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Abstract— A new vision-based obstacle avoidance technique
for indoor navigation of Micro Aerial Vehicles (MAVs) is
presented in this paper. The vehicle trajectory is modified
according to the obstacles detected through the Depth Map of
the surrounding environment, which is computed online using
the Optical Flow provided by a single onboard omnidirectional
camera. An existing closed-form solution for the absolute-scale
velocity estimation based on visual correspondences and inertial
measurements is generalized and here employed for the Depth
Map estimation. Moreover, a dynamic region-of-interest for
image features extraction and a self-limitation control for the
navigation velocity are proposed to improve safety in view of the
estimated vehicle velocity. The proposed solutions are validated
by means of simulations.

I. INTRODUCTION

The recent years have seen a growing interest on MAVs
applications in several environments, e.g. surveillance and
human dangerous scenarios. For indoor autonomous naviga-
tion the obstacle avoidance is one of the most relevant draw-
back, also because the GPS signal and a detailed environment
map are often unavailable. A number of control strategies
have been developed based on other on-board sensors like
cameras, radar, lasers, sonars and IMUs (Inertial Measure-
ment Units). However, the most promising approaches make
use of visual sensors.

Several methods based on visual collision avoidance have
been proposed. When a stereo camera system is available, an
image couple can be employed as in [1] to compute distances
towards detected objects based on triangulation. However,
stereo systems require a high payload and onboard compu-
tational capacity. Several biologically inspired approach are
also been presented. In [2] it is shown that fruit flies avoid
obstacles when they turn away from the region with a high
level of Optical Flow (OF). On the other hand, in [3] it is
found out that honeybees try balancing the amount of lateral
OF in order to stay equidistant from the flanking walls.

Different studies in the last years have concerned with
the use of Optical Flow for obstacle avoidance. In some
approaches the average intensity of the left and right OF
vectors is balanced, according to the fact that if the left
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optical flow is larger than the right one, it means that the
object is closer to the left side than the right one, and
viceversa. A nonlinear control strategy for obstacle avoidance
based on the OF is presented in [4], while autopilots for
lateral obstacle avoidance of an hovercraft using two one-
dimensional sensors pointing at ±90◦ have been developed
in [3] and [5]. A single-camera frontal collision-avoidance
strategy computing the divergence of the OF is proposed
in [6], where an increase of the OF divergence indicate the
presence of a frontal obstacle.

The optical flow has also been used for implementing
altitude control for MAVs, e.g regulating the altitude of a
helicopter using two downward optical flow sensors as in [7].
In this last, constant speed obtained by a constant pitch angle
implies that the amount of OF is constant so that the vehicle
stays at a constant height above ground [6], [8].

In [9] two different strategies, with and without the adop-
tion of the OF, based on the Time to Contact –time needed to
obtain a collision between the obstacle and the vehicle, while
it is moving with a translational speed– have been proposed.

The Depth Map (DM) of the environment can be computed
using the OF and GPS measurements. In [10], [11] an
intuitive 3D map providing obstacle locations is provided
using only OF and GPS data. A lateral obstacle avoidance
algorithm for a wheeled robot has been proposed in [12],
where a depth map obtained from the OF evaluated with
an omnidirectional camera has been used. In [13] a real-
time algorithm to compute the Relative Depth Map (RDM)
from the OF independently of the performed motion, while
in [14] the RDP is employed for the navigation through
indoor corridors in the case of linear motion.

In this paper a new vision-based obstacle avoidance
technique for indoor navigation is presented for MAVs
applications. The vehicle trajectory is modified according
to a repulsive force field generating from the DM of the
surrounding environment computed online using the OF. A
single onboard omnidirectional camera is assumed to be
available. In particular, a new formulation for a closed-form
solution for the absolute-scale velocity estimation problem,
which are required for the DM estimation, is presented.
Starting from the solution proposed in [15], where in addition
to inertial measurements the correspondences of an image
feature between three image frames (here referred as visual
station) are required, a new compact formulation is adopted
also generalizing to the case of multiple visual station
and image features. Finally, a dynamic region-of-interest
for image feature extraction and a navigation velocity self-
limitation control are considered to improve safety during
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navigation in view of the estimated vehicle velocity.

