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Abstract— This paper presents a new approach to the
prediction of visual occlusions for a robotic system performing
visual servoing tasks. The case of a multi-arm robotic cell
equipped with a multi-camera eye-to-hand visual system is
considered. The proposed approach is able to predict the self
occlusions as well as the mutual occlusions caused by the
robot links and tools. The algorithm is based on the geometric
representation of the cell in terms of a BSP tree, assuming that
the CAD geometry of the objects and the kinematic model of
the multi-arm robotic system are known. Experimental results
are presented for the case of two industrial robots performing
a vision-guided grasping task.

Index Terms— Visual servoing, multi-arm robots, visual
tracking, real-time operating system, Kalman filter

I. INTRODUCTION

The adoption of multi-camera visual systems to guide the
execution of manipulating tasks in a robotic multi-arm cell
is becoming a feasible scenario in industrial applications.
A common problem of these applications is the occurrence
of occlusion of the workpieces with respect to visual
system, especially when eye-to-end configurations, i.e.,
fixed cameras, are used. Typical examples are:

• self-occlusion, in the sense that some parts of a
workpiece are hidden with respect to the cameras by
other parts of the object itself;

• a workpiece is hidden with respect to a camera by a
robot link of by another object;

• during a manipulation task, like grasping, some parts
of the workpiece may be occluded by the robot hand
or gripper;

where the last two cases are examples of mutual occlusion.
The presence of occlusions may cause serious problems

to any kind of algorithm based on the extraction of image
features. Hence, it is important to develop suitable strate-
gies that allow predicting the occurrence of occlusions.

The problem of computing occlusion-free viewpoints
in a known polyhedral world is considered in [1], [2].
However, the proposed techniques do not consider real-
time constraints and moving objects. A simple occlusion
resistant object tracking algorithm is proposed in [3] where
the Kalman filter is adopted to have a prediction of the
target object trajectory while an occlusion occurs. In [4] an
algorithm for automatic grasping is proposed, based on the
selection of viewpoints that avoid occlusion for the eval-
uation of the grasping trajectory. However, this algorithm

does not solve the problem of occlusions in a multi-arm
robotic cell in the presence of moving workpieces.

In this paper, an algorithm for a multi-arm robotic system
is proposed that recognizes in real-time the presence of
occlusions with respect to each camera of an eye-to-hand
visual system. In this way, the occluded features can be
eliminated from the set of features to be extracted by the
images.

The algorithm is based on Binary Space Partitioning
(BSP) tree structures to represent the 3D geometry of the
cell. The BSP tree representation is updated in real time on
the basis of the measurements of the joint positions and of
the estimated poses of the workpieces provided by a visual
tracking algorithm presented in previous works [5], [6]).
The occlusion detection is realized through a suitable visit
algorithm of the tree.

The paper is organized as follows. In Section II some
details about BSP tree representations are provided. The
occlusion prediction algorithm is presented in Section III,
while in Section IV the visual tracking algorithm based on
the extended Kalman filter and optimal features selection
is briefly outlined. Experimental results for the case of two
industrial robots performing a vision guided grasping task
are presented in Section V.

II. BSP TREE GEOMETRIC REPRESENTATION

A BSP tree data structure may be employed to represent
the geometry of known 3D environments, like a robotic cell
with one or more robot manipulators and workpieces. To
achieve a computationally fast representation, the attention
is limited to polyhedric objects, characterized by planar
poligonal surfaces. This choice is not too restrictive, since
a large class of man-made objects of different shapes can
be approximated as polyhedric solids.

The elementary data of a BSP tree representation are the
object surfaces. Each surface can be seen as an anticlock-
wise ordered sequence of feature points (the corners of the
polygon) laying on its contour. For example, for the object
shown in Fig. 1, the representation of the surface S1 is the
sequence S1 = {f1, f4, f6, f7, f9, f12, f16, f13}.

