TP11 - 5:30

Proceedings of 25th Conference
on Decision and Control
Athens, Greece - December 1986

OPTIMAL OUTPUT FAST FEEDBACK IN
TWO-TIME SCALE CONTROL OF FLEXIBLE ARMS

. 2 » * *
B. S1c111ano( ), A.J. Ca1ise( *) and V.R.P. Jonna]agadda(**)

(*) Dipartimento di Informatica e Sistemistica, Universitad di Napoli
Via Claudio 21, 80125 Napoli, Italy

(**) School of Aerospace Engineering, Georgia Institute of Technology
Atlanta, Georgia 30332, U.S.A.

ABSTRACT

Control of lightweight flexible arms moving along
predefined paths can be successfully synthesized on the
basis of a two-time scale approach. A model following
control can be designed for the reduced order slow sub-
system. The fast subsystem is a linear system in which
the slow variables act as parameters. The flexible fast
variables which model the deflections of the arm along
the trajectory can be sensed through strain gage mea-
surements. For full state feedback design the deriva-
tives of the deflections need to be estimated. The main
contribution of this work is the design of an output
feedback controller which includes a fixed order dynam-
ic compensator, based on a recent convergent numerical
algorithm for calculating LQ optimal gains. The design
procedure is tested by means of simulation results for
the one 1ink flexible arm prototype in the laboratory.

INTRODUCTION

is one of the crucial points to an effec-
tive use of Jightweight flexible arms. The control
problem, however, is more complicated than in case of
rigid arms, due to the flexibility distributed along a
1ightweight mechanical structure. The dynamic model for
a flexible arm can be derived via a Lagrangian-assumed
modes method [1]. The result is an extended number of
generalized coordinates, and then state variables, to
handle for control purposes.

An efficient control strategy based on a singular
perturbation approach has been proposed in [2]. A
two-time scale analysis of the system is performed: a
slow subsystem which is of the same order as that of a
rigid arm, and a fast linear subsystem in which the
slow state variables play the role of parameters. A
composite control [3] is then adopted: a slow model
following control can be first designed to track a de-
sired joint trajectory, and a linear fast state feed-
back control provides to stabilize the deflections
along the trajectory. The flexible fast variables which
model the deflections of the arm along the trajectory
can be sensed through strain gage measurements [4]. For
full state feedback design, however, the derivatives of
the deflections need to be estimated.

Control
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The goal of this paper is the design of an output
fast feedback controller which includes a fixed order
dynamic compensator [5], based on a recently proposed
convergent numerical algorithm for calculating LQ opti-
mal gains [6]. The design procedure is applied to the
one link flexible arm prototype in the laboratory
[2] and simulation results are presented.

THE TWO-TIME SCALE CONTROL APPROACH

The dynamic model for a flexible link arm can be
derived via a Lagrangian-assumed modes method 1 . For
the purpose of this work the state space formulation
derived in [2] will be adopted. Let ET = (gT a") and
;T =2 (ST 8T) be the state variables, where g ¢ RT s

the vector of joint variables and § ¢ R™ is the vector
of deflection variables obtained via the assumed modes
expansion. The model results in the following form:

K= Fx b gi(x) + A (X)z + B (x)u (1a)

o 0 0
A, = B, =
1 1
Ao A Blo
z = Ay(X)z + gy(x) + By(x)u (1b)
[0 0
A, = g, =
2 2
Ao Az 20
[
B, =
2
B0

where u ¢ R" is the control vector.