II. DEPTH MAP CONSTRUCTION

The Optical Flow can be defined as the apparent motion of
a image features (objects, surfaces, etc.) between two consec-
utive camera frames caused by the relative motion between
the camera and the scene. It is known that the motion of
obstacles observed in an image sequence depends on the
distance of the object with respect to the camera, and thus
the OF can be profitably exploited estimating the distances of
surrounding obstacles. For this reason, OF is often employed
in non-stereo visual based obstacle avoidance. However, the
estimation of the absolute distance of an obstacle requires
the knowledge of the vehicle translational velocity, which
is here evaluated with a new closed-form solution based on
image correspondences and IMU measurements.

A. Depth map construction with Optical Flow

In the case of a purely translational motion of the vehicle,
assuming that all the objects in the scene are stationary,
the translational Optical Flow ωT of an image feature of
an observed object depends on the relative velocity between
the camera and the object itself v and on the angle between
the direction of motion and the observed feature α, as shown
in Fig. 1, with the following rule:

d =
‖v‖

ωT

sin(α), (1)

where d is the distance between the object feature and the
camera. If the velocity is available, the distance and so the
position of the observed obstacle can be estimated. However,
in a general case, the motion of the vehicle is composed of
a translational part and of a rotational part, namely ωT and
ωR, each of which produces a rate of the OF.

OF
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a

Image feature
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Obstacle

Fig. 1. Optical flow during a translational motion.

The computation of the ωT component can be performed
applying a compensation of the rotational effect as described
in [14]. With reference to Fig. 2, the inertial and the camera
reference frames are denoted with I −xIyIzI and O−xyz,
respectively. Without loss of generality, it is supposed that
the camera and the vehicle frames are coincident. The camera
velocity v and acceleration a, this last provided by the
onboard IMU system with a period T , are expressed in
camera frame. The orientation of the camera frame, also

extracted using the IMU measurements, is referred to the
inertial frame and expressed using the well-known Tait-
Bryan (Euler) angles roll, pitch, and yaw φφφ = (ϕ, θ, ψ).
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Fig. 2. Inertial and camera reference frames.

Adopting a classical pin-hole camera model (other models
can be considered in view of the available hardware, e.g.
see [16] for the case of fisheye lens) and assuming known the
camera calibration parameters, the image feature vector f =[
x y z

]T
, i.e. the position of the observed feature with

respect to the camera, can be expressed using the normalized
image coordinates X and Y as follows

f = z

⎡
⎣ X
Y
1

⎤
⎦ = d · f̂̂f̂f , (2)

where d = ‖f‖ is the distance of the feature and f̂̂f̂f is the
unit feature vector depending only on visual measurements
X and Y .

The image features considered in this paper are corners,
while the Pyramidal Lucas-Kanade algorithm [17], [18] has
been employed to find matches. Denote with f̂̂f̂f1

1
and f̂̂f̂f2

2

the unit feature vectors of a correspondence between two
consecutive images, both represented in the respective ref-
erence frames –conventionally, for vectors and matrices the
reference frame is indicated as superscript– and with φφφ12 the
corresponding angular changes for the camera orientation.
Then, the unit feature vector f̂̂f̂f1

2
representing the position of

the image feature measured in frame 2 reported in frame 1
can be evaluated as follows

f̂̂f̂f1
2
= R1

2
f̂̂f̂f2
2
, (3)

where R1

2
= R(φφφ12) is the rotational matrix representing the

rotation performed by the camera in the form

R(φφφ) =

⎡
⎣ cϕcθ cφsθsψ − sφcψ cϕsθcψ + sφsψ
sϕcθ sφsθsψ + cφcψ sϕsθcψ − cφcψ
−sθ −cθsψ cθcψ

⎤
⎦ .

