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Abstract 

A force/posztzon controller f o r  robot nianzpulators ai1 

contact wzth an elastically compliant surface zs presented 
in thzs work. The controller conszsts of a PD actzon on 
the positzon loop, a P I  actzon on the force loop, together 
wzth gravity compensation and deszred contact force feed- 
forward. Asymptotic sta6ilzty of the system i n  the neigh- 
borhood of the equzlibrium state zs proven vza the clas- 
steal Lyapuiiov method with LaSalle ziivariance set the- 
orem. A modzjicatzoii of the Lyapunov functzon leads to 
deriuziig a n  exponential stabzlily result. Numerical case 
studzes are developed. 

1. Introduction 

For typical robotic tasks that require interaction with 
the environment, contact forces must properly be han- 
dled by the robot controller. In such cases, a pure mo- 
tion controller usually gives degraded performance and 
can even cause instability. 

If force sensor information is not available for control 
purposes, one can assign a suitable dynamic behavior 
between position and force variables at the contact (e.g. 
impedance control) [1,2]. 

On the other hand, several schemes can be devised 
which attempt to control both end-effector position and 
contact force by embedding force measurements in the 
controller. Hybrid control is perhaps the most widely 
adopted strategy to  force/position control of robot ma- 
nipulators [3-51. The basic idea is the possibility to 
choose whether to control position or force along each 
task space direction through the use of proper selec- 
tion matrices. Stability of hybrid control was addressed 
in [6]. 

A conceptually different approach to force/position 
control of robot manipulators is the parallel control 
strategy [7]. As opposed to the hybrid control strat- 
egy, both force and position variables are used along the 
same task space direction without any selection mech- 
anism. The effectiveness of the scheme is ensured by 
the dominance of the force control loop over the posi- 
tion control loop along the task directions where interac- 
tion occurs. This makes the scheme suitable to manage 
contacts with unstructured environment and unplanned 
collisions, which are known to represent a drawback for 
hybrid controllers. Extensive description of the paral- 
lel approach and performance of a control scheme wi th  
full dynamic compensation in the case of contact with 
an elastically compliant frictionless surface can be found 
in  [8]. 

In view of real-time iinI,leinentatioir, a new parallel 
control scheme w a s  recently proposed [9] wh ich  is based 
on simple position PD control + gravity compensation 

+ desired force feedforward + force PI control. A pre- 
liminary analysis, inspired by the work in [lo], showed 
asymptotic stability of the system around an equilib- 
rium state but was based on a too restrictive assump- 
tion. 

This work presents a complete proof of asymptotic 
stability based on the Lyapunov direct method with use 
of LaSalle invariance set theorem; only boundedness of 
the initial error is required. It is shown that,  for given 
force and position set points, the force error is asymp- 
totically driven to zero at  the expense of a steady-state 
position error. 

The Lyapunov function is further modified to  prove 
exponential stability of the scheme yielding a new set of 
conditions to be satisfied for the feedback gains. 

The proposed control scheme is tested in simulation 
on an industrial robot. The numerical case study con- 
firms the results anticipated in theory. 

2. Modeling 
The dynamic model of a robot manipulator constrained 
by the environment can be effectively written in the op- 
erational space [4] in the form 

B(z )5  + C(z, 2)2 + g(z) = U - f, (1) 

where 2 is the (rn x 1) vector of operational variables 
(usually end-effector location), B is the (rn x m) inertia 
matrix, Cx is the (rn x 1) vector of Coriolis and cen- 
trifugal generalized forces, g is the (rn x 1) vector of 
gravitational generalized forces, U is the (m x 1) vector 
of driving generalized forces, and f is the (rn x 1) vector 
of contact generalized forces exerted by the manipulator 
on the environment; all operational space quantities are 
expressed in a common reference frame. 

When rn is equal to the number of joints n and the 
manipulator moves in a singularity-free region of the 
workspace, the vector of operational variables consti- 
tutes a set of Lagrangian generalized coordinates and 
I3 assumes the meaning of a true inertia matrix. In- 
stead, in the case of kinematically redundant manipula- 
tors (rn < n ) ,  B is only a pseudo inertia matrix [4]. 

