evaluating each hand

joint performance. With respect to classical optoelectronic

motion analysis devices, the proposed system is very cheap

and compact.

During hand tracking, the problems to deal with are

essentially due to the segmentation of the hand from the



background and to the large number of hand degrees of

freedom (DoFs). Skin color offers a possible way for locating

the hand in image sequences, but precludes the tracking of

single fingers. As a countermeasure, it is necessary to extract

some features, such as points, contours, or silhouettes [11]

to be tracked. A commonly used approach for tracking

objects characterized by a high number of DoFs, such as

the human hand, is to use a prior 3D model on which

the observed data are projected. The best match between

the image feature observations and the projected 3D model

renders the joint angle values. Therefore, it is possible to

formulate the hand tracking problem as an optimization prob-

lem [12], [13]. In order to solve the optimization problem,

sequential Monte Carlo methods, such as particle filters, have

been used [14], [15], [16], [17].

In this work, a Monte Carlo-based approach for tracking

the hand joints has been developed. In particular, a set of

markers have been placed on the hand joints of the therapist

and the marker detection during motion has been made by

using a blob-detection algorithm. A central problem appeared

to be tracking the markers along the image video sequence,

taking into account the presence of noise, outliers due to

clutters and the possibility that markers appear and disappear

during motion. Bayesian estimation techniques with suitable

filtering techniques have been used to this effect. An advan-

tage of the developed approach is mostly the reduced compu-

tational cost and the ease of filter implementation and tuning.

Moreover, as it will be clear in the following, there is no need

of prior training the entire system. By using the Kinect, it

has been possible to perform the visual analysis of human

hand motion and to record the hand joint positions during

movements in a reliable and repeatable way. The obtained

finger joint positions and trajectories during hand movements

have been used as input to a virtual hand that reproduces the

therapist movements. According to the teaching-by-imitation

approach, the patient visualizes the reference trajectory and

tries to follow it. The movements have been monitored by

a Kinect system and hand trajectories have been given as

input to another virtual hand model. The error between the

two trajectories is computed in order to measure patient

performance and to improve rehabilitation therapy.

The paper is structured as follows: Section II is devoted to

a brief description of the Kinect technology; in Section III

the finger tracking algorithm is explained; in Section IV,

the application of the developed algorithm to the field of

graphical interfaces for hand rehabilitation devices is pre-

sented. Finally, conclusions and directions for future work

are proposed in Section V.

II. THE KINECT MOTION SENSING DEVICE

The Kinect (Figure 1) is a motion sensing device con-

sisting of an InfraRed (IR) laser emitter, an IR camera

for measuring depth information, and an RGB camera. It

captures depth and color images simultaneously at a frame

rate of about 30 frames per second (fps). The resolution of

the RGB camera is 640 × 480. The IR camera and the IR

emitter form a stereo pair.

Fig. 1. The Kinect motion sensing device.

Depth is evaluated by using a CMOS sensor device, pro-

duced by PrimeSense, by using the light coding method [18].

The device can supply depth measurements of images

formed by the RGB camera when the vision system is

appropriately calibrated.

LibFreenect library by OpenKinect has been used in order

to make the Kinect work on the PC.

III. HAND JOINT TRACKING ALGORITHM

In order to obtain information about the hand joint posi-

tions during motion, colored markers have been placed on

the human hand as shown in Fig. 2, taking into account the

literature [19], [20], [21], [22] and the necessity of tracking

hand joints. The markers are made of paper, have diameter

1.2 cm, and consist of a central blue circle surrounded by

a white ring. This external white part is useful to make the

detection algorithm robust when finger projections overlap.

Fig. 2. Protocol used for marker positioning.

Marker detection and tracking are the core problems in

reconstructing the hand joint positions during hand move-

ments. In this work, the ideal perspective camera model [23]

is used to project 3D scene points into their corresponding

image–space 2D features.

