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Abstract 

Based on a model reference adaptive control 
approach, a robust controller for a one link flex­
ible arm moving along a pre-defined trajectory is 
proposed. In order to satisfy the perfect model 
following conditions, the model is chosen from the 
linearized model of the system as optimally con­
trolled. The nominal trajectory is commanded to the 
system by means of a dynamic filter. Simulation 
results for the prototype in the laboratory show the 
improvements obtained with the outer adaptive feed­
back loop with respe~t to a pure optimal control 
regulator. Robustness is finally tested by varying 
the nominal payload mass. 

Introduction 

Lightweight arms appear to be a challenging 
research topic to investigate in order to improve 
today's robot performance. Control is one key to 
efficient use of lighter arms, but it is limited by 
uncertainties in the arm's behavior and in the 
environment. In fact the main problem with light­
weight structures is the flexible vibrations which 
are naturally excited as the arm is commanded to 
move. 

The first step in designing a control system 
consists in developing a dynamical model for the 
flexible arm. A general dynamic modeling technique 
has been established in [1], based on a recursive 
Lagrangian-assumed modes method. If one is inter­
ested in the regulator control problem, that is to 
require that the arm reaches a pre-specified nominal 
state with satisfactory response performance, the 
approach of linearizing the dynamic equations, by 
assuming small motions around the nominal state and 
neglecting terms of higher order than one, proves 
effective, see [2] for inst,ance. 

On the other hand if one is concerned with con­
trolling the arm while it is moving along a pre­
defined path with given velocity and acceleration as 
regards the joint variables, the technique of 
linearizing the system is candidate to fail. 
Furthermore the attempt of linearizing around a 
sequence of nominal states seems too expensive from 
the computational standpoint, as well as not very 
robust as regards the overall nonlinear dynamics. 

This paper describes a first research effort to 
control a one link flexible arm moving along a pre-
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defined trajectory. The approach adopted is 
essentially based on Model Reference Adaptive 
Control (MRAC) [3]. In order to assure the satis­
faction of the so-called perfect model following 
conditions, the reference model is artificially 
chosen from the linearized system (2nd order terms 
neglected) as optimally controlled. Integral type 
adaptive actions assure the stability of the overall 
system, as it is proved via the Lyapunov direct 
method. However, since the reference model turns 
out not to be decoupled, the reference trajectory is 
forced into the system by means of a dynamic filter. 

A case study with reference to the prototype 
existing in the laboratory, whose dynamic model is 
described in [4], shows that the control performs 
well with a fast trajectory to track. The whole 
nonlinear system is considered for simulation 
purpose. Moreover the control proves robust also to 
parameter variations, such as payload changes. 

Last but not least it must be mentioned that 
full state availability is assumed for control syn­
thesis. As a matter of fact the flexible time state 
variables can be obtained from strain gage measure­
ments [5], whereas their derivatives need to be 
reconstructed by means of an observer [2]. 

Problem Formulation 

Nonlinear equations of motion for a flexible arm 
can be derived using the Lagrangian approach [1]. A 
solution of the flexible motion is assumed to be a 
linear combination of admissible functions multi­
plied by time dependent generalized coordinates. 
The flexible motion of a link is then described by 

(1) 

where ¢i(~) are assumed to be the eigenfunctions of 
a clamped-free beam, 0i(t) are the generalized 
coordinates, and ~ is any point along the undeformed 
1 ink, see fi g 1. Furthermore, assumi ng that the 
amplitudes of the higher modes of the flexible link 
are very small as compared to the first one, n = 2 
will be accurate enough to describe the flexible 
motion. 

The derivation of the dynamic equations for the 
one link arm follows then as in [4], i.e. (dropping 
the time dependence) 

M(z)z = f(z,z) + r, (2) 



11"'2-" E 

where z is the vector of generalized coordinates (e, 
51, 52), M is the inertia matrix, f is the vector 
containing nonlinear dynamic terms (interactions of 
angular rates and deflections), and T is the net 
input torque. Notice that in the model no actuator 
dynamics is considered, and no friction at jOints 
nor in the structural vibrations are explicitly 
included. Define the full state vector 

xT = (zT I iT). 

and split the vector f in (2) as 

f(x) = K(x)z + C(x)i, 

(3) 

(4) 

where K is an effective spring matrix, and similarly 
C is an effective damping matrix. The dynamical 
model of the flexible arm of fig. 1 can be expressed 
in state variable form as 

x = A(x)x + b(x)u 

o I 

A(x) ---j-- b(x) 

o 
o 
o 

(5a) 

(5b) 

At this extent it becomes clear why the tracking 
control problem is a hard one. In fact if the goal 
is just to require that the arm reaches a pre­
specified nominal state, linearizing (5) around the 
nominal state leads naturally to an optimal control 
regulator, in which one can eventually specify the 
closed loop poles of the linearized system with an 
arbitrary degree of stability, see [2] for details. 
However, if it is desired to control the arm while 
it moves along a pre-defined trajectory, in terms of 
jOint angle rates and accelerations, a different 
approach must be sought, rather than trying to 
linearize (5) around a sequence of nominal states. 