The ( n  x 1) vector T of joint actuating generalized 
forces is computed as 

T = JTu ,  (2) 
where J is the (rn x n )  manipulator Jacobian matrix. 

Two notable properties of the dynamic model (1) 
can be established: 
1. The matrix I3 is symmetric and positive definite. If 

A,,, (An,) denotes the minimum (maximum) eigen- 
value of 13. then 
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where I is the (rn x rn) identity matrix; in the case 
of all revolute joints, it is A M  < 00 [I l l .  
There exists a choice of the matrix C such that the 
matrix 

S(z, k) = B(z) - 2 C ( Z ,  k) 

B(z) = C(Z,k) + C T ( 2 , k ) .  

(4) 

is skew-symmetric [12]. This also implies that 

( 5 )  

Further, the matrix C is upper-bounded in x and 
linear in j :  [13]; hence, a constant kc > 0 exists 
such that  

For the purpose of the present work, the attention 
is restricted to  the case of non-redundant non-singular 
manipulators with rn = n = 3, i.e. only translational 
motion and force components are considered. Then, x 
denotes the end-effector position. 

Accurate modeling of the contact between the ma- 
nipulator and the environment is usually difficult to 
obtain in analytic form, due to the complexity of the 
physical phenomena involved during the interaction. It 
is then reasonable to  resort to  a simple but significant 
model, relying on the robustness of the control system 
in order to  absorb the effects of inaccurate modeling. 

The case of a rigid frictionless and elastically com- 
pliant plane is analyzed [7,8]. The model of the contact 
force takes on the simple form 

IIC(z7 &)I1 I kcll4l. (6) 

where x is the position of the contact point, x o  is a point 
of the plane at  rest, and K is the ( 3  x 3) constant sym- 
metric sizflness matrix that establishes a linear mapping 
between ( x  - 5 0 )  and f ;  notice that Eq. (7) holds only 
when the manipulator is in contact with the environ- 
ment and all quantities are expressed in the common 
reference frame. 

If n denotes the unit vector along the normal to the 
contact plane, the matrix K can be decomposed as [9] 

K = knnT (8) 

where k > 0 is the stiffness coefficient. 

3. Force/Posit ion Controller 
A typical task for a robot manipulator in contact with 
the environment can be prescribed in terms of a posi- 
tion set point X d  and a force set point f d .  It can be 
recognized that  simultaneous achievement of both set 
points is not guaranteed to  be compatible with the task 
geometry. 

A viable strategy is to adopt the parallel control ap- 
proach [7]; this is especially effective in the case of inac- 
curate contact modeling. The key feature is to have a 
force control loop working in parallel to  a position con- 
trol loop along each task  space direction. The logical 
conflict between the two loops is managed by imposing 
dominance of the force control action over the position 
one. The potential offered by this technique compared 
to conventional controllers also using force feedback sen- 
sory information is extensively discussed in [SI. 

A force/position parallel controller for the sys- 
tem (1) was proposed in [9], based on position P D  con- 
trol + gravity compensation + desired force feedforward 
+ force P I  control, i.e. 

U = -KDk+Kpdx+S(x)+fd+KFAf +KIJlnfdg,  

where A x  = xd - x is the position error, A f  = f d  - f 
is the force error, Kp, K D ,  K F ,  K I  are suitable gain 
matrices. These matrices are typically chosen as scalar 
matrices, i.e. Kp = k p I ,  KD = kDI, KF = k F I ,  
KI  = k I I ,  with k p ,  k D ,  k F ,  k~ > 0. It is important to 
remark that no exact knowledge of the stiffness matrix 
K is required by the control (9). 

Looking a t  the properties of the elastic contact 
model (7), the only possibility t o  obtain a null force 
error is to  assign a set point f d  E R ( K ) .  On the other 
hand, this is consistent with the fact that the considered 
environment can generate reaction forces only along the 
direction of n. If no information about environment ge- 
ometry is available, i.e. n is unknown, the null vector 
can be assigned for f d  that is anyhow in the range space 
of any matrix K .  Thus, in the remainder, is is assumed 
that f d  E R ( K ) .  Analogously, it can be recognized that 
null position errors can be obtained only in the contact 
plane, while the component of x along n has to  acco- 
modate the force requirement specified by f d ;  thus, x d  
can be freely reached only in n/(K) .  