The corresponding ωT can be estimated as the angular
velocity of the feature vector evaluated in the interval Δt12,
between the image frames 1 and 2, given by

ωT =
cos−1

(
f̂̂f̂f1
1
· f̂̂f̂f1

2

)
Δt12

. (4)

Figure 3 shows the ωT computed in a real indoor scene
with an omnidirectional fisheye camera.
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Fig. 3. Optical Flow estimated in a real scene.

For a given vehicle translational velocity v, substituting
(4) in (1) and the result in (2), the set of all feature vectors
f of the available image correspondences can be evaluated,
constituting the instant Depth Map of the surrounding envi-
ronment at the time of the image frame acquisition.

B. Velocity estimation

In this section a generalization of the method proposed
in [15] is presented with a more compact analytical formu-
lation, where the extension to a multi-frame multi-feature
correspondence is explicitly considered. Without loss of
generality, it is assumed that the period of the visual system
is N times the period of the IMU system T . This means
that between two consecutive images there are N available
measures provided by the IMU. Moreover, it is assumed that
the IMU and the camera reference frames are coincident –if
both are calibrated it is easy to refer IMU data to the camera
frame– and that the IMU is ideal, i.e. it provides gravity
and bias-free acceleration and gyroscopic measurements.
Therefore, only the camera frame will be considered in the
rest of the section. Finally, the acceleration a is always
expressed in the current camera frame (e.g. aj = a

j
j , where

j refers to the camera frame at the time instant tj).
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Fig. 4. Camera (blu) and IMU measurement reference frames.

Considering a camera motion as shown in Fig. 4 and
assuming that tk is the last sample time with available visual
data, the previous available visual measurements are referred
to the sample times tk−sN , with s ∈ N (s identifies each
visual station). By denoting with r

j
i the relative displacement

of the frame i with respect and referred to the frame j and
considering a single image feature match between frames k

and ks = k − sN , the following relation can be written

dks f̂̂f̂f
ks
ks

=
(
Rk
ks

)T (
dkf̂̂f̂f

k
k − rkks

)
, (5)

where Rk
ks

=
[
rx ry rz

]k
ks

is the rotational matrix
representing the orientation of frame ks with respect to frame
k, and rx, ry , and rz are the its column vectors. This
relative displacement can be expressed in terms of the current
velocity, with respect to the current camera frame k, and
the integration of acceleration samples between tk−sN and
tk. Let us consider the relative displacement and velocity
between two consecutive frames:

r
j−1

j = v
j−1

j−1
T +

1

2
aj−1T

2 (6)

v
j−1

j = v
j−1

j−1
+ aj−1T (7)

r
j
j−1

= −R
j
j−1

r
j−1

j = −vj−1T −
1

2
R
j
j−1

aj−1T
2 (8)

vj = R
j
j−1

v
j−1

j = vj−1 +R
j
j−1

aj−1T. (9)

Replacing (9) in (8) yelds

r
j
j−1

= −vjT +
1

2
R
j
j−1

aj−1T
2. (10)

The whole displacement between two consecutive visual
frames can be achieved adding all the displacements corre-
sponding to the intermediate time intervals where only IMU
data are available, obtaining

rkks = −sNTvk +
1

2
ākksT

2, (11)

with

ākks =
sN∑
j=1

(2(sN − j) + 1)Rk
k−jak−j , (12)

which can also be expressed in a recursive formulation, here
omitted for brevity.