In order to obtain good trajectory tracking and 
steady-state accuracy, a model reference adaptive 
control approach [3] is pursued in the following. 
The basic idea with this approach is to define a 
linear time-invariant reference model and directly 
synthesize a controller which assures that the error 
between the states of the system and those of the 
model tends to zero. To this purpose let 

xm = A X + b u "m m m m 

b = m 

o 
o 
o 

(6a) 

(6b) 

be a linear time-invariant reference model of the 
same dimension of the system described by eqs. (5). 

Similarly to the work done on MRAC for rigid 
manipulators [6], it would seem appropriate to 
select a decoupled model in (6), i.e. Al = -diag(al.l 
a12 a13), ali> 0, A2 = -diag(a21 a22 a23), a2i > 

.F' 

O. However the perfect model following conditions 
which are at the basis of a MRAC approach [3] cannot 
be satisfied independently from the particular 
values of A, Am, b, bm• The reason can be identified 
in a straightforward manner by observing that the 
system described in (5) does not have as many con­
trol inputs as nontrivial state variables (e, 51, 
52). In other words the lower block of vector b in 
(5b) is not a square block (a scalar in this case), 
and this causes the main problem in satisfying the 
perfect model following conditions, which in terms 
of the structure of the system are 

(I - bb+) (Am - A) = 0 

(I - bb+)bm = 0, for any x,t, (7) 

where b+ denotes the Penrose pseudo-inverse. 
In the particular case of the system in (5), 

however, the nonlinear terms do not playa dominant 
role, thus it appears adequate to choose a reference 
model on the basis of the linearized model of the 
system (2nd order terms neglected) as optimally 
controlled; this approach will be outlined in the 
next section. 

Control Law Development 

Following the basic MRAC scheme in [3], a 
control for the overall system (5)- (6) is proposed 
in the form 

u = ul + u2 (8a) 

where ul is a linear model following control and u2 
represents the outer adaptive control which is 
devoted to assure the stability of the whole system. 
Under the action of control (8) the system (5) 
becomes 

(9a) 

As = A - b(kI + IIkD bs = b(ku + lIku). (9b) 

Let then 

(10) 

be the error between model and system states; on 
reduction of (6) and (9), error dynamics is found to 
be 

(11) 

In order to satisfy the perfect model following 
conditions, the following should hold: 

Am = A - bkI (12) 

If kI is designed by means of optimal control for 
the linearized system in (5), obtained by neglect­
ing the 2nd order nonlinear terms, and ku is chosen 
equal to 1 for simplicity, the model (Am,bm) can be 
artificially selected so as to satisfy (12), with 
the intent to have a stable linear time-invariant 
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model for the system, even if not a decoupled one. 
Supposing then that (12) holds, (11) becomes 

(13) 

In order to guarantee the stability of the overall I 

system, a candidate Lyapunov function is 

(14) 

where P, Fa, Fb are positive definite matrices. The 
derivative of V results then, accounting for (13), 

(15) 

Sett i ng as usual 

A~P + PAmm = -H, (16) 

where H is a positive definite matrix, and assuming 
that ~~x' ~Ku» A,B lead to 

2tr[(-b~ku)T(Peum - F61b~~u)]. (17) 

At this point the choice 

(18a) 

~ku(O) = ~kuO (l8b) 

is easily proved to cancel the last two terms in 
(17), and assure that V be negative definite, thus 
guaranteeing that e ~ O(x ~ xm). 

The only problem now remains how to force the 
system to track a desired trajectory. This point 
has ~i~a~in [7] but, even with an equal 
number of controls and output variables, only a 
sinusoidal reference' trajectory could be commanded 
of the rigid body motion. An inverse model 
technique of the type proposed in [6] cannot be 
adopted since the model (6), satisfying i12), turns 
out not to be decoupled. However, if (Ot),~t)) is 
the desired trajectory, an acceptable trade off can 
be achieved if the input urn to the model is 

synthesized as the output of a dynamic filter of the 
PD type, i.e. 