A. Detection

The first step in the tracking algorithm is the detection of

distinctive features, to extract our regions of interest from

the image. This is done by detecting the colored markers

in each input frame. Blobs whose histogram is as close as

possible (in the sense of Bhattacharyya similarity coefficient)

to the reference color histogram are extracted. In order to

improve and speed up the extraction process, the image

is thresholded, thus yielding to a binary image where the

regions whose histogram is closer to the reference one are

represented by white pixels. The threshold value is kept

constant along the whole video and it has been set up by



making some experimental tests over the available video set.

Then, a connected component labeling algorithm is used:

the image is scanned by rows reading the gray level of

each pixel. If the gray level of a pixel exceeds the given

threshold (i.e., the pixel is identified as a white pixel), its

position is stored, because it is possible that such pixel

belongs to a candidate blob. The above procedure is done

for each row. If two white pixel sequences on consecutive

rows are neighboring, they are considered members of the

same blob and a same label is assigned to them. Only blob

candidates composed by more than Np pixels are considered

valid. Once the blobs on the scene have been determined, the

2D coordinates of every blob center are computed. Figure 3

shows an example of the algorithm output.

B. Tracking

Once the center of each colored marker has been detected,

it is necessary to track the markers during the whole video.

Tracking is the process that, assigned a frame at a given

time, aims at making coherent correspondences between

visible markers on successive frames, while time is passing.

Since a robust blob extraction has proved to be difficult,

in the literature, some detection ambiguities could raise. In

particular, the blob detector could fail in some regions due

to local illumination changes or shadows. This can lead

to the inability to detect some visible markers or to the

possibility that the features set may be contaminated by

outliers. Moreover some markers may disappear from the

field of view due to hand and finger movements. For these

reasons, a robust tracking scheme must be implemented. In

the following, the developed algorithm is illustrated in detail.

Fig. 3. Frame k of the video sequence: output of the blob detection
algorithm. The center of each marker is outlined with a red cross. The image
space coordinates of the j-th marker, xk,j , are outlined. Notice that one
marker disappears from the field of view and its projection is temporarily
not available. Moreover, one visible marker is not recognized by the blob
detector. The tracking algorithm is required to be robust with respect to
such kind of situations.

Let N markers be given, where N is the maximum number

of the markers expected in the scene. In the absence of a

hand kinematic model, the best we can do is to assume

the marker projections j = 1, 2, . . . , N to have linear-

state Markovian dynamic and measurement models, driven

by zero-mean white noise. The latter assumption is usually

considered realistic within the Computer Vision community.

If we write uk,j , vk,j as the image space coordinates of

the j-th marker at the time when the k-th frame has been

processed, the marker state can be defined as

xk,j =
[

uk,j vk,j
]T

, (1)

and thus
{

xk,j = xk−1,j + wk,j

yk,j = xk,j + νk,j ,
(2)

where

wk,j ∼ N (0, Qj) (3)

νk,j ∼ N (0, Rj) (4)

are white Gaussian noises with null mean value and co-

variance matrix Qj and Rj , respectively. Figure 3 shows

the projection xk,j of the j-th marker on the image plane

corresponding to the k-th frame, according to the pinhole

model. The output of the blob detection algorithm, for the

k-th image, is a random sequence of Mk measurements

Yk = {yk,1, yk,2, . . . , yk,Mk
} of blob candidates. In general,

the condition Mk 6= N will hold, which means that sequence

Yk contains projections of visible markers and clutters, as

in the following example:

yk,1 → marker 6
yk,2 → marker 7
yk,3 → clutter
...

yk,Mk
→ marker h.

In designing the tracker, the following main hypotheses have

been considered:

• The associations between measurement h and marker j

or with a clutter cannot be a priori decided and has to

be set.

• Each sequence of measurements for each frame can

be considered conditionally independent on every other

sequence in the past.

• Once the current sequence of associations has been

defined, it can be considered conditionally independent

of the past history of associations.

Given the intrinsic randomness of the problem and the

discussed ambiguities, the best way to solve it is using a

general probabilistic approach, via robust Bayesian filter-

ing [24], [25], [26].