By plugging (11) in (5) and considering (2), the following
system of equations for a one-point image correspondence
between frames k and ks is derived

Xks =

(
rkx,ks

)T (
dkf̂̂f̂f

k
k + sNTvk −

1

2
ākksT

2

)
(
rkz,ks

)T (
dkf̂̂f̂fkk + sNTvk −

1

2
ākksT

2

) (13)

Yks =

(
rky,ks

)T (
dkf̂̂f̂f

k
k + sNTvk −

1

2
ākksT

2

)
(
rkz,ks

)T (
dkf̂̂f̂fkk + sNTvk −

1

2
ākksT

2

) . (14)

In the general case, by considering ns ≥ 2 visual stations
and nf image features, a system of 2nsnf equation with
3 + nf unknowns vk and dk, where dk is the nf vector
of distances of each image feature, is achieved. This linear
system can be easily arranged in the classical form

A

[
vk
dk

]
= b, (15)

that for ns = 2 and nf = 1 becomes a square system
of 4 equations in 4 unknowns. However, by increasing ns
and/or nf , a least-squares solution can be achieved, which is
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robust to noise, but with some limitations. If ns is increased,
the number of unknowns do not change, i.e. the complexity
of the system solution remains the same, and the baseline
employed for the triangulation considered in the equation
system is enlarged. resulting in a well numerical conditioned
problem. However, in this case more IMU samples will be
integrated, resulting in a bad solution is the quality of the
IMU system is poor, as the typical case of MAVs. On the
other hand, increasing nf the same number of IMU data is
employed but the number of unknowns increases linearly: the
matrix A assumes a sparse conformation and the solution of
the system becomes quickly inefficient; the complexity of
the image feature matching algorithm increase and becomes
less robust (increase the probability of outliers).
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m
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Fig. 5. A comparison of several cases for the absolute-scale velocity
estimation: true value (dark dashed line), case with ns = 2 and nf = 1

(red line), case with ns = 2 and nf = 2 (green line), and case with ns = 3

and nf = 1 (blue line).

Taking into account these considerations, a tradeoff is
required (e.g. ns = 3 or 4 is a good IMU system is available,
nf ≤ 3). A comparison between several cases is showed in
Fig. 5, where the ideal case with T = 10 ms, N = 10
is considered. Obviously, best results are achieved when
the number of image features are increased, while at the
beginning of the trajectory it is noticeable a bad numerical
solution for the minimum system case. This last condition
happens with a significant frequency for a number of tested
trajectories, then this choice it is inadvisable for a real case.

Notice that the proposed solution becomes singular in
two cases: 1) when the velocity of the camera is constant,
i.e. when the value of the integral of the acceleration over
two camera observation points is very small, and hence
the motion remain unobservable. However, this case can be
easily detected at runtime monitoring the result of the IMU
integration. 2) when the selected image features are aligned
along the motion direction. In this case it is sufficient a
selection of a new candidate feature set.

III. NAVIGATION CONTROL

Once estimated the vehicle velocity, the distance of each
feature observed in the scene and associated to an OF
element can be evaluated and collected together with the
corresponding optical rays. The result is a temporary en-
vironmental map, namely Depth Map, which can be fully
exploited for lateral obstacle avoidance during the navigation.

A. Dynamic region-of-interest

The OF computation requires, as explained before, an
image feature extraction algorithm and a matching algorithm,
that can be computational expensive for the typical processor
units available on a MAV. In the case of an omnidirectional
camera, the adoption of region-of-interest (RoI) for the image
elaboration processes may provide a large benefit in terms of
computational requirement, while the main drawback is that
the systems becomes “blind” outside the RoI. However, the
adoption od a dynamic RoI that is smartly adapted online to
the real environmental and navigation conditions may reduce
the risk of an unpredicted impact. Observing that, due to the
inertial of the system, an obstacle can be avoided only if it
is detected as early as possible with respect to the vehicle
velocity, the solution proposed is to adopt a RoI that “looks”
more forward as the vehicle is moving quickly.

v

Fig. 6. Dynamic region of interest.