Under the assumption that the spectrum of rigid
body motion is well separated from the spectrum of
flexible 1ink deflections, the system can be considered

a singularly perturbed one. As proposed in [7], the



system of eguations (1) can be artificially scaled in
the following way:

1>~
|

=Fx+g,+Az+ B (2a)

Aég + g_é + Bég (2b)

where the parameter p is identified as a time scaling
parameter so that the variables z are scaled on a sepa-
rate time scale in accordance with the relative speed
with which these variables change their magnitudes. The
development of singular perturbation theory is on the
basis that u represents a small parameter. Since the
system (2) is nonlinear, the procedure for identifying
u is not straightforward and may involve considerable
effort, even if flexible dynamics are known to be fast-
er than rigid dynamics. The viewpoint taken in [2] and
here is that u is given by the ratio of the highest
frequency of the slow dynamics vs the smallest freguen-
cy of the fast dynamics.

Formally setting u = 0 accomplishes a model order
reduction from n + m to n, as the differential equa-
tions (2b) degenerate into the algebraic transcendental
equations

0 = Ay(X)Z + g,(X) + B,(X)u (3)

where the bar is used to indicate that the variables
are in the slow time scale with u = 0. Since the system
(3) is Tinear in the fast variables z, it is possible
to find the quasi-steady state solution to (2b) [8]

_1 -
Az0(dpp * Bpolt)
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Substituting (4) in
subsystem (of order n)

(2a) yields the slow time scale

X = Fx + a(x) + B(x)U (5)
n
0
a=g* -1
A10R20%20 |
0
B =B, +
1 -1
AlOAZOBZOJ

Defining the fast state variable change around the
equilibrium trajectory z. = z - z, and correspondingly
Uz B u - u, the fast time scale subsystem (of order m)
rgsu1ts

where © = t/u is the fast time scale. It must be empha-
sized that the system (6) is a linear system paramet-
rized in the slow variables x.

Under these results, the design of a feedback con-
trol u for the full order system (2) can be performed
on the basis of a composite control strategy
[3] as

U= U(k) *oug(x,ze) (7)

with the constraint that u.(x,0)

inactive along the solution (4).
Since the slow time scale subsystem (5) is of order

= 0 such that uc is

n, it is quite straightforward to design the slow
control as
i(x) = BT (X) (-a(x) + v(X.%) (8)

where v is a new control input which allows the system
(5) to track a reference model specified by x [2].

At this point the singular perturbation theory re-
guires that the fast time scale subsystem (6) be uni-
formly stable along the equilibrium trajectory z given
in (4). Assuming that the couple (Aé,Bé) is uniformly

stabilizable for any slow trajectory i, a fast state

feedback control of the type
up(X,2¢) = Ke(X)zg (9)

would stabilize the system (6) to z. 8 0. The synthesis
of the control (9), however, requ1r§s full fast state
feedback. In reality the deflection variables § can be
sensed through strain gage measurements [4], whereas
their derivatives § need to be reconstructed, e.g. via
an observer. To overcome this drawback, in the follow-
ing the design of an output feedback controller in Tieu
of (9) is presented.

FEEDBACK CONTROLLER DESIGN

In [5] it is shown that for a multivariable system
described by

x B Ax + Bu xeR" (10a)

y = Cx yeRP (10b)

a fixed order compensator without direct feedthrough of
the output can be formulated in observer canonical form
as

u=-Hz ugh™ (11a)
2=pPz+ I oYe PUS (11b)
u. = Pou - Ny quR”C (11c)
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where

H = block diag {[0...0 1] g.xl, i=1,...,m} (12)
and
P = block diag [P;,...,P ] (13)
with
0 0 0 0
p° o |10 0 0 (14)
Yole 1 0 0
o 0 10| 0 .
ix i

In (11) N and PZ are free parameter matrices with
dimensions (nC X p) and (nc X m), respectively.

