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ABSTRACT

The problem of controlling a one link flexible arm
is considered in this paper. An assumed mode method is
adopted to derive the dynamic equations of motion; the
system is then transformed to singularly perturbed
form. An integral manifold approach is proposed leading
to the derivation of a reduced order system which in-
corporates the effects of the flexibility distributed
along the structure. An approximate technique is final-
ly presented which allows the synthesis of a feedback
linearizing control.

INTRODUCTION

The performance of today's manipulator arms is lim-
ited by their rigidity. Lower arm cost, higher motion
speed, better energy efficiency, safer operation and
improved mobility are all benefits which are potential-
ly achievable with lighter arms [1]. The price to pay,
however, is the much more complex dynamics, due to the
flexibility distributed along a lightweight mechanical
structure.

This issue hardly complicates the control problem
and very little literature exists in the field of flex-
ible link arm control. First research efforts are de-
scribed in [2,3,4]. The same idea which is behind [4]
is followed in this paper. The system is transformed to
singular perturbation form to achieve a reduced order
system which could allow the synthesis of a feedback
linearizing control, in the same manner as it is possi-
ble for rigid arms. To this goal an integral manifold
approach is pursued [5]. The solution on the manifold
is then expanded in powers of the perturbation parame-
ter so as to obtain an approximate computational means
to synthesize the linearizing control. Control imple~-
mentation issues are finally discussed.

THE MODEL

The one link flexible arm of fig. 1 is considered.
A solution to the flexible motion of the link can be
obtained through modal analysis, under the assumption
of small deflections of the link,

m
y(me) = =

> §; (£ ¢, (m) (1)
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where ¢, is the eigenfunction expressing the displace-
ment of’assumed mode i of link deflection, &, is the
time-varying amplitude of mode i of the link and m is
the number of modes used to describe the deflection of
the link.

For a clamped-free vibrating beam the orthonmormal
modal eigenfunctions in (1) are given by
¢i(€) = sin(gig) - Sinh(BiE) + (2)
v, (cos(B;€) - cosh(B E))
sinBi + sinhBi

cosB, + coshB,
1 i

pA(wa.)zL4
54 =
1 EI
£ =n/L
where:

L = beam length
A = beam cross area
E = Young's modulus
I
[
f

beam area inertia
= density
I frequency of the ith mode.

The dynamic equations of motion for the one link
flexible arm can be written in the following form [4]

§ £,(8,8,9) 0 u
M(8,8) [-==| + |--mmmmmmen + |mm] = |- (3)
$ £2(6,§) K$ 0
where
8 is the joint ¥ariable,
$ = (8 ... &) is the vector of deflections,
u is the control torque at joint location,
M is the inertia matrix
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where:
= beam mass
;i = payload mass
I0 = joint inertia
JO = beam inertia relative to joint
JP = payload inertia,
f1 and £2 are nonlinear terms
= 24 6(s76) (08 (5)
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K is an equivalent spring constant matrix
= i 7
K dlag(k1 ves km) (7
EI 1 d2¢i(€) 2
k, = — — dg.
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Since the clamped-free assumption has been made for the
vibrating beam, there is no displacement at joint loca-
tion and then no control force in the lower egs. of
(3).

Being the inertia matrix positive definite, it can
be inverted and denoted by H which can be partitioned
as follows:

T
h h
-1 11 | 212 [1xm) @

Bomx1) | B22 k) |
Egqs. (3) then become

§ = -h,.f (9
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8 = chyfy - Hypfy = Hy
In order to put the system (9% and (10) in singularly
perturbed form, the ratio EI/L” in (7) can be regarded
ag the inverse of the perturbation parameter, l.e. u =
L°/EI. As a matter of fact the longer the arm the big-
ger u, and similarly for EI, i.e. in the limit u - 0
when E » o (rigid arm). Consequently the matrix K in
(7) can be factored as K = K/p. Defining

T T
- hyofy - BKE +hypu

K8 + h.u.

-12 (10

(11)

yields the eqs. of the system in singularly perturbed
form, i.e.

o . . T .
8 = -h;,(uz)f,(6,uz,u2) - hy,(uz2)f,(6,uz) + (12)
T
~h ,(k2)z + hy (uz)u
WE = -hi (uz)f (8,uz,u2) - B, (u2)f,(6,uz) +  (13)

1 t
-Hp,(uz)z + hy,(uz)u

where the prime indicates the fact that the terms on
the right side of (13) have been scaled by K, by virtue
of the definition (11). In the following, however, the
primes will be dropped without loss of generality.

