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Abstract. In this paper, a neural network model has been designed for plan-
ning grasps of a cybernetic hand prototype bymeans of postural synergies. The
synergies subspace is derived by means of a joint-to-joint mapping from a hu-
man hand set of grasps. A library of motor primitives of the hand in a synergy-
based rendering has been built for a number of selected objects and tasks.
The requirement of the task in a simplified approach is specified by the type
of grasp, such as precision or power. A feedforward neural network has been
trained using the grasping data from the library and running the Levenberg-
Marquadt algorithm. By combining postural synergies and neural network the
nonlinear relationship between the object geometric features and the hand con-
figuration during grasping can be easily found with a good approximation. The
experiments have been performed on the DEXMART hand prototype and the
results demonstrate that integration of postural synergies and neural network
is a promising tool toward simplified and autonomous grasping for artificial
hands, such as anthropomorphic robotic hands and prostheses.

1 Introduction

Artificial hands for robotics and prosthetics, require enhanced manipulation
skills to reproduce human’s abilities. This calls for the design of complex dex-
terous hands with advanced sensorimotor skills and human-like kinematics
[1]. The augmented anthropomorphism and consequently the high multiple
Degrees-of-Freedom (DoFs) leads to an increased complexity of control algo-
rithms and, about prostheses, also of the communication interface between
the user and the machine.

As a matter of fact, the undergoing research in the field aims at the repro-
duction of human abilities not only by means of anthropomorphic design but

J.L. Pons et al. (Eds.): Converging Clinical & Engi. Research on NR, BIOSYSROB 1, pp. 467–480.

DOI: 10.1007/978-3-642-34546-3 76 c© Springer-Verlag Berlin Heidelberg 2013



468 F. Ficuciello et al.

also by the adoption of human-inspired control strategies. Neuroscience and
robotics have shown that imitating human prehension is a promising way to
simplify and improve grasp planning and control issues related to high DoFs
devices. Preliminary studies on the human hand point out that the combina-
tion of tendon coupling and muscle activation patterns exhibited by humans
leads to significant joint coupling and inter-finger coordination, or, in other
words, to postural synergies, that are evidence of simplified control schemes
occurring at neurological level for the organization of the hand movements
[2]. Hand prostheses with high DoFs requires too many independent control
signals with complex EMG signals processing and demanding training by the
user. Otherwise, a smart control algorithm and an autonomous controller
including a large number of sensors are required. For this reason hand pros-
theses currently available on the market still work as simple hands [3] or as
multi-fingered hand where all fingers open and close simultaneously with one
or two DoFs [4]. Indeed, despite the poor dexterity, the device has a simple
interface with the patient and simplified control strategies based on few EMG
input [5], [6]. To improve dexterity and anthropomorphism, higher technol-
ogy [7], [8] is required in terms of design, sensors and actuation. Moreover,
new control strategies for intelligent automatic control are needed to improve
performance and diminish the burden of user’s training [9], [10].

The complexity of planning and control concerns not only the hand pros-
theses but, more generally, all the robotic hands with high DoFs. Therefore, it
is desirable to find strategies allowing simplification of these tasks. Postural

Fig. 1 Main representative grasps mapped from the reference set of human hand
postures on the DEXMART Hand prototype for the computation of postural syn-
ergies
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synergies, inherited from neuroscience research on the human hand, are a
useful tool for control and grasp synthesis simplification of anthropomorphic
artificial hands. In [11], [12], [13] the authors extend the concept of postural
synergies to robotic hands showing how a similar dimensionality reduction
can be used to derive comprehensive planning and control algorithms that
produce stable grasps for a number of different robot hand models. Synergies
have been used to solve the dimensionality reduction problem in control and
coordination of a 16-DoFs underactuated prosthetic hand prototype (Cyber-
Hand), in order to perform the three prehensile forms mostly used in activities
of daily living [14].

In order to apply a synergy-based control it is necessary to plan the proper
weights of the synergies corresponding to the geometrical characteristics of
the object and to the task. The relationship between the weights of the syn-
ergies and the object is nonlinear and is hard to obtain in a closed form.
The use of neural networks allows approximating this relationship. Recently,
transferring grasps capabilities from the human hand to the robotic hand has
been addressed using neural networks. In [15] three synergies from data on
human grasping experiments have been extracted and mapped to a robotic
hand. Then a neural network with the features of the objects and the co-
efficients of the synergies has been trained and employed to control robot
grasping. Neural networks have been utilized also in other works in order
to simulate temporal coordination of human reaching and grasping. In [16]
the neural network model includes a synergistic control of the whole fingers
during prehension and the design of a library of hand gestures.