The dimensions of H and P° are defined by the
observability indices of the compensator, which are
chosen to satisfy:

) A -BH o
A= B = (15a)
L Ine
[¢ o
= o Ga [N P (15b)
[0 H [ Z]
define an optimal output feedback problem, with the
quadratic performance index
- t t
J = EX jm[x Qx + ucRuc] dt (16)
o ‘o
where the augmented state vector is
= <t 2%
FREQUENCY SHAPING
It is well known that frequency shaped cost
functions are a more direct approach to damping

structural modes. However, past papers on this subject
have required that the freguency shaping be realized as
part of the compensator design [5,9,10]. We present
here an approach to frequency shaping that does not
increase the order of the compensator. The idea is to
adopt the following performance index

=€, r[xth +y5 ¥, + ulRu] dt (17)
] o]
where Y, is defined by
W= Fw+ My, o ¥p T Cyx (18a)
Yy = Ew + J_y1 (18b)

That is, y, is the output of a filter driven by a
2

suitably chosen linear combination of the plant states.
The augmented system matrices become:

[ A 0  -HB
A = CIM F 0 (19a)
[ o 0 P’
[ ¢ o o
B = C= o (19b)
1 0 0 H
L * nc
where now it = [xtwtzt]. The resulting weighting

matrix, when the performance index is reformulated in
the form (16) becomes

t.t t.t
Q+ ClJ JC1 C1J E 0
0= | evtuc ete 0 (20)
0 0 0
NUMERICAL RESULTS
We present in this section the numerical results
based on the flexible arm model developed in [2]. The

fast subsystem as defined by (6) is parameterized by x.
To simplify the design of an output feedback compensa-
tor, X was chosen as the final joint configuration.
This was also done in [2], where the fast subsystem
design uses full state feedback. The resulting fast
subsystem matrices are:
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0 e 1 0 0
' 0 0 0 1 ) 0
A2 = B2 = (21)
-205.4 -1900 0 O -2.33
- 53.01-8051 0 O -0.75

The flexible fast state variables are z: = [él,sz,él,

32] where strain guage measurements of 61 and 62 repre-

sent deflections of the arm at the endpoint and at the
midpoint, respectively. Thus, C in (10 b) is

(22)

The open loop modes are at + wij’ where wy = 13.88 and
wy = 89.8 The frequency shaping dynamics in (18) were
defined as the realizations of the transfer functions:

2
s /w,l + chs/wi + 1

y, /8, =k, i=1,2 (23)
li 2 i

Sz/wi + ZCS/cu_i + 1

0.7, ¢ = .01.
on the plant state 52 in the vicinity of

where Cq This in effect amplifies the

weightings

wi.The weightings on each mode are independently

controlled by selecting the weighting parameters, ki.A
second order compensator (nc = 2) was designed using

the numerical algorithm in [6] for calculating LQ
optimal output feedback gains, with Q ® 0, R =01 in
(20). The parameters k. were adjusted to achieve the
desired damping in the structural modes.

Experience with solution procedure showed that the
damping on the closed loop structural modes could be
individually adjusted by the choice of k.. Moreover,
the damping can be introduced with only mihor change in
natural frequency (less than 5%). The compensator
introduces two additional closed loop, low freguency
poles that are almost unobservable in the plant states.
For k1 = 350, k2 = 345, the closed loop structural

mode dampings were ¢y = 0.52 and CZ 2 0.70 respective-

ly. Attempts to further increase the damping resulted
in  convergence difficulties with the numerical
algorithm used to find the optimal &. Normally, the
algorithm converged in fewer than 10 iterations.

The final solution for G was

1
- 54.3 -628.5 : 0.687

6= 6| (24)
-922.0 -1.19 x 10 :126.8

Figures 1 and 2 1illustrate the closed loop fast

subsystem response for an initial condition, 61 (0) =
1.0.

CONCLUSIONS

An output feedback controller with a fixed order
dynamic compensator is successfully designed to damp
the fast structural modes of a flexible arm. It is
found that the use of frequency shaped cost functionals
in an  output feedback setting Teads to a
straightforward design procedure, without the need to
realize the frequency shaping dynamics as part of the
compensator. This permits the design of Tow order
compensators for structural mode damping.
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Figure 1. Deflection Response For An Initial
Condition 61(0) = 1.0.
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Figure 2. Deflection Rates For An Initial
Condition 81(0) = 1.0.
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