In this paper the RoI is composed of two regions, namely
left and right RoI, which are symmetric with respect to the
direction of motion. Both regions have a fixed total extension
around the vertical axis, but they are rotated in view of an
angular offset θof with respect to the navigation velocity
(see Fig. 6). Notice that the forward region in the direction
of motion is discarded due to numerical inconsistency of the
OF along this direction. By denoting with θM the maximum
offset angle for the RoI, an exponential adaptation law is
considered for an offset anglewith respect to the motion
direction as follows

θof =

⎧⎨
⎩θM

(
1− e

−4
‖vvv‖−vm
vM−vm

)
if ‖v‖ > vm

0 if ‖v‖ ≤ vm,
(16)

where vm and vM are the minimum and maximum values
which can be assumed from the cruise velocity.

Also the vertical extension of the RoI is shaped in view
of the offset, symmetrically reducing its range with the
increase of θof . This behavior is required for omnidirectional
cameras, that compresses objects extension in the image as
far as they are along the direction of motion.

B. Lateral obstacle avoidance control

The safety of the vehicle during navigation within an
indoor environment depends on its capability to avoid un-
planned lateral obstacles.
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With respect to the dynamic left and right RoI presented
above and for each available DM, the distances of the vehicle
with respect to the left and right side of the surrounding
environment are computed with the following procedure. By
denoting with v̂̂v̂v = v/‖v‖ the unit vector pointing along
the motion direction, the distances of each detected feature,
which is characterized by its feature estimated vector f ,
along the motion direction sv̂̂v̂v(f) = fT · v̂̂v̂v and with respect
to the forward axis dv̂̂v̂v(f) = ‖xv̂̂v̂v(f)v̂̂v̂v − f‖ are computed.
Then, the vectors of distances from the left dLv̂̂v̂v and the right
dRv̂̂v̂v sides of the navigation direction are composed using
increasing values of sv̂̂v̂v as a sort criteria. Finally the minimum
of each distance vector is found and a local spacial average is
applied resulting in the minimum mean distances d̄Lv̂̂v̂v and d̄Rv̂̂v̂v .
Depending on the application, a LP-filter can be considered
to reduce discontinuities due to the changing of the observed
features.

Assuming dls as a safety lateral distance, a course cor-
rection is obtained through a PD controller acting on the
following error

el =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d̄Lv̂̂v̂v −d̄Rv̂̂v̂v
dls

if d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls

1−
d̄Rv̂̂v̂v
dls

if d̄Lv̂̂v̂v ≥ dls, d̄
R
v̂̂v̂v < dls

d̄Lv̂̂v̂v
dls

− 1 if d̄Lv̂̂v̂v < dls, d̄
R
v̂̂v̂v ≥ dls

0 otherwise.

(17)

Notice that d̄Lv̂̂v̂v + d̄Rv̂̂v̂v < 2dls means that the vehicle is
navigating in a narrow environment, e.g. a corridor, and in
this case the previous control tries keeping the vehicle in the
middle of the free space, while the following cruise control
reduces the vehicle velocity.

C. Cruise control

The proposed navigation control considers a cruise veloc-
ity of the vehicle vc along the direction of motion in the
case of free space. However, for the safety of the vehicle,
when an obstacle is detected or when the dimension of the
space that is free for the motion is reduced, i.e. the minimum
distance with respect to the environment d becomes less than
a safety distance ds, a reduction of the navigation velocity
is commanded. The module of the navigation velocity is
generated applying a virtual control force fv in the desired
direction of motion, which is generated with an exponential
law as follows

fv =fp

(
1− e−4

‖vvv‖
vc

)
− (18)

fsM

(
1− e−4

ds−d
γvds

)(
1− e−4

‖vvv‖−vm
vc−vm

)
, (19)

with

fsM =

{
Fs if ‖v‖ > vm, d < ds

0 otherwise,

where γv ∈ (0, 1) determines the rate of reduction of the
velocity when the distance d becomes less than ds, vm is
the minimum cruise velocity that has to be assured, and Fs
is the maximum braking force.