To represent the set of all the surfaces of an object,
the following BSP tree building paradigm is adopted: each
node of the tree is characterized by a partition plane that
divides the 3D space into two subspaces containing all
the surfaces (or pieces of surfaces) which are in the front
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Fig. 1. An example of decomposition of a 3D object into elementary
surfaces.
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Fig. 2. A possible BSP tree representation of the object of Fig. 1; labels
F and B denote the front and back subspaces.

and in the back, respectively, of the partition plane; all
the surfaces laying on the partition plane are stored into
the node. Applying recursively this paradigm to the two
subspaces, a binary tree data structure is obtained, whose
nodes contain all the surfaces of the object.

Notice that this approach does not impose connectivity
constraints on the internal subspace of the represented
object. Therefore, a unique BSP tree may be used to
simultaneously represent many objects with respect to the
same reference frame.

The conformation of the tree depends on the choice of
the partition planes. For the purpose of this work, the parti-
tion planes are selected from the set of plains containing the
surfaces of the objects. To reduce the complexity of the tree
it is convenient to select the partition planes in a sequence
that minimizes the number of intersections with the other
object surfaces. As an example, in Fig. 2 is reported a BSP
tree representing the object of Fig. 1, where the choice of
the partition planes does not generate intersections.

III. OCCLUSION PREDICTION ALGORITHM

To the purpose of the occlusion prediction algorithm
presented in this paper, the robotic cell is seen as a
collection of objects which includes the workpieces (target
objects), the robot links and tools, as well as all the possible
obstacles that may occlude the workpieces with respect to
the cameras.

Robot 1 Robot j

Camera 1
Camera iBase

Frame

Workpiece m

Workpiece 1

Fig. 3. Sketch of the cell with the reference frames.

At each sampling time, the algorithm provides the pre-
diction of the positions on the camera image planes of all
the visible feature points of the workpieces. The inputs
of the algorithm are the robot joint measurements and
the prediction of the pose of the workpieces provided by
the visual tracking algorithm described in the following
section.

The occlusion prediction algorithm can be decomposed
in two parts: geometric modelling and occlusion detection,
which are described in the following subsections.

A. Geometric modelling

This part is aimed at generating on-line a BSP tree,
representing the 3D geometrical model of the cell. To this
purpose, the CAD model of all the objects of the cell are
assumed to be known. Moreover, each object has to be
represented as a set of surfaces with respect to a reference
frame fixed to the object itself. This type of representation
can be generated once off-line to facilitate the on-line BSP
tree construction.

Consider a system composed by w workpieces and t
robots and tools, where robot i is composed by li links;
hence the total number of objects is n = w + t +

∑t
i=1 li.

Moreover, assume that c fixed cameras are available. The
corresponding reference frames are represented in Fig. 3. In
the following, the pose of a reference frame with respect to
another frame will be represented in terms of homogeneous
transformation matrices.

The pose of workpiece i with respect to the base
frame, represented by the homogeneous transformation
matrix W b

i , is provided by the pose estimation algorithm
described in the next section.

By using the Denavit-Hartenberg convention [7], a frame
can be assigned to each link of the robot i. Then the
homogeneous transformation matrix Li

j,i, representing the
pose of link j of the robot i with respect to robot frame i,
may be evaluated as follows

Li
j,i(qj,i) = Li

1,i(q1,i)L
1,i
2,i(q2,i) · · ·Lj−1,i

j,i (qj,i),

where qj,i = [qj,1 . . . qj,i]T, j = 1, . . . , li being qj,i the
measurement of joint variable j of robot i. The pose of
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Fig. 4. Dynamic BSP tree building process.

link j of robot i can be expressed in the base frame as

Lb
j,i(qj,i) = Lb

iL
i
j,i(qj,i),

where Lb
i is the constant homogeneous transformation

matrix representing the pose of robot frame i with respect
to the base frame, that can be computed via a calibration
procedure of the multi-arm robotic system.