The current version of the tracking algorithm does not

include an explicit kinematic hand model, and thus the

markers are treated as mutually independent entities. Mea-

surements are serially processed, leading to a simplification

of the tracking algorithm. Obviously the lack of a kinematic

model has to be compensated for by a more accurate tuning

required for the filter parameters and for the noise matrices of

the markers and measurement models. This has been found

necessary to avoid swapping situations between markers in

some configurations where their projections were very close

to each other or overlapping.

As can be seen in the video output, the model-free

approach leads to acceptable and accurate tracking results.

Higher accuracy can still be obtained by including a model.



With the above assumptions, let ak ∈ {0, 1, . . . , N} be a

discrete indicator variable, defined as follows:

ak =

{

0 if yk,i is an outlier

j if yk,i is associated to marker j
(5)

where yk,i is the i-th measurement at the k-th frame. Accord-

ing to this definition, the markers model can be converted

into a new stacked model. By introducing the augmented

markers vector

xk =
[

xT
k,1 xT

k,2 . . . xT
k,N

]T
(6)

and in view of (5), the following Conditional Dynamic Linear

Model (CDLM) [26] can be defined:
{

xk = F (ak = j)xk−1 + E (ak = j)wk

yk,j = H (ak = j)xk + νk,j ,
(7)

where F (ak = j) ∈ R
(2N)×(2N) and E (ak = j) ∈

R
(2N)×(2N) are selection matrices with I2×2 in the (2× 2)

block (j, j) and 0 elsewhere and H (ak = j) ∈ R
2×(2N)

is a selection matrix with I2×2 in the (1, j) block and 0
elsewhere. By conditioning the system on ak, the CDLM (7)

becomes a linear Gaussian dynamic model. Thus, the state

of the j-th marker can be updated once the measure cor-

responding to that marker has been selected. In this work,

a “per-measurement” association is used. In the framework

of optimal Bayesian filtering, the tracking problem can be

defined by estimating the filtering (posterior) distribution

p (xk|y1:k) = p (xk,1, ..., xk,N |y1:k) (8)

being the estimation of the current augmented marker state,

given the measurement history up to the current time. With

the introduction of the latent variable ak, the posterior

probability p (xk|y1:k) can be evaluated by marginalization

with respect to ak of the joint probability p (xk, ak|y1:k),
that is:

p (xk|y1:k) =
∑

ak

p (xk, ak|y1:k)

=
∑

ak

p (xk|ak, y1:k) p (ak|y1:k) .
(9)

The first equality in (9) is obtained by applying the definition

of marginalization; the second equality is obtained via Bayes’

rule on the joint posterior probability p (xk, ak|y1:k).
In the last equality of (9) two terms are highlighted:

• p (ak|y1:k) is the posterior distribution of the data asso-

ciation, whose shape is, in general, not known a priori,

depending on the detection algorithm. A weighted m-

sample approximation has to be determined by using

Monte Carlo Sequential Importance Resampling (SIR)

techniques. In this work it has been found convenient

to use particle filtering as SIR approximation, making

it possible to represent the association posterior with

a set of particles which are updated and reweighted

recursively.

• p (xk|ak, y1:k) is the posterior (updated) distribution of

the markers projections, conditioned on the association

ak. Given the definition of the CDLM (7), it is known

that such model becomes a linear Gaussian dynamic

model, once the data association is fixed: that is, the

posterior p (xk|ak, y1:k) can be solved using a Kalman

filter.

