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INTRODUCTION 

The adoption of robot systems having multiple arms 
has lately been capturing the attention of an increas- 
ing number of robotics researchers. Several are the a p  
plications where cooperation may be requested, rang- 
ing from manipulation of large, heavy or non-rigid ob- 
jects to  space and underwater robotics. 
The cooperation can be successfully performed only 
when an effective coordination of the arms is realized. 
This demands for accurate synchronization of relative 
motions, solution of collision avoidance problems, ease 
of robot programming, coordinated control, etc. 
In the present work, we focus our attention on the me- 
chanics and control aspects of cooperative robot sys- 
tems. In particular, we are interested to  investigating 
the problem of dexterous reconfiguration for such sys- 
tems using proper manipulability indices. For the sake 
of exposition and interpretation of results, the study 
is focused on two-arm planar systems. 
An effective description of the cooperative task space 
is derived in terms of suitable absolute and relative 
task variables. The former are naturally expressed in 
a common base frame for the system while the latter 
are conveniently referred to  a reference frame attached 
to the object. 
A closed-loop inverse kinematics scheme, previously 
developed for single arms, is here properly adopted to  
solve the non-trivial problem of finding the joint vari- 
ables for the two-arm system when cooperative task 
space variables are assigned. In the case of kinematic 
redundancies, the scheme can also manage the intro- 
duction of additional constraint tasks. 
Manipulability indices can be utilized to impose con- 
venient constraints for redundant cooperative systems 
in order to determine optimal configurations to per- 
form the task. In particular, we consider the force 
manipulability ellipsoid that gives a measure of the 
ratio between resulting object forces and applied joint 
torques; we choose to  maximize this ratio along a given 
task space direction. 
A number of case studies are included to  analyze the 
performance of the solution. The unconstrained non- 
redundant system is solved first. Then, several types 
of redundancies are introduced by releasing one or 
more task space variables, and the system is recon- 
figured to more dexterous configurations to  execute 
the given task. 

TASK DESCRIPTION 

In order to fully describe a cooperative task for a two- 
arm robot system, different choices for the absolute 
and relative variables are possible [1,2]. In the remain- 
der, we restrict our analysis t o  three-degree-of-freedom 
planar arms; the cooperative task space is thus at  most 
siz-dimensional. 
Consider the two-arm robot system carrying an object 
depicted in Fig. 1. The configuration of the task de- 
mands for three variables to  describe the position and 
orientation of the object together with three variables 
to describe the relative posture of the two arms with 
respect to  the object. 
Our choice is to  select first the absolute position of a 
suitable point on the object; without loss of generality, 
we have taken the (2 x 1) vector 

1 
P a  = ,(PI + PZ) 

where p1 and pZ are the position vectors of the end- 
effectors of the two arms expressed in a common base 
frame (za,yb). Next, we assume that a reference 
frame (z,, yo) is fixed to  the object with origin in pa 
and zo-axis aligned with the vector w = pa - p1. 

Then, the absolute orientation of the object is de- 
scribed as the angle formed by the z,-axiS with the 
Zb-axis 

aa = atan2(w=, wy) (2) 

Notice that, with the above choice, we implicitly ex- 
clude the possibility of end-effector sliding on the o b  
ject, for which a moving object frame would result. 
Next, the relative variables must be specified. First, 
we consider the relative position of the two end- 
effectors described by the vector w. However, if w 
is conveniently expressed in the object frame, only the 
2, component of w is significant; this is consistent 
with using one scalar variable to  describe this portion 
of the task. Then 

pr = w, cos a, + wy sin a, (3) 

As for the remaining variables, we select the grasp 
angle of each arm relative to  the 2,-axis, Le. 

arl = a,  - a1 

arz = A + a,  - a2 

(4) 

( 5 )  
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where a1 and a2 represent the orientation angles of 
the two end-effectors with respect to the base frame; 
by the way, each angle is given by the sum of the three 
respective joint coordinates. 
We complete our kinematic description of the task by 
deriving the Jacobian matrices which characterire the 
dependence of the above-defined variables on all siz 
joint variables. To the purpose, let J1 and J2 indicate 
the (2 x 3) Jacobian matrices relative to p1 and pa. 
Then, for the absolute variables of the task we get 

where v = (wz + w;)-'[ wv 
On the other hand, for the relative variables of the 
task we get 

-w, I. 

Jpr = (- w, sin aa + w,, coa ao) J, 
+[cosaa Sinaaj[-Ji J2 j  (8) 

JarI=J,+[- l  -1 -1 O 0 O ]  (9) 
J a r z = J a + ( O  0 0 -1 -1 -11 (IO) 

INVERSE KINEMATICS SOLUTION 

task to be performed, proper f(q) and J(q) can be 
set up for use in the scheme baaed on relations (1-10); 
see the case studies in the following section for specific 
examples. 
In the case when the two-arm system is kinematically 
redundant with respect to the given task, an addi- 
tional constraint task can be introduced. We have 
chosen to locally maximbe the intersection of the 
force manipulability ellipsoid [8,9] along a given task 
space direction [lo]; this corresponds to minimising 
the scalar quantity 

c(q) = UTJo(q)J%)U (12) 

where u is the (2x1) unit vector identifying the chosen 
direction in the base frame and Jf b the (6 x 2) ob- 
ject Jacobian transpose representing the mapping be- 
tween resulting forces on the object and applied joint 
torques [ll]. It can be shown that in our case it is [12] 

In order to embed the constraint (12) in solution (ll), 
we select the gradient type law 

40 = -keVqc(q) (14) 

where k. is a positive acalar. 