In [17] and [18], postural synergies of the first DEXMART Hand proto-
type, the UB Hand IV, have been used for human-inspired control solutions.
In this work, neural networks have been integrated to allow synergy-based
grasp planning relying only on object geometric features and task require-
ments avoiding direct mapping of the grasps from the human hand. All the
experiments are conducted on the last prototype of the DEXMART Hand,
and thus the procedure to compute the synergies subspace in [18] is repeated
for the new prototype.

2 Material and Methods

2.1 The DEXMART Hand

The experiments have been conducted on the last prototype of the DEX-
MART Hand [19] provided with an improved kinematics with respect to the
UB Hand IV [20] (previous prototype). The new kinematics is adopted in the
final version of the robotic hand. Is worth underlining that the other design
features remain the same and neither of the two prototypes is equipped with
sensors. Therefore, the same tendon-kinematics, static and dynamic analysis
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conducted on the UB Hand IV are still applied and are briefly described in
this section. Further details can be found in [20].

The DEXMART Hand is an innovative anthropomorphic hand developed
within the DEXMART project [21]. To the end of the maximum design sim-
plification and reduction of the device’s cost production and development,
the hand has been conceived by taking into account the following driving
issues:

• The hand mechanics is based on an endoskeletal structure articulated by
means of pin joints integrated into the phalanx body simply consisting in
a plastic shaft which slides on a cylindrical surface [22, 23, 24].

• Remotely located actuators with tendon-based transmissions routed by
sliding paths (sliding tendons) [25] have been adopted for the joints ac-
tuation.

• A purposefully designed soft cover mimicking the human skin [26, 27] has
been introduced for improving the grasping capabilities of the hand.

• The mechanical structure of the hand has been manufactured adopting
additive technologies (Fused Deposition Manufacturing).

The kinematics of the hand aim at a human-like manipulation capabilities and
mobility. For this purpose, in the new design the kinematics of the fingers has
been differentiated and provided with different joint limits. In particular, the
main change regards the kinematics of the thumb: the adduction/abduction
base joint and the first flexion joint have been inverted in the kinematic chain
order. Thus, the new kinematics is designed to improve the functionality,
allowing the opposition of the thumb with the other four fingers.

Taking inspiration from the biological model and in order to reduce the
complexity of the hand control, an internal non-actuated (passive) tendon
has been introduced to couple the movements of the last two joints of each
finger, i.e. the medial and the distal joint. Only three angles are considered
for the index, the middle, the ring and the little finger, i.e. the base (adduc-
tion/abduction) angle θ1f , the proximal angle θ2f and the medial angle θ3f .
About the thumb, the angles are in the sequence: the base (proximal angle)
angle θ1t, the adduction/abduction angle θ2t and the medial angle θ3t. There-
fore, a total amount of h = 15 joint angles is needed to describe the robotic
hand configuration. The joint angles ranges for each finger are mechanically
constrained by stroke limiters within the intervals:

θ1f ∈ [−15, 15], θ2f ∈ [0, 90], θ3f ∈ [0, 110] [deg] (1)

and for the thumb within the intervals:

θ1t ∈ [0, 90], θ2t ∈ [0, 60], θ3t ∈ [0, 90] [deg]. (2)

The hand controller developed in the Matlab/Simulink environment is based
on the RTAI-Linux realtime operating system. The Matlab Realtime Work-
shop toolbox has been used for the automatic generation of the real-time
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application of the UB Hand IV controller. The user interface to the real-time
application has been implemented by means of the Simulink External Mode
capabilities, for which the RTAI-Linux support has been purposely developed.

2.2 Human Grasp Mapping and Dimensionality
Reduction

A reference set of 36 human hand postures has been selected on the basis
of the taxonomy in [28]. Each human hand posture has been mapped to
the robotic hand, see Fig. 5, using a joint to joint mapping as in [17] and
[18]. Thus, as in our previous works, using Principal Component Analysis
(PCA) the kinematic patterns of the first three synergies are obtained for
the new kinematics and analyzed. Once the matrix C = {ci | i = 1, . . . , 36}
of the DEXMART Hand prototype configurations has been built, the vector
c̄ representing the mean hand position in the grasp configurations space (the
zero-offset position) and the matrix F = {ci − c̄ | i = 1, . . . , 36} of the grasp
offsets with respect to the mean configuration have been computed. The PCA
has then been performed on the matrix F and a base matrix E = {e1 e2 e3}
of the postural synergies subspace has been found by selecting the three
predominant components form the PCA.