From the above analysis, the following relationship holds:

p (xk|y1:k) ≈

m
∑

i=1

wi
k N

(

x̂k

(

aik
)

, Pk

(

aik
))

(10)

where x̂k

(

aik
)

and Pk

(

aik
)

are respectively the mean vector

and the error covariance matrix of the Kalman filter asso-

ciated with the i-th sample (which infers the association

aik). The notation N (·, ·) indicates the multivariate normal

distribution of order 2. According to (10), a set of m particles

can be defined, which contains the augmented state mean x̂
i
k,

the error covariance matrix P i
k and the weight wi

k associated

with each particle:

Sk =
{({

x̂
1

k
, P

1

k

}

, w
1

k

)

,
({

x̂
2

k
, P

2

k

}

, w
2

k

)

, . . . ,
({

x̂
m

k
, P

m

k

}

, w
m

k

)

}

(11)

Equation (9) together with (10) give a direct information

about how to solve the filtering distribution p (xk|y1:k):
by generating all the possible hypotheses ak = i, i =
0, 1, . . . , N and evaluating each of them together with the

current observation (by running a Kalman filter), it is possible

to evaluate the most likely hypothesis a∗k which gives the

highest score. This will give the most likely marker state

according to (10).

By using Bayes’ rule, the posterior p (ak|y1:k) can be

decomposed as follows:

p (ak|y1:k) ∝ p (yk|ak, y1:k−1) p (ak) (12)

where p (yk|ak, y1:k−1) is the likelihood of the measurements

and p (ak) is the association prior, which is assumed to

be independent of the previous measurements. The latter is

determined by the a priori knowledge of clutter and marker

association event probabilities.

In the case of association hypothesis with marker j:

p (yk|ak, y1:k−1) =
∫

N
(

H
(

aik = j
)

xk, Rj

)

N
(

x̂
i−
k , P i−

k

)

dxk (j) (13)

where N
(

x̂
i−
k , P i−

k

)

is the Kalman prediction step for the i-

th particle, being x
i−
k the prediction of the marker positions

and P
i−
k the prediction of the error covariance. Moreover,

N
(

H
(

aik = j
)

xk, Rj

)

is the probability density function

of the measurement yk, assuming that it has been generated

by the j-th marker. In the case of clutter association,

p (yk|ak = 0, y1:k−1) p (ak = 0) =

=
1

RESu × RESv

p (ak = 0) (14)

where RESu, RESv are the numbers of pixels in the u, v

direction (image resolution) and p (ak = 0) is known.

Once the expressions of the association prior and of the

measurement likelihood have been derived, the importance

sampling of the optimal distribution for the association



problem can be computed for each particle in the set S.

Thus, an approximation of the posterior

p (xk|y1:k) ≈

m
∑

i=1

wi
k N

(

x̂k

(

aik
)

, Pk

(

aik
))

can be found. The algorithm is explained in Tab. I.

(a) Frame 1 (b) Frame 21

(c) Frame 50 (d) Frame 55

Fig. 4. Results of the proposed filter based tracking.

Figure 4 shows a sequence of hand movements where

the blue markers on the hand have to be tracked. At the

beginning, there are 25 markers in the scene (Frame 1), at

Frame 21 the marker on the MCP joint of the middle finger

and the markers on the TIP and DIP joints of the index finger

disappear; at Frame 50 the marker on the middle finger MCP

joint reappears, but markers on DIP and TIP joint of the index

finger are still not present and markers on PIP, DIP and TIP

joints of the middle finger have disappeared. In Frame 55 all

the markers reappear. Those results prove the capacity of the

algorithm to track the markers in spite of the disappearing

marker problem.

IV. REPRESENTATION OF FINGER TRAJECTORIES IN VE

The 3D position of each visible marker (with respect to

the camera) can be reconstructed by multiplying the marker

pixel coordinates coming from the tracking algorithm by the

RGB camera calibration matrix and by the measured depth

value. The tracked finger joint positions of the therapist hand

have been given in input to a VE developed by means of the

Matlab Virtual Reality Toolbox. The VE is made of a virtual

human hand, designed by taking into account the physical

characteristics of the patient hand, and by different objects

suitably chosen for rehabilitating the user hand to perform

daily life activities.

With the finger tracking algorithm described in Sect. III

we are able to track the pinch grasp and the tripod grasp. In

fact, for the proper operation of the algorithm, it is necessary

that, at the first and last frame, all the markers are visible.