As a further assumption, it is supposed that the con- 
tact between the manipulator and the environment is 
not lost after the impact. 

As demonstrated in [9], an equilibrium point for sys- 
tem (2) under control (9) is 

(9) 

X m  = K - (  f d  + KXo) + ( I  - K-K)Zd (IO) 
f c u  = K(Xm - 20) = f d .  (11) 

The matrix K -  in (10) indicates a generalized inverse 
of the matrix K ;  in view of (8), K -  can be written in 
the simple form 

K -  = ( l / k ) n n T .  (12) 

4. Stability 
Asymptotic stability of the equilibrium ( l0 , l l )  was 
proven in [9] under a somewhat restricting assumption. 
In the following, a complete proof is given that leads to 
a set of simple conditions for the feedback gains. 

Define 
e = x m - x  (13) 

which, by virtue of (7,10), can be also written as 

e = ( I -  K-K)Ax + K-Af = Ax + Kp'd, (14) 

where 
d =  K p K - ( f d + K ( ~ o - z d ) )  (15) 

is a constant vector. For later use, notice that 
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(17) 
From (13) it is 

e = -x. 

Further, define 

s = nT ( L ' K -  Afdo - K;'K-d) . (18) 

Deriving (18) with respect to time and accounting 
for (16) yields 

B = nTe.  (19) 

r = ( i  e s l T .  (20) 

At this point, consider the (7 x 1) augmented state 
vector 

The augmented system described by Eqs. (1,17,19) un- 
der control (9) can be written in the standard cornpact 
form: 

i. = Fr, (21) 

where 

with k k  = 1 + k F ;  0 denotes the ( 3  x 3 )  null matrix and 
0 the (3  x 1) null vector. Notice that some handy reduc- 
tions, using the structural properties of K in Eqs. (8,13) 
and the definition of s in (18), have been performed to  
derive (22). 

Theorem 1. If the assumption 
The following result can be stated : 

holds, then there exists a choice of feedback gains k p ,  
k D ,  k ~ ,  kI that makes the origin of the state space for 
system (21,22) asymptotically stable. 

Proof. Consider the Lyapunov function candidate 

(24) 
1 
2 

v = - Z T P Z ,  

where 

- PB 
( k p  + p k D ) I  + k>k7z7aT k I k n  

ki k nT 
(25) 

with p > 0. Computing the time derivative of V along 
the trajectories of system (21,22) gives 

in which the skew-symmetry of the matrix (4) and 
Eq. (5) have been conveniently exploited. 

B virtue of assumption (23) and Eq. ( 6 ) ,  the term 4 - p e  CTx in (26) can be upper-bounded as 

- p e T C T i  5 p~1cc11i11~.  (27) 

By accounting for (3,19,27), function (26) can be upper- 
bounded as 

V I -( kD -PAM - p  @ k c )  I li 11' - p k p  lle112 - k( p k h  -k1)S2.  

On the other hand, the function candidate (24,25), ac- 
counting for (19), can be written as 

(28) 

1 .  1 
2 2 

V = - x T B i  - p i T B e  + - ( k p  + p k D ) e T e  (29) 

1 + - k k k S 2  2 + kIksB + P k I k s 2  2 

which, by using (3) ,  can be lower-bounded as 

Eqs. (28,30) reveal that there exists a choice of kp, k ~ ,  
k F ,  k I ,  and p that makes V positive definite and V 
negative semidefinite. In fact, Eq. (30) gives 

kP + P k D  > p 2 x M  (31) 
pkh > k r ,  (32) 

while Eq. (28) gives 

k D  > P ( A M  +@kc)  (33)  

plus (32) again. Observing that condition (33) im- 
plies (31) for x # 0, it can be concluded that only 
conditions (32,33) must be satisfied. 