2.3 Neural Network Model and Motor Primitives
Library

Neural networks are introduced to confer autonomy to the synergy-based
method for planning and control grasping tasks. The neural network has
been implemented in MatLab using the Neural Network Toolbox (NN Tool-
box) [29]. The objective is to approximate the nonlinear relationship between
the object geometric features and the hand configuration during grasping. A
feedforward neural network is able to approximate with arbitrary precision
any function having a finite number of discontinuities, if a sufficient number
of internal neurons is considered [30].

From a proper evaluation of the task and training patterns, the network
model has been chosen as a feedforward with a non linear hidden layer and five
internal neurons. The network receives as input three parameters: diameter,
height of the object and the binary input that identifies the type of the grasp.
The outputs are the three weights of the synergies (Fig. 2).

In order to train the neural network, twelve spherical objects and twelve
cylindrical objects of different size have been considered as training patterns.
The diameters of the spheres are included in a range between 2 [cm] and
9,3 [cm]. The cylinders are chosen with the same height of 20 [cm] and with
diameters included in a range between 2 [cm] and 9,3 [cm]. Since the input
patterns must have all the same dimensionality, for the spheres, the height
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Fig. 2 Schematic representation of the trained neural network

equal to the diameter has been introduced as the second parameter. Further-
more, the cylinders have been chosen with the same height equal to 20 [cm],
greater than the extension of the palm, in such a way that all the fingers can
be placed on the lateral surface of the object.

For each object, the joint configuration of the hand prototype correspond-
ing to power and precision grasps have been obtained using joint to joint
mapping. Thus, the weights of the first three synergies corresponding to each
configuration have been obtained by projection in the synergies subspace.
The neural network has then been trained using the synergy weights, in the
form of 3 × 1 vector, representing the desired responses (targets) to the in-
put patterns, that are the object geometric features and the specified task.
Indeed, since the synergy weights varies according to the type of the grasp,
an additional binary input has been introduced. The binary signal assumes
unitary value for a precision grasp and zero value for power grasp.

The normalization and the distribution of patterns among training, vali-
dation and test set for the training procedure are retrieved by default from
the NN Matlab Toolbox. When running the training function, the network
initializes the weights and the bias randomly according to the rule of Nguyen-
Widrow, and performs the training algorithm Levenberg-Marquadt, which
is a numerical optimization of the Back-propagation classic algorithm. The
three subsets were formed randomly extracting patterns from the total set
with the following percentages: 70% for the training set, 15% for the valida-
tion set and 15% for the test set.
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3 Results

In this section the results obtained using a neural network model in a synergy-
based framework are reported. First of all, the synergies subspace computed
for the DEXMART Hand prototype is described and assessments on the
kinematic patterns of the first three synergies are provided. Once the training
and validation has been performed using NN Toolbox of Matlab, the network
has been tested to verify its generalization ability in synthesizing new object
grasps.

3.1 Kinematic Patterns of the three Predominant
Synergies

The synergies subspace of the DEXMART hand prototype is derived using
the method described in [18] by means of the joint-to-joint mapping.

Only the first three synergies are analyzed since they are used to control
the hand in order to perform a given grasp. From the experimental results
in [18] it is expected that a control strategy that uses these synergies for
robot hand motion allows obtaining very good grasping performance in a
configuration space of highly reduced dimensions with respect to the DoFs
of the robotic hand itself.

The three synergies are described with the aid of appropriate graphical
tools, circular graphs, for the representation of the postural synergy vectors
e1, e2 and e3 with the purpose of identify the joints whose rotations are more
involved in each synergy.

Fig. 3 On the left, the circular graphs referred to the first synergy is represented.
The adduction/abduction, proximal and medial flexion joints are indicated from 1
to 3 for the thumb, from 4 to 6 for the index finger, from 7 to 9 for the middle
finger, from 10 to 12 for the ring finger and finally from 13 to 15 for the little finger.
On the right, frontal and lateral view of the first postural synergy in the minimum
and the maximum configuration, from left to right, are depicted.
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3.1.1 First Synergy

With reference to the first postural synergy e1 (Fig. 3), in the minimum
configuration the proximal and medial flexion joint angles of all the fingers
are all almost zero and increase their value during the motion toward the
maximum configuration. The adduction/abduction movements of the four
fingers are not very involved in this synergy.

