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1, PROBLEM_ STATEMENT AND PREVIOUS WORK

1.1 Robot Kinematics

For any robot with known geometrical dimensions, the
direct kinematic equation describes the mapping of the (n x
1) vector of joint coordinates 9 into the (m x 1) vector of
robot's end-effector task (Cartesian) coordinates x as
(Denavit and Hartenberg (1))

x = £(q) (1.1)

where f is a continuous nonlinear function, whose structure
and parameters are known, Differentiating Egq.1.1 with re-

X = J(g)q. (1.2)

1.2 The Inverse Kinematic Problem

A robot is usually commanded by assigning a desired
motion X(t) to its end-effector. Hence, it is necessary to
solve Eg.1l.1 for 4(t) such that a control system can be de-
signed which guarantees tracking of the desired joint motion
q(t). Solving the inverse kinematic problem becomes more
dramatic for on-line applications, when the end-effector's
motion is re-programmed on the basis of sensor information.

finding a closed-form analytical solution to Eg.1.1. Pieper
(2) shows that this is true only for nonredundant structures
(m = p) having simple geometries, In particular, a suffi-
cient condition is given which establishes that the
kinematic structure is solvable if it contains three consec-
utive joint rotation axes intersecting at a common point.
For instance, al}l the robots having spherical wrists are
solvable; there do exist, however, mechanical designs that
do not satisfy the above condition. In addition, if the
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| joint velocities are needed by the control servos, Eg.1.2

! must be solved for g, thus requiring also the inversion of

f the Jacobian matrix J(g). Therefore, the two shortcomings of

! the above technique, namely the solvability of the structure
and the computational burden, have inspired the research to
finding alternative solution techniques to the inverse
kinematic problem which be applicable to any kinematic
structure as well as be efficient from the computational
viewpoint.

The other approach to the problem, commonly followed in
the robotics literature, is based on the use of the inverse
of the Jacobian matrix in Eg.1.2. It does not require any
special assumption on the kinematic structure. In particu-
lar, it can be shown that the general solution to Eg.1.2,
for a kinematically redundant structure (m < n), is given by
(Whitney (3))

g=3"%+11-3N@i@ig, (1.3)

where J' is the (p x fp)_pMoore-Penrose pseudo-inverse matrix
defined as J' = J°(JJ7) %, I is the (n x n) identity matrix
and é? is an (n x 1) arbitrary joint velocity vector. It can
be noticed that the solution given in Eq.1.3 composes of the
least-square solution term of minimum norm Plus a homoge-
ngous solution term created by the projection operator (I -
J'J) which selects the components of in the null space
(space of redundancy) of the mapping %D The vector §. is
usually adopted to optimize some additional criterion, ®uch
as obstacle avoidance, limited joint range etc. (see Klein
(4) for a short survey on various choices of the vector goj.

1.2.2 Kinematic Singularities. The other drawback encoun-
tered in the solution to the inverse kinematic problem is
certainly the occurrence of a kinematic singularity. A joint
configuration is detected as a singular configuration if the
determinant of the Jacobian matrix in Eq.1.2 vanishes. In
case of redundant structures, a joint configuration is sin-
gular if the Jacobian matrix is not a full rank matrix. It
can be seen that at a singularity either one or more columns
of the Jacobian are null vectors or there is colinearity
between two or more columns. The former case corresponds to
having one or more joints whose motions do not produce any
change of the end-effector location, like the "shoulder sin-
gularity” in a PUMA-like geometry (Hollerbach (5)). This
type of singularity is the most critical one since it may
fall into the robot's reachable workspace, thus constituting
a problem for end-effector correct motion planning. On the
other hand, in the latter case two or more joint infinitesi-
mal motions produce the same infinitesimal change of the
end-effector location, like the "elbow singularity”™ in a
PUMA-like geometry (5). This kind of singularity is not as
bad as the former since in those particular configurations
the end-effector is at the boundaries of the robot's reach-
able workspace. Another singularity which usually occurs for
manipulators having a spherical wrist is known as "wrist
singularity" (5, Aboaf and Paul (6)), at which the wrist
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cannot accomodate rotations about one of its orientation
axes, which then becomes a degenerate axis.