In such a way, an interpolation process can reconstruct the

movement of each single joint during the whole grasping

TABLE I

PSEUDO-CODE OF THE TRACKING ALGORITHM

INIT

• Marker state vector initialization: x0 =
[

x0,1 ... x0,N

]T

• Particles initialization:
S0 = {({x1

0
, P 1

0
}, w1

0
), ..., ({xm

0
, Pm

0
}, wm

0
))}

CICLE

• For each measure (n = 1 : Mk):

– For each particle (i = 1 : m):

∗ MKF prediction: For each hypothesis ak , run a Kalman
prediction step on the couple {xi

k
(ak), P

i
k
(ak)}

∗ Calculate the likelihood of the current measure with
respect to predictions and to possible associations:


















pi
0
= p(yn

k
|ak = 0, xi

k
, y

1:k−1
)p(ak = 0)

pi
1
= p(yn

k
|ak = 1, xi

k
, y

1:k−1
)p(ak = 1)

.

.

.

piN = p(yn
k
|ak = N, xi

k
, y1:k−1)p(ak = N)

∗ Sample a new association hypothesis ai
k

(particle) from the

importance distribution p
(

ak |y
n
k

)

:

draw ai
k
= 0 with normalized probability pi

0

draw ai
k
= 1 with normalized probability pi

1

.

.

.
draw ai

k
= N with normalized probability pi

N

∗ MKF update: if ai
k

6= 0, run a Kalman correction

step, using the new sampled association variable ai
k

:

{xk(a
i
k
), Pk(a

i
k
)};

∗ compute the new particle weight: wi
k
= wi

k−1

∑

h pi
h

;

– End for each particle
– Resample, if necessary, the particle set;
– Extract the couple {xi

k
, P i

k
} from particles with highest proba-

bility.

• End for each measure.

action, even if in the reaching phase some markers disappear

from the image.

In case of power grasp and lateral grasp, when the user

grasps the object, some markers may be hidden by other hand

parts or by the object itself. In order to be able to record the

trajectories followed by both therapist and patient in such

grasp types, it is necessary to introduce the kinematic model

of the hand in the tracking algorithm. Future work will be

oriented to this direction.

In Fig. 5, the start and final frames of the grasping action

simulation carried out by the therapist are shown, in case of

tripod grasp and pinch grasp. Only the fingers are shown

since in the precision grasp the palm is not involved. In

the future extension of the proposed approach to power and

lateral grasps, the VE will be completed with the integration

of the palm. When looking at the movements in Fig. 5,

the patient should try to reproduce them while the Kinect

is tracking his/her motion. The trajectories implemented by

the patient will be recorded and supplied to the VE. The

user can have a feedback on his/her movements by looking

at the display. Patient performance will be evaluated by

quantitatively comparing patient and therapist trajectories.

V. CONCLUSIONS

Basic techniques and tools for the realization of a low-cost

system for evaluating patient performance in hand rehabilita-



(a) Start frame of the pinch
grasp

(b) Start frame of the tripod
grasp

(c) Final frame of the pinch
grasp

(d) Final frame of the tripod
grasp

Fig. 5. Simulation of the grasping action performed by the therapist, in
case of pinch and tripod grasp.

tion have been proposed. The Kinect motion sensing device

has been used in order to track therapist and patient hand

movements during predefined grasping tasks. In particular,

an algorithm based on Bayesian estimation theory and on

filtering techniques has been implemented. The resulting

hand joint trajectories have been recorded and provided in

input to a VE in order to move a virtual hand. The patient

motor improvements will be monitored by another Kinect

camera, superimposing the therapist finger trajectories on

the patient finger trajectories. Patient performance could be

evaluated on the basis of the error between trajectories. At

the moment, only two of four basic grasp types can be

performed. Future work will be devoted to introduce the hand

kinematic model in the tracking algorithm, in order to apply

the system to all types of grasp. Further, the system will be

tested on patients.
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