Since V is negative semidefinite, the inequality V 5 
0 must be further analyzed to  prove asymptotic stability. 
In particular, it is V < 0, Vx # 0, e # 0 ,  s # 0, while 
V = 0 implies x = 0, e = 0, s = 0. From the first three 
equations of (21,22) it can be seen that x vanishes only 
if k I k s B - ' n  = 0; this implies s = 0,  too. 

In sum, the only equilibrium trajectory satisfying 
V = 0 is z = (OT OT O ) T .  Hence, due to  LaSalle invari- 
ance set theorem, this state is asymptotically stable. . 

About the feedback gains, notice that  k p  is not in- 
volved in conditions (32,33) and then is available to  meet 
further design requirements. Remarkably p is a free pa- 
rameter that is not used in the control law (9),  and 
then allows an opportune choice of the feedback gains 
k ~ ,  k ~ ,  R I .  Also, by increasing k ~ ,  a larger value of @ 
can be tolerated. 

Theorem 1 provides design guidelines to  ensure 
asymptotic stability of system (21,22). A further re- 
sult can be established to  give an estimate of the rate of 
convergence. 
Theorem 2. If the assumption 

I l 4 0 ) l l  5 Q < 00 (34) 
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holds, then there exists a choice of feedback gains k p ,  
k D ,  kF,  kI that makes the origin of the s ta te  space for 
system (21,22) exponentialiy stable. m 

Proof. Consider the Lyapunov function candidate 

(35) 
1 W = -.z~&.z, 
2 

B -PB 

where 

-ynTB ( k r k  + y k D )  nT 

Pkrk + y ( k p  + kbk) 
with P , y  > 0. Computing the time derivative of W 
along the trajectories of system (21,22) gives 

W = - x T ( k D I  - PB)X (37) 
T - e  (P k p I  + 

- y k I k s 2  - yZTBnnTe - (peT + y s n T ) C T X ,  

- k ~ k  - y k ~ )  nn )e  

in which the skew-symmetry of the matrix (4) and 
Eq. (5) have been conveniently exploited. 

The function candidate (35,36), accounting for (19) 
and (3), can be lower-bounded as 

Eq. (38) reveals that  there exists a choice of k p ,  k ~ ,  P F ,  
k I ,  P, and y that makes W positive definite, provided 
that: 

k p  + P k D  > 2 p 2 A ~  
k p  4- k k k  > 2 y A ~  

Pk$krk2 > ( k r k  + y k ~ ) ' .  

(39) 
(40) 
(41) 

On the other hand, the function candidate (35,3G), 
accounting for (3,19), and the inequalities 

with ~ 1 , 7 7 2 ,  773 > 0, can be upper-bounded as 

W < H i =  

(44) 

By virtue of assumption (34) and Eq. (6), the last 
term in (37) can be upper-bounded as 

Taking into account (3,19), and the inequality 

with 774 > 0, the function (37) can be upper-bounded as 

By comparison of (48) with (45), it can be recognized 
that if the following inequalities are satisfied for some 
a > 0: 

(49) 

P Y  cy 
- 2 (1 + + --) AM 

the chain of inequalities holds 

and then 
W ( t )  5 W(O)exp(-cyt). (54) 

For a given 0,  it is possible to choose the gains kp, 
L D ,  kJ-,  P I  and the parameters P,  Y ,  7 7 1 ,  772, 773, 74 so 
that the relations (39-41) and (49-52) are satisfied for 
some cy > 0. By virtue of (54), exponential stability 
of system (21,22) at the origin of the state space is ob- 
tained. Further, a allows to  compute an lower bound 
on the convergence rate toward the equilibrium state in 
the ball of radius 8. 

About the feedback gains, notice that now k p  is in- 
volved in conditions (39,40,50,51). However, by means 
of the free parameters P, y, 771 ,  772, 773, 774, which are 
not used in the control law (9), it is possihle to  find 
a set of feedback gains k p ,  k D ,  k ~ ,  kI that guarantee 
exponential stability. 