The main problem concerned with a solution of the kind
of Eq.1.3 is that kinematic singularities are not avoided in
any practical sense, since the joint velocities are mini-
mized only instantaneously (Baillieul et al (7)) . Neverthe-
less, a solution based on Eqg.1.3 with singularity robustness
has been recently proposed by Nakamura and Hanafusa (8).

2. AN INVERSE KINEMATIC SOLUTION ALGORITHM WITH SINGULARI-
TY ROBUSTNESS

The inverse kinematic solution algorithm with singular-
ity robustness, which is the main contribution of this work,
is naturally derived from a general computational method
recently established in the literature (Balestrino et al
(9), Siciliano (10), Balestrino et al (11)) which is appli-
cable to any redundant and nonredundant robot geometry.
Hence, the next subsection is devoted to briefly recall that
general algorithm."

2.1 The General Inverse Kinematic Solution Algorithm

The inverse kinematic problem is solved by constructing
the dynamic system of Fig.2.1, whose input is the
end-effector target trajectory x(t) and whose outputs are
the corresponding joint position and velocity trajectories,
g(t) and g(t) respectively; K is a positive definite diago-
nal matrix.

Lemma. The dynamic system of Fig.2.1 assures that the
tracking error e(t) = %(t) - x(t) can be made arbitrarily
small by increasing the minimum element of K.

Proof. According to the Lyapunov direct method for the
analysis of the stability of nonlinear systems, define the
positive definite Lyapunov function

vie,t) = deT(t)e(t). (2.1)

Its time derivative results, via Eq.1.2 (dropping the time
dependence)

Vie) = &7

% - eTI(g)kIT(g)e. (2.2)
It can be recognized that G(g) is negative definite only
outside a region in the error space containing e = 0, which
is attractive for all trajectories. The maximum tracking
errors will depend directly on niu and inversely on the min-
imum element of . It must be emphasized that the
steady-state error (x = 0) is identically zero.

From the above lemma it follows that the application of
the dynamic system of Fig. 1 to solve the inverse kinematic
problem for a general structure is twofold. It can be used
off-line to make g(t) approach a desired constant solution q
to Eq.1.1, with g(0) # §, arbitrarily fast. It can be adopt-
ed on-line to guarantee that x(t) will track the desired
end-effector trajectory X(t) with an arbitrarily fast
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decaying error.

The advantages of this technigue can be summarized as:

a) it is applicable to any robot since it does not require
any special assumption regarding the kinematic struc-
ture,

b) it is computationally efficient since it is based only
on direct kinematic functions (f and J), generating
joint velocities at no additional cost,

c) the use of the transpose of the Jacobian may avoid
problems when kinematic singularities occur (this point
will be faced up in the following subsection),

d) given the initial configuration of the structure,
unigueness of the solution is assured as the algorithm,
generates adjacent solutions step-by-step.

The same algorithm can be partitioned into two stages to

better account for the particular geometry of the structure,

with the inherent advantage of further decreasing the compu-

tational burden ((9), (10), (11), De Maria et al (12),

Sciavicco and Siciliano (13,14,15).

2.2 Making the Algorithm Robust to Singularities

Based on the remarks of subsection 1.2.2, only
kinematic singularities that cause one column of the
Jacobian matrix of Eg.1.2 to vanish are considered in what
follows. Thus, assume that ii be the null column vector of
J. This implies that the motion of the corresponding joint
g. does not produce any change of the end-effector location.
Similarly, if the computational scheme of Fig.2.1 is adopted
to solve the inverse kinematic problem, it is easy to recog-
nize that there will be no motion at the joint gq.. This re-
sult is consistent with the mechanical interpreéation that
it is not worth moving the joint q..