AN INTEGRAL MANIFOLD APPROACH

Although most standard results in singular pertur-
bation theory have been derived for systems in state
space, for the purpose of this work, the second order
Lagrangian formulation (12) and (13) will be considered
in the following.

It can be first observed that setting u = 0 yields

. . T .
§=-h (0£f,(8,0,0) - h;,(0)f,(6,0) + (14)
T
"By, (D + by Qg
0= -h, (O£, (8,0,0) - H,,(DF,(8,0) + (15)

Hpp (Db + By Oy,

where h, = z(u=0) and u, = u(u=0). It is seen from (5)
that £ (6,0,0) = 0, and from (6) that f_z(é,g) = 0.
Since ﬁéz(g is invertible, eqs. (15) can bé solved for

EO as
s
by = By (D5 (Dyg (16)

which, when substituted into (14),
order system (u = 0)

yields the reduced

s T -1

6 = (hll(g) - glz(g)ﬂzz(g)glz(g))uo- (17)
It can be checked that the system (17) 1is right the
rigid system, i.e.

1
§ = ——u,. (18)
n,,(© °
11'=
In the following an integral manifold approach is pur-
sued with the goal of accounting for the flexibility
distributed along the structure in the reduced order

system. From [5] a 2m-dimensional manifold I defined
by the equations L4
z = h(6,6,u,n)
R R (19)
2 = }_'\(e»esuxu)

is said to be an integral manifeld for the system (12)
and (13) if it is invariant under solutions of (12) and
(13). In other words, if the system lies at t = t, on
the manifold £ then the solution trajectory remains on
the manifold Z¥ for t > t_. It follows from [6] that %
actually exis%s for (f&) and (13) since H 2 i
nonsingular, being positive definite. (The veé%or h
defined in (19) is not to be confused with the blocks
of the matrix H in (8)).

If the flexible dynamics is asymptotically stable,
the solution of (12) and (13) will rapidly approach X
on a fast manifold ¢b g and then flow along the intel
gral manifold Z (7] As u > 0, of course, &
which is the slo# manifold identified by h, in (1

The function h defining ¥ must be a~ solution of
(13), i.e. s

>
by, °
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uh(8,8,u,1) = g(8,6,u,1) (20)

g?-hlz(uh(e.é,u,u))fl(é.uh(e‘é,u.u),UE(G,G,U.H))+
~Hy, (WB(8,8,u, 1)) £, (8,1un(8,8,u,1)) +
-sz(ug(e,é,u,u))h(e,é,u,u) +
By, (Ha(8,8,u,1)u
where it is understood that é and E are total deriva-
tives along the solutionms of (12) and (13).
Once h is determined from the manifold condition

(20), the desired reduced order system is defined by
combining (12) and (19) as

6 =‘h11<u5<e,é,u,u))fl<é,ug<e,é,u,u),u_&(e,é,u,u))+

~hL, (8, 8,u,1) £, (B,un(8,6,u,0) + (21)

-nl, (0 (8,6,u,1)0(8, 6,0, +
By (4h(8,8,u,1)u

This system is of the same dimension as the rigid sys-
tem (18), but it incorporates the effects of the flexi-
bility through the integral manifold defined by (19).
This point is helpful since, in the following section,
it will be shown that an approximate linearizing con-
trol for (21) can be synthesized, provided that the
functions h and u are expanded to any order in M.

APPROXIMATE FEEDBACK LINEARIZING CONTROL

The computation of a linearizing control u(8,8,v,w
for (21), where v is a new input to the system [8], is
complicated by the need to solve the manifold condition
(20) for h. A practical computational approach is based
on expanding the function h in (19) as [7]

h(8,8,u,w) = hy(8,8,u) + wh;(8,8,u) + ... (22)
and correspondingly the control u as
u(e:élvyu) = uo(e)ésv) + Uul(e,é,v) + ... (23)

where it can be recognized that h, and u, are the func-
tions introduced in (14)-(16). The expansions (22) and
(23) shall be substituted in (20) to yield a set of
eqs. in which the like powers of u on both sides are to
be equated. This process is usually very tedious, but
it can be performed using a symbolic manipulation lan-
guage. For the system (12) and (13) all the following
expressions have been obtained using REDUCE:

0 o= -
w: 0= -H22(9)30+§12(9)u0 (24)
1 o . 2 T = - -
M dghg = MBT(9 8 ) Hy, (DhyH,, (DhyHhy, (D
2 r 5= T T
Wi Bghy = =240k, (0) (.hy) (2 hy) +
) T = - -
MLET (9,00 Hy, (Db -Hyp (Dhythy 5 (D),
etc., with A, = det(M(0)) and the bars over h and H
indicate that the terms have been scaled by’A.; this
position is necessary since the mass matrix is function

of u. The first line of (24) can be solved for EO as
in (16) (AO cancels out)
1, = ,
= 6
hy = Hyy (@hy,(Qyg (16"
and, after obtaining the rigid system (18) (neglecting

a term O(w)), u, can be designed. Knowing ugs h, is

0
also known and EO can be explicitly computed as

‘.quired to approximate the deflection.

. __l - v
By = Hyy (DR, @y, (25)

The second line of (24) then can be solved for El as
S  9mn] T =
by = ~8gf, @B ) 0 (0,808, g+ (29)
—1 =
Hyp (Dh),(Du)

which, when substituted in (21), gives

. 1 T __l -

8 =y + U(h, (OH); (D) 85hy + (27

()

T -1 2 T.-
hy o (OH,2 (DM 87(g, 9,08y, (Dhy +
By (@u)) + 0D,

The controls u, and u, can be designed and so forth.
This process can be continued up to any order in u. In
the following it is assumed that the first order cor-
rection term is sufficient to account for the flexibil-
ity in the reduced order system (27).

The zero order control term can be chosen as the
linearizing control
uy = mll(g)v (28)

where v is a2 new input to the system.

As far as the first order control term is con-
cerned, it turns out that, if only one mode is used to
approximate the deflection (m = 1! in (1)), it is possi-
ble to design ul s0 as to obtain hl =0, i.e.

1

u, =

" :2 .2 -
1 (th0 - MLG ¢1eh22(0)h0) (29)

hlz(O)

Extending this technique to greater order terms leads
to a very interesting result: the integral manifold X,
can be forced to the slow manifold 20 and the reduce
order system behaves by design as the rigid system.

In practice, however, more than one mode may be re-
In that case
h. ,(0) is not invertible and the above technique is not

i Ebplicable anymore. This is not surprising since the

flexible :link arm is naturally a distributed parameter
system which can never be «<ompletely “stiffened" by one
control actuator co-located with joint location [3]. By
examining eq. (27), however, a different strategy can
be adopted. The first order control term, indeed, can
be chosen as

1

_ T ol o2 T
17 oy 12 D (O gy 07(0,0 )Ry, (Dhy)
1@

(30)

which cancels the term in u. With the controls u,. in
(28) and uy in (30) the first order reduced order Sys-
tem results then
% 2
8 =v+0(y) (31)
which Efpresents the overall system linearized up to
order W~ for trajectories in the neighborhood of 2. .

If a joint trajectory B(t) is to be trackedy the

new input v can be set as (inverse model technique)
ve=B+k (B-8 + k (8~ 9) (32)
where k_ and k_ are position and velocity gains.

In tase the fast dynamics is not stable, or eventu-
ally is only lightly damped, an additional fast control
term must be added to the control u given by (23),
adopting a composite control strategy [7,4]. In this
way solutions outside the integral manifold may
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way solutions outside the integral manifold may 'rapid-
ly" flow along the fast manifold (parametrized by the
slow variables) to the integral manifold which becomes
an attractive set. This is z separate design issue and
is beyond the purpose of this paper.

CONCLUDING REMARKS

In this paper the concept of an integral manifold
has been adopted with the purpose of obtaining a more
accurate reduced order model for a one link flexible
arm. The effects of the flexibility along the structure
have been incorporated in the reduced order model up to
the first order. This issue is very important since it
has been shown how a feedback linearizing control can
be synthesized for the reduced order model, almost in
the same way as it is done for a rigid arm. One crucial
point is that using the control strategy proposed in
(22)-(32) requires the measurements of the joint angle,
velocity, acceleration and jerk (see (25), (28) and
(32)). As a matter of fact one has position encoders
and tachometers; acceleration and jerk thus need to be
reconstructed and this may cause stability problems.
Furthermore the fast dynamics is required to be
asymptotically stable otherwise an additional fast con-
trol term must be added to the control (23). An alter-
native strategy may be based on a combination of 'ac-
tive' modal feedback control and 'passive' damping so
as to increase the structural damping [9]. All those
topics will constitute the subject of future research.
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1.

The one link flexible arm
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