• l • 

urn = kp(O - Om) + kv(O - Om)· (19) 

Proper selection of the gains kp and kv of this 
dynami c system set in front of the overall ,system 
assures that the joint variables of the reference 
model reproduce the desired joint angles and angle 
rates. More specifically, since the spectrum of the 
eigenvalues associated with the flexible time vari­
ables is distant enough from the origin (rigid body 
motion), forcing the input command (19) will have a 
dynamic effect mainly on the joint variables. Then, 
according to the above stability analysis, (0,8) 
will track (Om,Om) , and then (e,e), but at the same 
time 51 and 52 will be stabilized in virtue of the 
choice (12). A block diagram of the whole system 
control is sketched in fig. 2. 

The Case Study 

In the following a case study is'developed for 
the one link flexible arm existing in the 
laboratory, whose dynamic model is fully descibed in 
[4] • 

As far as the joint angle trajectory is 
conc;.erned, the arm is requi red 'to move from 6i = o· 
to Of = 90' in 2 seconds, following a standard 
trapezoidal velocity profile with maximum velocity 
o = 60·/s. 

An optimal regulator with a prescribed degree of 
stabil i ty is desi gned, whose performance index is 

J = ;:=exp(-at) (xTQx + ru2)dt (20) 

with the design terms chosen as Q = diag(100 100 100 
100 100 5000), r = 1, a = 2. The feedback constant 
vector has then resulted kl = (65.27 -176.13 ~ 
2937.23 27.72 -7.50 -67.27). ku has been set to 1. 
~kl and ~ku have been chosen as in (18) with Fa = 
21, Fb = .0051. Also H = I in (16). The gains of 
the filter in (19) have been chosen respectively as 
kp = .6, kv = .6. 

Two different sets of simulations have been 
carried out, one with the above design parameters, 
and another one just with the constant feedback 
gains kl and ku, without any outer adaptive control. 
In order to analyze the control performance the 
whole nonlinear model has been simulated for the 
system (5) in both cases. A sampling rate of .1 ms 
has been adopted. Furthermore the robustness of 
the system control to parameter variations has been 
tested by doubling the payload mass, without 
changing the controls, the adaptive one and the 
optimal one respectively. 

Figs. 3 through 10 ill ustrate the results 
obtained. They are quite self- explanatory. It can 
be recognized that the adaptive control performs 
better than the simple optimal control, as it 
contributes to obtain better tracking accuracy, 
smoother time-varying mode amplitudes and control 
torques. If the payload is doubled, it can be seen 
that control performance still remains 
satisfactory. 

Conclusions 

A model reference adaptive control has been 
presented for a one link flexible arm. In order to 
comply with the perfect model following conditions, 
the model has been set up as result of the 
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linearized model of the system as optimally 
controlled. Resulting the reference model not a 
decoupled one, the desired jOint angle trajectory 
is commanded through a dynamic filter set in front 
of the overall system. Full state availability has 
been supposed for control synthesis. 

A case study has been developed for a prototype 
in the laboratory. Simulation results have shown 
the advantage of using an outer adaptive feedback 
control with respect to the pure optimal control and 
the robustness of the system control to payload 
variations. 

It must be emphasized, however, that in the 
light of a more general MRAC for multiple link 
flexible manipulators the results obtained in this 
paper appear only partially satisfactory. As a 
matter of fact, in case of more degrees of freedom, 
the nonlinear coupling terms in the jOint variables 
(which are not present in the one link case) become 
dominant, particularly at high speed, and control 
performance is likely to be derated. 

This point, along with the problem of state 
reconstruction, or eventually considering output 
feedback, constitute two challenging research issues 
to investigate to a greater extent. 
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Fig. 1. The one link flexible arm. 

Fig. 2. Block diagram of the adaptive control 
scheme. 
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Fig. 3. Joint velocity profiles 
(nominal payload mass). 

J 
D.5 
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First mode time amplitudes 
(nominal payload mass). 
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Fig. 5. Second mode time amplitudes 
(nominal payload mass)r. 
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Fig. 6. Control torques (nominal payload mass). 
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Fig. 7. Joint velocity profiles (doubled 
nominal payload mass). 
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Fig. 8. First mode time amplitudes (doubled 
nominal payload mass). 
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Fig. 9. Second mode time amplitudes 
(doubled nominal payload mass) • 
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Fig. 10. Control torques (doubled nominal 
payload mass). 




