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ABSTRACT

The problem of optimal output feedback is ad-
dressed in the context of controiling uncertain
systems. The objective is to control a possibly high
order uncertain system with a compensator of low order.
The compensator formulation precludes the use of direct
feedback of the plant output, and uses an observer
canonical form to represent the compensator dynamics.
Similar to the case of observer design, a two step
design procedure is proposed. First a robust design
assuming full state feedback is performed, followed by
the compensator design using an approximate loop
transfer recovery method.

1. INTRODUCTION

Numerous methods have been proposed for designing
a full state controller for stabilizing an uncertain
system [1-2]. Approaches have also been outlined for
the case of output feedback with minimal order observ-
ers [3]. One disadvantage to the use of a minimal
order observer is that the controller structure makes
use of direct feedback of the measurements. It is
generally good practice to. avoid having direct
feedthrough of sensor outputs to improve robustness to
unmodelled (high frequency) dynamics, and to reduce
the effect of sensor noise. Aside from these issues,
the order of the compensator when designed for large
order systems may prove unwarranted. In this note we
outline an approach for designing fixed order compen-
sators for uncertain systems, without direct
feedthrough of the measurements. A two step design
procedure is proposed. First a robust design assuming
full state feedback is performed, followed by the
compensator design using an approximate loop transfer
recovery method for fixed order compensators. The
intent is to demonstrate that by recovering the loop
transfer function of the full state design, we recover
its robustness property as well.

IT. PROBLEM FORMULATION

For simplicity, we confine our attention to

uncertain systems having the form:
x = [A+6A(r)]x + [B+8B(s)]u
y =Cx + Du
where XsR", ueR™ and yeRp. The model uncertainty

r(t)st and input uncertainty s(t)cSl lie 1in pre-
scribed sets R and S. In addition, the following
standard assumptions are made:

(1,a)
(1,b)

Al. &A(-) and 8B(-) are continuous.

A2. R and S are compact.

A3. r(t) and s(t) are Lebesque measureable.

A4. The nominal system (A,B,C) is controllable and
observable.

A5. There exists a constant matrix KeR™" such that
the system (1) is stabilizable with the control
u=-Kx.

Of interest here are controllers having the following
structure:

(2,a)
(2,b)

z="Pz-Ny
u = -Hz
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Thus, the nominal system dynamics are given by

. [ A -BH )
Xq = [ -NC  P+NDH ] Xp = AnXq (3)

Assuming that the choice of {P,N,H} results in an
asymptotically stable nominal system, then associated
with (3) we have the Lyapunov equation

T -
AM+MA +W=0 (4)

where any W>0 results in a unique M>0 satisfying (4).

The closed loop uncertain system dynamics are
. SA -8BH
X, = [An + aAn]xn, aAn = 0 0 (5)

We can now state the following result:

Theorem: Let the system (1) satisfy A1-A5, and
let ~{P,N,H} render the nominal ‘system ’ (3)
asymptotically stable. If

n{r,s) = -W + M6An(r,s) + GAI(r,s)M <0 (6)

for all reR. seS, then V = xIMxn is a Lyapunov func-
tion for the closed loop uncertain system (5).

Proof The time derivative of V along any
trajectory of (5) is given by

? = o T,
V(xn,t) = 2ng[An+6An]xn

T T, T T,
xn(MAn+AnM)xn + xn(M6An+5AnM)

T T,
xn(-w+M6An+6AnM)xn = ann(r,s)xn <0 ]
III. DESIGN PROCEDURE

For the compensator design we adopt an observer
ganonica1 form , which yields a minimal parameter-
ization for {P,N,H}. The design philosophy consists
of designing a full state feedback gain matrix K which
is robust to the specified uncertainties, followed by
a compensator design which attempts to recover the
Toop transfer properties of the full state design.

Observer Canonical Form [4]

The compensator parameterization is given as
follows:

u = -H% ueR™ (7)

2 = pO n

z=Pz+ Ue zeR''c (8)

u = Pu - Ny ucsRnc (9)
where

o _ s .

H” = block diag{[0...0 1]1)(\)i i=1,...,m} (10)

o
(=]
n

block diag [PY,...,P7] (11)



0 0 0 0
o 1 0 0 0
Pi =10 1 0 0 (12)
0 0 1 0fv,xv,
ity
In (7-9) N and P are free parameter matrices with
dimensions (ncx p) and (ncx m), respectively. The
dimensions of H® and P° are defined by the

observability indices of the compensator, which are
chosen to satisfy:

m
i) - vy =, ii) Vi S Vigq
The augmented system matrices:
% A -BH = 0
S I TR
0 P Inc
€ = [ ¢ ‘aﬁo] G= [NP1 (18)

define an optimal output feedback problem, with the
quadratic performance index:

_ o o T T
d = Exo{fo [x'Qx + ucRuc] dt} (15)
where the augmented state vector is
=, 2N (16)
and the fictitious control is defined as
u, = -6 Cx (17)

Some of the advantages to the above compensator
formulation are that are the compensator is
represented by a minimum number of parameters, and
these are compactly placed in the equivalent constant
gain matrix in (14). Note that for this form, the
matrix H needed to define sAn in (6) is completely

specified in (10).
The necessary conditions for optimality are:

AlM +MA +W =0, W=0Q+CG6RE  (18)
T _ ) T

AL+LAL+X =0, Xy = Elxxl}  (19)

recLe! - amec’ = o (20)

Loop Transfer Recovery [5]

Breaking the loop at the plant input, the return
signal in the case of full state feedback is -Kx.
Referring to (7), the return signal in the case of
fixed order compensation is -H'z. Thus, the objective
in designing the compensator should be to minimize

3= By Dy, v hu udt), v, = KxHz (21)

for a suitably chosen open loop input and for zero

initial conditions. This leads to the following
choice for the weighing matrices in (15):
KK -KTH°
Q= K% H°TH° , R=p1"c (22)

Selecting the open loop input waveforms as impulses
with magnitudes uniformly distributed on the unit
sphere, results in the following expression for the
equivalent distribution of initial conditions:

1017

(23)

needed in (19). A convergent numerical method for
calculating G is given in Ref. 6.
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