3.1.2 Second Synergy

The second postural synergy e2 (Fig. 4) is characterized by a movement in
opposite directions of the proximal and medial flexion joints. The adduc-
tion/abduction movements of the four fingers are not very involved also in
this synergy.

Fig. 4 On the left, the graphs referred to the second synergy is represented. On
the right, frontal and lateral view of the second postural synergy in the minimum
and the maximum configuration, from left to right, are depicted.

3.1.3 Third Synergy

In the third postural synergy e3 (Fig. 5) the movement involves especially the
index and the thumb. The movement of adduction/abduction of the thumb
and of the index increases with respect to the first two synergies.It is easy
to observe how the adduction/abduction thumb joint motion (joint #1 in
Fig. 5) is more involved in the third synergy rather than in the first two.
This characteristic is important for correct index/thumb opposition that al-
lows increasing the grasp accuracy, and thus achieving more stable grasps.
This justifies the use of three predominant synergies for the hand control in
order to improve the grasp performance, especially for precision grasps and
intermediate side grasps, where the position of the thumb and of the index is
crucial. In fact, the first two synergies take into account the 70% of the total
variance of the data compared to 80% of the first three.
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Fig. 5 On the left, the graphs referred to the third synergy is represented. On the
right, frontal and lateral view of the third postural synergy in the minimum and
the maximum configuration, from left to right, are depicted.

3.2 Neural Network Grasp Synthesis

Once the neural network has been trained and validated, the synthesis of new
object grasps have been investigated to test its ability. A set of cylindrical and
spherical objects of intermediate size, compared to the objects of the training
set, were considered. In detail we have considered two cylindrical objects and
two circular objects, in both power and precision tasks, for a total amount
of 8 grasps. The synergies weights, output of the neural networks, have been
then used in the control algorithm developed in [31]. In Fig. 6 the image of the
grasps executed by the robotic hand according to the synergy-based control
strategy are depicted. The synergies weight utilized in the control strategy
is the output of the neural network corresponding to the geometric features
of the object and task specification. We can observe that the robotic hand
is configured in a satisfactory manner for each type of object and grasp. In
order to quantitatively assess the performance of the neural network we have
mapped the eight grasps on the robotic hand using the joint to joint map-
ping technique. The obtained configurations have been compared with the
ones synthesized by the neural network. The vector ci represents the config-
uration corresponding to the object i mapped on the robotic hand using the
joint to joint mapping technique. The vector cni represent the corresponding
configuration synthesized by the neural network. The average of the joint
errors is computed using the Euclidean norm as follows

e =
‖ci − cni ‖

15
(3)

and is reported in Tab. 1 for each object. The errors are represented in the
table fulfilling the same order of the object in Fig. 6. The values of the table
are of the order of few degrees, therefore, they attest a good ability of the
neural network model in synthesizing new grasps.
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Table 1 Average joint angle errors on the synthesized grasps

Grasp Type Average joint angle errors (in degrees)

Precision Grasps 2,19 1,26 2,22 2,02

Power Grasps 2,90 1,94 2,03 1,93

3.3 Synergistic Control

The synergy based control strategy used to execute the grasps in Fig. 6 is
here briefly detailed. We have tested the goodness of the neural network
grasp synthesis by applying a reach to grasp control algorithm as in previous
work [31], using in the final grasping configuration the synergies weights
output of the network model. The first three postural synergies have been
used to control the hand in order to perform selected grasps. A generic hand
grasp posture ci can be approximated, by a suitable selection of the postural
synergy weights [α1 α2 α3]

T ∈ R
3, as the projection ĉi on the postural

synergies subspace

ĉi = c̄+E

⎡
⎣
α1,i

α2,i

α3,i

⎤
⎦ . (4)