Analogously, the homogeneous transformation matrix
T b

i representing the pose of a tool mounted on the robot i
with respect to the base frame can be computed as

T b
i (qi) = Lb

li,i(qi)T
i,

where, for notation compactness, qi = qli,i and T i = T li,i

denotes the constant homogeneous transformation matrix
representing the pose of the tool with respect to the last
link of robot i.

The above computations are the first steps of the proce-
dure represented in Fig. 4.

The next step is the computation of the pose of all the
objects of the cell with respect to a frame fixed to camera
k (k = 1, · · · , c), in the form

W k
i = Cb

k
TW b

i ,

Lk
j,i(qj,i) = Cb

k
TLb

j,i(qj,i),

T k
i (qi) = Cb

k
TT b

i (qi)

where Cb
k is the homogeneous transformation matrix repre-

senting the pose of camera frame k with respect to the base
frame b. This matrix, depending on the extrinsic camera
parameters, is computed off-line through a suitable camera
calibration procedure.

At this point, the pose of all the objects with respect to
camera frame k (k = 1, · · · , c) can be easily evaluated.
By using the camera perspective transformation, which
depends on the intrinsic camera parameters, it is possible to
compute the projections of all the objects of the cell (each
seen as a set of surfaces) on the image plane of all the
cameras. On the basis of these data, the BSP tree structure
representing the current geometric configuration of the cell,
as it is seen by all the cameras, can be built. Details about
the construction of the BSP tree can be found in [6].

B. Occlusion detection

The detection of the occluded parts of the workpieces
with respect to a given camera can be achieved by imple-
menting a suitable recursive visit of the corresponding BSP
tree representation. This algorithm allows recognizing all
the feature points lying on parts of the workpieces that are
not occluded with respect to the camera. It can be described
by the following Pascal-like procedure:

procedure not_occluded (node:BSP_tree;
view:point;visible_points:point_list);

begin
if node NOT EMPTY then

case classify_point(view,
node->partition_plane)

ON_THE_PLANE:
not_occluded(node->front_tree,

view,visible_points);
not_occluded(node->back_tree,

view,visible_points);
IN_FRONT_OF:
not_occluded(node->back_tree,

view,visible_points);
process_surfaces(node->surfaces,

view,visible_points);
not_occluded(node->front_tree,

view,visible_points);
IN_BACK_OF:
not_occluded(node->front_tree,

view,visible_points);
process_surfaces(node->surfaces,

view,visible_points);
not_occluded(node->back_tree,

view,visible_points);
end {case}

end {if}
end {begin}

In the above procedure, the input variable view is
the point of view (corresponding to the optical center of
the image plane of the considered camera) from which
the current set of visible feature points of the object is
evaluated. The visible points are listed in the variable
visible points, which contains also the projections of
these points on the image plane of the camera.

The function classify point() evaluates the position
of the point of view with respect to the partition plane.

The core of the occlusion prediction algorithm is the
procedure process surfaces(), which updates the cur-
rent set of visible points by adding all the feature points of
the surfaces of the current node and by eliminating all the
feature points that are hidden by the surfaces of the current
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Fig. 5. Block scheme of the visual tracking algorithm.

node.
The procedure is recursive and ends when all the nodes

of the tree have been visited; at the end, the current set of
visible points will contain all and only the feature points
visible from the point of view. Notice that construction of
the set proceeds so that the surfaces are considered in a
sequence corresponding to their position with respect to
the point of view from the background to the foreground.

The above algorithm must be applied to all the cameras
of the system.

It is important to observe that the code implementing the
whole occlusion detection algorithm (visit of the tree and
surfaces processing) exhibits a complexity O(N), where N
is the number of surfaces of the object [8]. Moreover, some
modifications can be introduced both in the modelling and
in the occlusion detection parts, which allow a considerable
reduction of computational time [6].

