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1. Motivation 
'The regulation problem for articulated mechanical arms 
is often solved by designing simple control laws which 
strongly exploit the physical properties of the system. It 
is well known that a rigid robot can be globally asymp- 
totically stabilized around a given joint configuration 
via a P D  controller on the joint errors, provided that 
gravity is exactly cancelled by feedback [l]. Under a 
mild condition on the proportional gain, this scheme 
can be simplified by performing only a constant grav- 
ity compensation at  the desired configuration [2]. This 
result was extended in [3] t o  the case of robots with elas- 
tic joints, under the further assumption that joint stiff- 
ness overcomes the gradient of the gravitational term. 
Asymptotic stability of a joint PD controller for robot 
arms with flexible links has been recently shown in the 
absence of gravity [4]. Inspired by the approach of [3], 
in this work we prove global asymptotic stability of a 
joznt PD controller,  i.e. avoiding feedback from the elas- 
tic coordinates, with constant gravity compensation for 
the full nonlinear model of multilink flexible robots. A 
structural assumption about link elasticity is required 
and a mild condition on the proportional gain is derived. 
The proof goes through a classical Lyapunov argument. 

2. Dynamic model of flexible arms 
The Lagrangian technique can be used to derive the dy- 
namic model of a robot arm composed of a serial chain 
of links, some of which are flexible [5]; slender linlis can 
be modeled as Euler-Bernoulli beams satisfying proper 
boundary conditions. While a linear model is i n  general 
sufficient to capture the dynamics of each flexible link, 
the interplay of rigid body motion and flexible deflec- 
tions in the multilink case gives rise to fully nonlinear 
dynamic equations. 

In order to obtain a finite-dimensional model, let 
8 denote the n-vector of joint coordinates, and 6 tlie 
rn-vector of link coordinates of an assumed modes de- 
scription of link deflections; then, the ( n  + 172)-vector 
q = ( BT bT )T characterizes tlie arm configuration. We 
suppose to  include only bending deformations limited 
for each link to the plane of rigid motion. The closed- 
form dynamic equations of the arm can be written as 
n + m second-order nonlinear differential equations in 
the general form [6] 

In ( l ) ,  the positive definite symmetric inertia matrix B 
depends in general on both joint (rigid) and link (flex- 
ible) coordinates. The vector h contains Coriolis and 
centrifugal forces that can be factorized as 
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so that the matrix B - 2s is skew-symmetric, similarly 
to the rigid case [l]. The positive definite (diagonal) 
matrix D in (1 )  describes modal damping of the links. 
Notice that we are describing deformation in a frame 
which is clamped at  the joint actuator side; this implies 
that the control does not enter directly in the equations 
of motion for the flexible part. 

The terms in (1) deriving from the potential energy U 
are composed of the gravity contribution U, and of the 
elastic contribution Ua. In view of the small deformation 
hypothesis, we have that 

where Ii is the positive definite symmetric (diagonal) 
stiffness matrix associated with link elasticity. From (3)  
it follows that 

(4) 

where llvll denotes the usual Euclidean norm of a vector 
v ;  also, we denote by . 4 ~  ( A , )  the largest (smallest) 
eigenvalue of a symmetrix matrix A .  

Concerning the gravity contribution, the vector of 
gravity forces g = ( B U , / B Q ) ~  can be partitioned as 

(5) 

where the dependence of the lower term is justified by 
the assumption of small deformation. Further, the vec- 
tor g satisfies the inequality 

where ao, a ~ ,  a > 0. This can be easily proven by ob- 
serving that the gravity term contains only trigonomet- 
ric functions of B and linear/trigonometric functions of 5 .  
Also, inequality (4) has been used in (6).  As a direct 
consequence of (6), we have: 

We remark that the above arguments and what follows 
can be easily modified to include also an explicit depen- 
dence of 96 in (5) from 6. 