The real drawback to the Bolution of the inverse
kinematic problem, however, occurs when the trajectory as-
signed to the end-effector passes in the proximity of a sin-
gularity. In that case, indeed, the norm of the vector j.
approaches zero and higher values for the correspondin
joint velocity q. are expected to allow the end-effector to
track the desired trajectory. On the other hand, from the
point of view of the scheme of Fig.2.1 with constant gains
in the matrix K, it happens that the weight of the tracking
error e(t) on the control g. is "masked" by the small value
of the norm of j., compare& to the other joints. This im-
plies that the J&int q. cannot move as fast as required by
the end-effector trajec%ory and the tracking error tends to
increase,

In order to overcome the above problem, here it is pro-
posed to adjust the elements k., of the matrix K of the
scheme of Fig.2.1 according to tHe current joint configura-
tion, such that the algorithm be robust to the occurrence of
kinematic singularities. The suggestion is to modify the
elements ki into

Ky /g (@) (2.3)




Achieving singularity robustness 153

which assures that, in the proximity of a singularity when
Ri;l takes a small value, only the weight for the control éi
xnéreases, guaranteeing a contained tracking error. Obvious=
ly, if the trajectory crosses the singular point, the above
weight is not allowed to take an infinitely large value. In
other words, there must be a numerical threshold for 131 so
as to avoid division by zero in Eq.2.3.

It has to be emphasized that, in light of the choice in
Eqg.2.3, the control at each joint becomes

. . .T
q; = (k; /035 (q) ije (2.4)

which corresponds to making the actual weight
quasi-independent (see the angle of the inner product Jse)
of the particular configuration g attained by the structfire
along the trajectory.

This point turns out to be advantageous for the
discrete-time implementation of the algorithm. It can be
recognized, indeed, that there does exist a maximum value
for the equivalent gains of K which depends inversely on the
sampling time. To this purpose, the above "normalization"
serves as a design tool to set the k.'s regardless of the
desired end-effector trajectory to tradk.

3. A PRACTICAL EXAMPLE

In order to show the effectiveness of the proposed in-
verse kinematic solution algorithm with singularity robust-
ness, a case study has been worked out. The robot prototype
DEXTER available at FIAR S.p.A., Italy (Fig.3.1) has been
selected. It has seven degrees of freedom (redundant) and a
PUMA-like geometry as regards the joints q,, g, and g,. Only
the first four joints are considered in thg twa sets af sim=-
ulations that follow. It is quite straightforward to recog-
nize that a shoulder singularity occurs at any point along
the axis of the shoulder joint gq..

In the first set, the slidiﬁg joint g, is assumed to be
blocked such that the structure be norredundant for an
end-effector positioning task. The desired trajectory is a
straight line parallel to the floor, 15 cm. away from the
above singularity axes. Fig.3.2a shows that the end-effector
position tracking error becomes considerably smaller if the
modification of the gains k,'s (Eg.2.3) occurs. The shoulder
joint g, anticipates its mdtion, according to the increased
sensitiVity to the tracking error (Fig.3.2b).

In the second set, g, is released such that the struc-
ture becomes redundant fo} the same kind of task as above.
The desired trajectory is a straight line parallel to the
floor, crossing the plane formed by the axes of the sliding
joint q, and the shoulder joint q,, with the peculiarity
that the trajectory does have a compbnent on the axis of g,
which is then required to slide. An improvement on tﬁe
tracking error can be seen (Fig.3.3a) as in the previous
case. In addition, the joint velocity ¢, decreases as all
the joints concur to better accomplish éhe required motion
of the robot's end-effector (Fig.3.3b).
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Fig.2.1 The closed-loop scheme of the inverse kinematic

solution algorithm.

Fig.3.1 The prototype robot DEXTER
(courtesy of FIAR S.p.A.)
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Fig.3.3 a) End-effector tracking error.
b) Sliding joint velocity q,.
1 - without gain adjustiﬁg,
2 - with gain adjusting.
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Fig.3.2 a) End-effector tracking error.
b) Shoulder joint velocity q,.
1 - without gain adjustina,
2 - with gain adjusting.
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