In [18] the value of the three eigenpostures weights [α1 α2 α3]
T are computed

from the desired grasp posture as

⎡
⎣
α1,i

α2,i

α3,i

⎤
⎦ = E† (ci − c̄) (5)

where E† is the Moore-Penrose pseudo-inverse of the base matrix E. It goes
without saying that, in order to use this synergy-based control strategy, it is
necessary to know the hand configuration in the joint space that we want to
perform. This implies the passage through the configuration space by means
of a mapping algorithm, and thus it nullifies the usefulness of a reduced di-
mensionality representation of the configuration space. Therefore, the utility
of neural networks consists of substituting the mapping algorithm and obtain-
ing the weights directly from the features of the object. It is straightforward
to note that the motions shown in Fig. 3, 4 and 5, derived by considering
separately the three synergies, are obtained from (4) by assuming α2 = 0
and α3 = 0 for the first synergy, α1 = 0 and α3 = 0 for the second synergy
and finally α1 = 0 and α2 = 0 for the third synergy. The temporal value of
the weights α1, α2, α3 during grasp operations has to be chosen in such a
way that, starting from the zero-offset position c̄ (i.e. α1 = α2 = α3 = 0),
the hand opens during the reach in preparation for object grasp, and then
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closes reaching a suitable shape determined from neural network output. In
the open-hand configuration, namely c0, all the flexion joint angles are close
to zero, and the corresponding values of α1, α2 and α3 can be determined
from (5) by posing ci = c0. The intermediate values of the synergy weights
have been determined by assuming a suitable time interval for the grasp op-
eration (six seconds for the whole reach to grasp phase, three seconds for
both the opening and closing phases) and by linear interpolation of the α1,
α2 and α3 values in the three reference configurations {c̄, ĉ0, ĉi}.

Fig. 6 Synthesized grasps by means of postural synergies and the neural network.
On the top of the figure are represented precision grasps, while power grasps are
represented on the bottom.

4 Discussion and Conclusions

In this work, the integration of postural synergies with neural networks been
carried by means of experiments on the last prototype of the DEXMART
Hand. The DEXMART Hand is an anthropomorphic hand implemented with
transmission tendons, very similar to the human hand in functionality and
aesthetics. Thus, the prototype can be considered as a platform appropriate
for both robotic and prosthetic hand control studies and developments. Rely-
ing on a previous work carried out on the UB Hand IV, the postural synergies
subspace of the DEXMART Hand prototype has been computed. Thanks to
the use of a neural network the postural synergies represent a valuable tool for
the simplification of grasp control and planning for anthropomorphic robotic
hands with many DoFs.

In fact, using a control strategy based on the first three synergies, the 80%
dimensionality reduction of the configuration space is obtained, compared
with a loss of data variance of 20%. The use of artificial neural networks can
further simplify the problem of planning and control, since it allows correlat-
ing the weights of the synergies directly to the features of the object and to
the required grasp type. The average of the joint errors for each of the select
objects, computed in (3) and reported in Tab. 1, is small enough to confirm
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the efficiency of the neural network in synthesizing new object grasps. The
network takes the desired task as input by means of a binary signal that spec-
ifies among power and precision grasp. The experiments demonstrate that the
output of the network provides synergies weights that correctly produce the
desired type of grasp distinguishing among precision and power. About cir-
cular objects, the network is also able to correctly decide for the number of
fingers involved in the grasp on the basis of its radius.

In conclusion, the use of synergies and neural networks allows planning
and executing grasps of a wide variety of objects used in the Activities of
Daily Living with a reduced number of control signals. This is an obvious
advantage both from a computational and algorithmic point of view. This
characteristic can be useful in prosthetic application, since a reduced number
of electro-myographic signals are present in an amputee subject compared to
a healthy subject. Thereby, it is possible to develop a dexterous device with
a good compromise between high technology and performance. In fact, using
synergies, with a reduced number of signals it is possible to obtain a behavior
of the artificial hand very similar to that of the human hand both in terms of
performance and of motion behavior. Furthermore, the use of a small number
of electro-myographic signals does not imply a high effort by the patient and
long periods of training. Even in the case of robotic hand the advantage is to
obtain high performance and reduced complexity for planning and control of
a device with a high number of DoFs.

Future works will focus on improve the autonomy and efficiency of the
planning and control strategy. The method for deriving synergies can be im-
proved considering a wider set of grasps and using different mapping methods
for synergies subspace derivation. A vision sensor will be used to synthesize
grasping in real-time using on-line training of the neural network to improve
efficiency, generalization and enhance autonomous grasp synthesis. New ex-
periments will involve also more complex tasks and objects shape.
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