3. Asymptotically stable joint PD control 
Consider the control law 
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with K p  > 0 (at least), K D  > 0, and being 6des defined 
by 

6dm = -Ii‘-’ga(odes). (9) 

The equilibrium states of the closed-loop system (1,8) 
satisfy the equations 

g e ( e , b )  = I(p(edes - e )  + g@(odes,bdes) (loa) 
= -m. ( l o b )  

It is easy to recognize that (lob) has a unique solution 6 
for any value of 0 E IR”. Adding Kbdes + ga(8des) = 0 
to the right-hand side of (lob) yields 

(11) 
Under the assumption that 

we have, for q # qdesq 

Ill-q(Qdes - q)ll > a lhdes  - (111 2 Ib(‘?) - g(qd-)llr (13) 

where the last inequality follows from (7). This implies 
that q = qdm, q = 0 is the unique equilibrium state of 
the closed-loop system (1,8). 

Condition (12) will automatically be satisfied, pro- 
vided that the assumption on the structural link flexi- 
bility Km > a holds, and that the proportional control 
gain is chosen so that Kp, > cr. The main result of the 
work follows. 
Theorem. T h e  equilibrium state q = qdm, q = 0 of sys- 
t e m  ( 1 )  under  control (8) i s  asymptot ical ly  stable pro- 
vided that (12) holds. 

Proof. Consider the energy-based Lyapunov function 
candidate 

which vanishes only at the desired equilibrium state, 
due to  (10-13). The time derivative of (14) along the 
trajectories of the closed-loop system (1,8) is 

(15) 
where identity (2) and the skew-symmetry of the matrix 
E - 2 s  have been used. Simplifying terms yields 

V = -iTIi‘oe - hTDh 5 0, (16) 

where (9) has been utilized. When 
and the closed-loop system (1,8) becomes 

= 0, it is q = 0 

In view of the previous equilibrium analysis and of (12), 
it is = 0 if and only if q = qdea, Or e = odes and 6 = 6des- 
Invoking LaSalle invariance set theorem, asymptotic sta- 
bility of the desired state follows. 

4. Discussion 

We have presented a simple joint PD control scheme 
for robots with flexible links which guarantees global 
asymptotic stability of a desired constant arm configura- 
tion in the presence of gravity. The following comments 
are in order. 
e The control law does not require any feedback from 

the deflection variables, and is composed by a linear 
term plus a nominal feedforward term. 

0 Satisfaction of the structural assumption I-, > Q is 
not restrictive in general, and depends on the rela- 
tive importance of stiffness vs. gravity. When com- 
pared to the joint elastic case [3], link stiffness is usu- 
ally much smaller than transmission stiffness but the 
lightweight nature of the links greatly reduces also 
the magnitude of the gravity term. 

0 The knowledge of the link stiffness IC and of the com- 
plete gravity term g is needed mainly for defining the 
steady-state deformation Indeed, uncertainty in 
the associated model parameters produces a differ- 
ent asymptotically stable equilibrium state. This can 
be rendered arbitrarily close to the desired one by 
increasing Ii‘p , provided that  the arm is stiff enough. 

Acknowledgments 
This work was supported by Consiglio Nazionale d e l l e  Ricerche 
under contracts 92.01064.PF67 and 92.01115.PF67. 

References 
[l] S. Arimoto and F. Miyazaki, “Stability and robustness of PID 

feedback control for robot manipulators of sensory capability,” 
in Robotics Research: 1st  h i .  Symp., M. Brady and R.P. Paul 
(Eds.), MIT Press, Boston, MA, pp. 783-799, 1984. 

[2] P. Tomei, “Adaptive PD controller for robot manipulators,” 
IEEE Trans. on Robotics and Automation, vol. 7, pp. 565- 
570, 1991. 

[3] P. Tomei, “A simple PD controller for robots with elastic 
joints,” IEEE Trans. on Automatic Control, vol. 36, pp. 1308- 
1213, 1991. 

[4] A. De Luca and B. Siciliano, “Relevance of dynamic models 
in analysis and synthesis of control laws for flexible manipula- 
tors,” in Robotics and Flezible Manufacturing Syaiems, S.G. 
Tzafestas and J.C. Gentina (Eds.), Elsevier, Amsterdam, NL, 
1992, to appear. 

[5] W.J. Book, “Recursive Lagrangian dynamics of flexible ma- 
nipulator arms,” Int. J .  of Roboiica Research, vol. 3, no. 3, 

[SI A. De Luca and B. Siciliano, “Closed-form dynamic model of 
planar multilink lightweight robots,” IEEE Trans. on Sqstcms, 
Man, and Cyberneiics, vol. 21, pp. 826-839, 1991. 

pp. 87-101, 1984. 