IV. VISUAL TRACKING

The occlusion prediction algorithm performs a pre-
selection of the feature points of the target objects to be
used for the estimation of the workpiece poses. In this
paper, a pose estimation algorithm based on the extended
Kalman filter is adopted. A detailed description of this
algorithm can be found in [5] and [6].

The extended Kalman filter provides also a prediction of
the pose of the workpieces at the next sampling time, that
is input to the occlusion prediction algorithm according to
the closed-loop scheme represented in Fig. 5.

Notice that not all the visible feature points provided
by the occlusion prediction algorithm are used for feature
extraction. In fact, in a multi-camera system, the available
feature points may be highly redundant and may increase
the computational cost without a significant enhancement
of the estimation accuracy [9]. Therefore, a suitable se-
lection algorithm is adopted to dynamically select an
optimal set of visible points. This algorithm is based on
the minimization of an optimal cost function based on a
combination of suitable quality indexes ensuring a balanced
spatial distribution of the projections of the feature points
on the image plane of each camera as well as a balanced
distribution of the features among the different cameras,
considering their different resolutions and focuses [6].
After the optimal selection, a windowing technique is used
to compute the size and location of the windows of the
image plane to be grabbed for image processing. This

Fig. 6. Experimental setup.
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Fig. 7. Position-based control scheme.

considerably reduces the computational charge of the frame
grabbing operations.

V. EXPERIMENTS

The effectiveness of the proposed approach has been
tested in some experiments on the industrial robotic cell
available at the PRISMA Lab.

The cell consists of two industrial robots Comau
SMART-3 S (see Fig. 6). One arm (R7AX) is mounted
on a sliding track which provides an additional degree of
mobility with respect to the standard six degrees of mobil-
ity of the other arm (R6AX). Each robot is equipped with
a pneumatic gripper with two parallel jaws. Both robots
are controlled by a single PC with RTAI-Linux operating
system. The experimental setup is completed with a stereo
visual system composed by a PC equipped with two Matrox
GENESIS boards and two Sony 8500CE B/W cameras.
The Matrox boards are used as frame grabber and for a
partial image processing (e.g., image windows extraction),
while the PC host is in charge of executing vision-based
algorithms (e.g., occlusion prediction and object motion
estimation) and guarantees communication with the PC
performing robot control via a standard serial connection.

The proposed algorithm has been tested on three variants
of the same vision guided grasping task, involving only one
robot.

The position-based visual servoing scheme represented
in Fig. 7 has been adopted. The stereo visual system
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Fig. 8. Gripper (solid) and estimated object (dashed) trajectories during
the first experiment.

estimates the pose of the workpiece at 26 Hz frequency,
corresponding to the camera frame rate, while the pose
control is performed through an inner/ounter control loop.
The inner loop, running at 500 Hz frequency, implements
motion control. In the outer loop, the block named dynamic
trajectory planner computes the trajectory for the robot tool
on the basis of the current pose of the workpiece and on
the desired task. The input of this block is updated at 26 Hz
frequency while the output is available at 500 Hz frequency,
thanks to a second-order interpolating filter.

The grasping task involves the R7AX robot and a work-
piece with 16 feature points. The number of feature points
used by the pose estimation algorithm has been limited to
11, selected from the set of visible points provided by the
occlusion prediction algorithm. Notice that the maximum
number of visible image features, for both the cameras, is
32.

The task assigned to the R7AX robot can be decomposed
in the following phases:

1) Approach – When the target object is localized,
starting from the HOME pose, approach the grasp
pose in two steps: first go over the target object (at
5 cm height), and then descend on it;

2) Grasp – Grasp the object and check the state of the
gripper;

3) Manipulate – Return to the HOME pose carrying the
object;

4) Release – Go to the FINAL pose and release the
object.