5. Case Study 
The proposed force/position controller was tested in a 
case study on the industrial robot COMAU SMART 
G.10R. Only the first three joints were considered, con- 
stituting a typical elbow manipulator geometry with 
zero shoulder offsets. The  complete numerical da ta  for 
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the robot parameters can be found in [14]. Simulations 
were run in MATLAB on a PC-486/33. 

A step motion from z = ( 1.100 0 0 )  [m] to the 
set point xd = ( 1.120 0 O ) T  [m] was commanded 
to  the manipulator’s tip. The set point f d  = 0 was 
assigned for the tip force. The geometry of the con- 
tact plane is characterized by n = ( 1 0 O ) T  and 
20 = (1.115 O ) T  [m]; different values for the stiff- 
ness coefficient k were considered. It can be recognized 
that an unexpected impact occurs along the normal di- 
rection to  the plane a t  a distance of 0.005 m from the 
target point zd. For simplicity, the time scale in the 
simulations is reset ( t  = 0) a t  the instant of the impact; 
further, the sole z-component of position and force vec- 
tors are reported, in view of the particular task geome- 
try. 

The gains in (9) were set t o  k p  = lo5 N m - ’ ,  
kD = lo4 Nsm-’, kF = 4, k-I = 55s-’. On one hand, 
kp and kg were chosen so as to guarantee a well-damped 
behavior for the unconstrained motion of the manipu- 
lator in a large region of the workspace. On the other 
hand, kF and were chosen so as to  achieve a satis- 
factory behavior during the constrained motion with an 
estimate of the stiffness coefficient of k = lo5 N m-’. 
With the above values, the design conditions (32,33) 
were satisfied with some p > 0 for available estimates of 
AM and kc. 

In the following, the nurnerical results of two simu- 
lation runs with a sampling time of 2 ms are presented. 

In the first run, it is k = lo5 Nm-’. For the pur- 
pose of comparison, both the full force/position con- 
troller and the pure position controller ( k ~  = 0, k~ = 0) 
were used. It can be seen that the equilibrium position 
z, (= 20 in this case) is reached (Fig. 1) and the con- 
tact force is null a t  steady-state (Fig. 2),  so as desired. 
Notice also that ,  without force feedback, finite steady- 
state errors occur both for position and force. Figure 3 
reports the time history of the Lyapunov function W ( t )  
in (35,36),  together with the function W ( 0 )  exp( -at);  
the value of cr was computed via the MATLAB opti- 
mization function CONSTR applied to the set of con- 
ditions (39-41,49-52) with free parameters 4, 7 ,  1 1 1 ,  172, 
~ 3 ,  ~ 4 .  It is easy to  recognize the exponential stability 
result established by (54). 

In the second run, the robustness of the proposed 
controller was tested by changing the stiffness coefficient 
into k = lo6 N m-l but leaving the same feedback gains 
as above. The results of Figs. 4,5 demonstrate that sat- 
isfactory performance is obtained even when tuning of 
the force feedback gains was  done by underestiinating 
the actual stiffness of the environment. 

T 

0 

6. Conclusions 
A stable force/position controller for robot manipula- 
tors in contact with an elastically compliant surface was 
presented in this work. The controller consists of a PD 
action on the position loop, a PI action on the force 
loop, together with gravity compensation and desired 
contact force feedforward. Differently from most pre- 
vious schemes, this force/position controller does not 
require explicit knowledge of the environment and then 
allows handling of unplanned collisions; the equilibrium 

state of the system automatically fits the contact geom- 
etry and is stable under the proposed controller. 

A case study was developed for an industrial elbow 
manipulator, whose tip experiences an unexpected im- 
pact with the environment on the way toward the target 
position. The numerical results of two sets of simula- 
tions confirmed the theoretical derivation. Exponential 
stability was verified and robustness of the scheme to 
imprecise estimate of contact stiffness was successfully 
tested. 

Future work will be devoted to  investigate the stabil- 
ity of the scheme in the case of imperfect compensation 
of the gravity term, by possibly resorting to  an adapta- 
tion mechanism on the system state. 
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Fig. 3. Time history of the Lyapunov function (40,41) (solid) 
and its bounding exponential function (dashed). 
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