IV. SIMULATION RESULTS

The performance of the proposed DM construction algo-
rithm and of the navigation control has been tested with
simulations using the MATLAB/Simulink environment.

Fig. 7. Simulated indoor environment.

In Fig. 7 a sketch of the employed simulator is showed.
The considered indoor environment is similar to a corridor
of a total length of 25 m and with a longitudinal shape that
changes along the path. In particular the width of the free
navigable space varies several times from 2 to 1 m, and vice
versa, also changing in its middle line position.

A random occurrence of image features has been con-
sidered on both sides of the environment without outliers.
Gaussian white noise has been added on image and IMU
measurements. For the velocity estimation, the case ns = 2
and nf = 2 has been considered with T = 0.01 s and
N = 10.

The adopted dynamic model of the vehicle can be found
in [19]. The control inputs are the two tilt angles, the angular
velocity around the vertical axis and the thrust, while the
outputs are the position and the yaw angle. In particular,
the vehicle is modeled in the inertial frame as a simple
point-mass model using the second Newton’s law. The forces
acting on the system are the controlled thrust τ and the
gravity g, as shown in the following system:

ä =
1

m
RI(ϕ, θ, ψ)

⎡
⎣ 0

0
−τ

⎤
⎦+

⎡
⎣ 0

0
g

⎤
⎦ , (20)

where m = 0.5 kg is the vehicle mass and RI(ϕ, θ, ψ) is
the rotation matrix of the vehicle frame with respect to the
inertial frame, which depends on the roll, pitch and yaw
angles. The delay acting on the control angles due to the
internal controller action can be modeled as a second order
system:

L(s) =
ω2

s2 + 2 · d · ω · s+ ω2
, (21)

where ω = 15.92 rad/s and d = 1.22. Supposing that
the controller is fast enough and smooth, it is possible to
consider the delay acting on forces and not on the angles, so
to obtain four linear and decoupled systems respect to the
forces. With respect to these parameters, the PD controller of
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the lateral obstacle avoidance control has been designed in
the frequency domain with the following transfer function:

C(s) =
0.008(100s+ 1)

0.001s+ 1
. (22)

Some of the most significant adopted parameters are as
follows: θM = 30◦ for a total lateral angle of view of
80◦, vc = 2.44 m/s, vm = vc/4, dls = ds = 1.0 m,
γv = γl = 0.25.

0 5 10 15 20 25
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Fig. 8. Course correction during navigation in view of the detected
obstacles.

The course correction achieved during the navigation is
shown in Fig. 8, where also the shape of the environment
has been reported. The vehicle starts from the home position
that is near to the left side of the environment. The path
followed by the vehicle is almost centered in the middle of
the available free space left to the vehicle as desired.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

m

m
/s

Fig. 9. Navigation velocity modified in view of the detected obstacles and
of the current free space (blue line) and adopted vc (red dashed line).

In Fig. 9 the navigation velocity modified in view of the
detected obstacles and of the current free space is shown. As
expected, the velocity is reduced when the vehicle is near to
obstacles or in a restricted area. The cruise velocity in the
narrow part of the environment is decreased, in view of the
adopted parameters, to about 1 m/s, while when the available
space increases also the velocity increases tending to vc.

V. CONCLUSION

A new vision-based obstacle avoidance technique for in-
door navigation of Micro Aerial Vehicles has been presented.
The Depth Map of the surrounding environment has been
constructed using only visual and inertial measurements. In
particular, an existing closed-form solution for the absolute-
scale velocity estimation based on visual correspondences
and inertial measurements has been generalized and em-
ployed for the velocity estimation. This last has been used

for the evaluation of the absolute-scaled Optical Flow, which
allows the construction of the desired Depth Map. Based on
this map a safe navigation control has been proposed, which
able to avoid lateral obstacles, to self-limit the cruise velocity
in view of the available free space, and to dynamically
set the regions of interest for image features extraction.
Simulations have been carried out to prove the effectiveness
of the proposed solution.
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