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Abstract 
In this paper we propose a force/position control scheme 
in a 6-DOF task space which is a generalization of the 
parallel control scheme in a 3-DOF task space. The con- 
troller consists of a PD action on the position loop, a 
PI action on the force loop to  ether with gravity com- 
pensation and feedforward of t8e desired contact force. 
Kinestatic filtering is not used in the scheme. Euler pa- 
rameters are adopted to describe end-effector orientation. 
The model of interaction wrench (force and moment) is 
formulated with a generalized spring. Stability of the pro- 
posed scheme is established through the Lyapunov method. 

1. Introduction 
There are a number of significant applications of robot 
manipulators where the end effector is in contact with the 
environment, and contact forces must be handled properly 
by the robot controller. 

If force sensor information is not used for control pur- 
poses, one can assign a suitable dynamic behaviour be- 
tween position and force variables, e.g. usin impedance 
control [6] so that stability is maintained wten the end 
effector is in contact with the environment. Another so- 
lution to  the problem is to use feedback from a force sensor 
e.g. in the wrist. This is done in hybrid force/position con- 
trol [7 $0 where the task space is divided into force con- 
trolle d d  an position controlled directions using kinestatic 
filtering. 

A conceptually different approach to force position 

lel control strategy [2]. In this scheme kinestatic filtering 
is not used. Instead both force and position variables 
are controlled along each task space direction using a PI 
action for the force feedback and a PD action for the posi- 
tion feedback. Thus, at steady state the force control loop 
dominates the position control loop in the task directions 
where interaction occurs. This makes the scheme suit- 
able to handle contacts with an unstructured environment 
and unplanned collisions, which are known to represent a 
drawback to hybrid controllers. Stability of the parallel 
control scheme in a 3-DOF task space was analyzed in [3] 
in the case of point contact. 

In this paper the parallel force/position control scheme 
is generalized to a 6-DOF task space. The end-effector 
control deviation is formed by a position component and 
an orientation component, where the latter is formulated 
in terms of Euler parameters. The end-effector force and 
moment are grouped into a wrench vector, while the twist 
vector is formed by the end-effector angular and linear 
velocities. The controller is shown to guarantee asymp- 
totic stability of the equilibrium configuration for a proper 
choice of the feedback gains. 

control using feedback from a force sensor is t h e paral- 

2. Preliminaries 
In this section we briefly recall some useful results from 
[8k The configuration of a rigid body can be described by 
a omogeneous transformation matrix 
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where R E R3x3 is the rotation matrix and p E R3 is 
the position vector of the rigid body in base coordinates. 
The time derivative of the configuration T is 

where w is the angular velocity in base coordinates, v is 
the velocity in base coordinates and S ( w )  E F3x3 is the 
skew-symmetric matrixform of w.  A generalized spring 
is defined by introducing a potential V ( T  . By using a 

be shown that the symmetric stiffness matrix X of the 
generalized spring is given by K = d2V(I ) .  The spring 
wrench is then given by w = ( f T  mT)T = K6 where 
6 5 (eT dT)T. The screw vector 6 represents a first-order 
approximation of the elastic displacement T .  f and m 
are the force and moment acting on the body. 

first order approximation of the spring di d erential it can 

A 

3. Dynamic model 
The equations of motion of the manipulator in a 6-DOF 
task space can be written as 

D(T)U + C(T, V)V  + g ( T )  = U - w .  (3) 

Here T as defined in (1) specifies the configuration of the 
end effector. v is the velocity twist vector of the end ef- 
fector and is found from T ,  and w is the contact wrench 
between the end effector and the environment. Also D(T)  
is the inertia matrix, C(T,  Y)Y is the vector of centrifugal 
and Coriolis terms, g ( T )  is the vector of gravity terms, 
and U is the vector of input generalized forces. We con- 
sider a non-redundant manipulator with 6 joints so that 
no internal motion occurs. It is assumed that the manip- 
ulator is bounded away from singularities. 

4. Controller 
The constant desired configuration and contact wrench 
are given respectively by 

while the control deviations are defined as = pd - p ,  
R = RR: and & = wd - w. Let (6,;) be the Euler 
parameters associated with R. The deviation in configu- 
ration is described by dT e (-? pT)T. We propose the 
following control law which generalizes the control law of 

- 
- 

121: 

S-KD Y + KP & + + g( T )  + KF& + Kr W( a)&. (5) 1' 
Here the feedback gain matrices are constant and diagonal 
and given by 

Ki = block diag(kid3, k i p I 3 )  > 0 for a E { D ,  p, F, 1)  
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where 1 3  is the identity matrix E We also de- 
fine KDR = ~ D R I ~ ,  KDP = ~ D P I ~ ,  K P R  = ~ P R I ~ ,  
Kpp = kppI3. I t  is assumed that the system has a con- 

stant equilibrium configuration T ,  = 

By defining the deviations 5 = p, - p ,  p ,  = pd - pm, 
5 = RR: and & = R,RI, defining the vector 

I 

and lettting (6,a be the Euler parameters associated with 
k, i t  can be shown that the system described by the equa- 
tions (3) and (6), the kinematic equations and control law 
(5) can be written in the form 

i = F z  (7) 
where 

0 0 
0 0 

A E = 71-1 - S(&) and H ( 3  = block diag{z,zT, 0). 
Here P K  is a projection matrix or twist filter as described 
in [4]; notice that P K  is used for analysis purposes only. 

5 .  Stability 
In this section Lyapunov stability of the proposed control 
scheme is established. The stability proof is a generaliza- 
tion of the results of [2] where point contact in a 3-DOF 
task space was discussed, while here general contacts in a 
6-DOF task space are treated. In the proof we have taken 
advantage of the results of [l] and [9]. 

Theorem 1 Assume that there is an equilibrium config- 
uration T ,  so that assumption 71, > 0 is satisfied. Then 
there exists a choice of constant feedback gain matrices 
KD, Kp, KF and Kr that  makes the origin of the sys- 
tem i = F z  asymptotically stable. 

Ske tch  of proof: Consider the Lyapunov function can- 
didate 

where 

0- 0 

constants and A = block diag 
(9) i t  is seen that V is positive 

kDP > P A M ,  k D R  >   PAM, (11) 
where AM is the greatest eigenvalue of D. By computing 
the time derivative of. V along system trajectories it can 
be shown [5] that  -V is positive definite whenever the 
following conditions are met: 

where c1, cz, and c3 are positive constants. At this 
point a proper choice of the constants p, -y,6 and p can be 
found that satisfies conditions (11) and (12)-(14). This in 
turn implies tha t  the equilibrium z = 0 is asymptotically 
stable, in view of Lyapunov’s theorem. 
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