A. Fist experiment

In the first experiment, the target object and the R6AX
robot are motionless. Moreover, the R6AX robot is out
of the field of view of the cameras. The time history of
the position trajectory of the R7AX robot and that of
the estimated workpiece position are shown in Fig. 8.
The time history of the orientation components is not
reported here for brevity. The Approach phase begins after
about 4 sec and ends in about 12 sec. During this phase
the robot recognizes the workpiece and moves over it,

Fig. 9. Visible and selected object feature points for camera 1 (top) and
camera 2 (bottom) during the first experiment.

initially keeping a distance of about 5 cm along the vertical
direction (z component); then the robot begins the descent
to the grasping pose. When the grasping pose has been
reached, the Grasp phase begins and ends after about 8 sec.
During this time the pneumatic gripper is closed and a
check of the state of the jaws is performed using the
magnetic sensors installed on the gripper. At about 25 sec
the Manipulate phase begins and the robot return to the
HOME pose carrying the workpiece. At about 50 sec the
robot reaches the FINAL pose and releases the object; then,
it returns to the HOME pose (Release phase).

In Fig. 9, the state of the visible and selected feature
points is represented. For each point, the bottom line
indicates when it is visible, the top line indicates when it is
selected for feature extraction. Notice that the points that
are not visible at the beginning of the task are occluded
by the workpiece itself (self-occlusion) while, from the
last part of the Approach phase until the first part of the
Release phase, some feature points are occluded by the
gripper (mutual-occlusion).

B. Second experiment

In the second experiment, the workpiece is in motion
in the horizontal plane during the Approach and Grasp
phases. The time history of the position trajectory of the
R7AX robot and that of the estimated workpiece position
are shown in Fig. 10. Differently from the previous exper-
iment, the robot has to track the object. In fact, it can be
observed that the gripper motion in the horizontal plane (x
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Fig. 11. Visible and selected object feature points for camera 1 (top)
and camera 2 (bottom) during the third experiment.

and y components) matches the object motion during the
Approach phase. Moreover, the Grasp phase is successfully
executed.

C. Third experiment

In the third experiment, the workpiece is in motion
as in the second experiment; moreover, the robot R6AX
performs a different task and during the motion occludes
the workpiece with respect to the cameras.

The state of the visible and selected feature points is
reported in Fig. 11. The time histories of the position of the
robot gripper and that of the estimated workpiece position

are not reported because they are practically the same to
that in Fig. 10. In Fig. 11, the A-area corresponds to the
occlusion caused by the gripper during the grasping, while
the B-area corresponds to the occlusion caused by the robot
R6AX. Notice that the motion of the robot R6AX generates
a partial occlusion (only one point remains visible) on the
camera 2 between the Approach and Grasp phases. This
event does not affect the accuracy of the pose estimation
and allows the successful execution of the Grasp phase.
Moreover, during the Manipulate phase, the robot R6AX
occludes completely the object with respect to camera 1.
Again, from Fig. 10 it can be observed that the visual
tracking algorithm maintains high accuracy, even though
the estimated pose is not used after grasping (only the joint
measurements are used by the dynamic trajectory planner
in the Manipulate and Release phases).

VI. CONCLUSION

In this paper an algorithm for the prediction of visual
occlusions in a multi-arm robotic cell performing visual
servoing tasks has been presented. The algorithm is based
on a computationally efficient representation of the 3D
geometry of the cell, based on BSP trees. The proposed ap-
proach is able to predict the self occlusions for one or more
workpieces in the cell, as well as the mutual occlusions
caused by the robot links and tool. This algorithm, used in
combination with a visual tracking algorithm based on the
extended Kalman filter, provides a pre-selection of the ob-
jects features to be used for image window grabbing. This
allows computational time savings and guarantees reliable
visual measurements for pose estimation. The experimental
results on a dual-arm industrial robotic cell equipped with
a stereo eye-to-hand visual system have confirmed the
feasibility and the effectiveness of the proposed approach.
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