The inverse kinematics problem has been solved for a 
general single manipulator by adopting c l d - l o o p  al- 
gorithmk schemes that are baaed on the computation 

CASE 

of either the transpose or the inverse of the manipu- 
lator Jacobian [3,4l. Theae schemea also allow to ac- 
count for additional constraint tasks when kinematic 
redundancy is available [S,S,71. 
To illustrate the method, let q denote the (n x 1) vec- 
tor of joint variables, x the (m x 1) vector of end- 
effector task Variables (m < n), f(q) the direct kine- 
matic function, J(q) the w c i a t e d  Jacobian ma- 
if denotes the desired task space trajectory, the 
general joint velocity solution can be presented in the 
form 

4 = J + ( q ) l ~ ~ ~ ( ~ - f ( q ) ) l - l ~ - J + ( q ) J ( q ) l q ~  (11) 

where Jt  denotes a pseudoinverse of J ,  K is a suitable 
positive diagonal feedback matrix and Q is an arbi- 
trary vector of joint velocities which, projected onto 
the null space of the Jacobian, can be used to satisfy a 
constraint task without affecting the end-effector task. 
At this point, the task description introduced in the 
previous section can be effectively used to devise in- 
verse kinematics solutions in the framework of soh- 
tion (11). In fact, the kinematic mappings (1-5), to- 
gether with the relative Jacobians (&lo), are func- 
tionally expressed in terms of the joint variables of 
the two arms. Then, depending on the cooperative 

The considered cooperative system is constituted by 
two equal tluee-degreen-of-freedom planar arm whoae 
links are Im long. The carried object is a disk of 
radius 0.6 m . 
In order to test the effectiveness of the inverse kine- 
matia solution (11) for the two-arm system, a non- 
redundant caae b analyred first. A full six-dimensional 
task space is considered and all six joint variables are 
needed to emure proper task execution; consequently, 
the joint velocity null space is empty and the second 
term of solution (11) is dropped. The initial config- 
uration of the cooperative system is shown in Fig. 2; 
the corresponding values of the task variables are 

pr = 1 a,l = 0 ar2 = 0 

The task is to achieve the following values for the task 
variablea (with given smooth trajectories) 

% 
pr =0.8 arl = -- .x 

am=- 4 
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Figure 2 shows the resulting final configuration; Fig- 
ure 3 reports the obtained task-space trajectories 
which confirm the satisfactory performance of the 
scheme. 
The inclusion of a constraint task is investigated in 
the following examples; to the purpose, a cooperative 
task space of reduced dimension has to be considered 
to provide a non-empty joint velocity null space. The 
initial configuration in all cases has been chosen so 
that an isotropic force ellipsoid is obtained; the values 
of the task variables are 

T 
pr = 1 arl = 0 a,2 = - 

2 
It is required that some task space variables remain 
constant while the degrees of freedom gained with 
the exclusion of the remaining variables are exploited 
to reconfigure the cooperative system minimising the 
Constraint (12) with 

The assigned initial and obtained final configurations 
and respective force manipulability ellipsoids are illus- 
trated for each example together with the time history 
of the constraint function. 
In Figs. 4-5 the object orientation a, is free: The 
constraint has been minimized within the limits of 
the available cooperative system workspace for the as- 
signed task; notice that the left arm cannot further 
move without changing the grasp angle or loosing the 
grasp. 
In Figs. 6-7 the grasp angles a,1 and ar2 are both 
free, in Figs. 8-9 the absolute position pa is free, in 
Figs. 10-11 all the orientation angles a,, a,1 and a,a 
are free: With respect to the previous example, the 
workspace limits are not reached and the reconfigu- 
ration is arrested as soon as a local minimum for the 
constraint is achieved. 
In Figs. 12-13 the absolute position pa and the grasp 
angles a,l and a,2 are free: In this particular case, 
the system is allowed to  reach the global minimum 
for the constraint which corresponds to a degenerate 
force ellipsoid; in fact, the final configuration of the 
arms is such that the system can sustain object forces 
of any magnitude along the given horizontal task space 
direction. 

CONCLUSION 
An inverse kinematics solution scheme has been de- 
vised for a two-arm redundant cooperative system 
with a force manipulability ellipsoid constraint. The 

developed case studies have demonstrated that the so- 
lution is very flexible as it can handle different types 
of redundancies. Nonetheless, it should be remarked 
that the inverse kinematics of more complex multi- 
arm systems can be solved with the proposed scheme 
if an effective description of the cooperative task is 
provided. Moreover, other kinds of constraints can 
be considered in the same framework as long as they 
can be functionally characterized in terms of the joint 
variables of the overall system. 
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Fighre 1. Schematic of two-arm cooperative ryrtem 

br M 

F-3. Obtained task rpace trajectona for the 
unconstrained cane 

Figan 4. Initial and 6nal configurations with force 
ellipmido (a. free) 

Figure 2. Initial and final configurations for the u- 
constrained cane Figure 5. Time history of constraint value (a,, frw) 
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Figure 6. Initial and final configurations with force 
ellipsoids (a,l and a,2 free) 
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Figure 10. Initial and final configurations with force 
ellipsoids (aa, a,l and arP free) 
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Figure 7. Time history of constraint value (a,1 and 
arg free) 
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Figure 11. Time hiato of constraint value (aa1 0,1 
and a,z f rey  

Figure 8. Initial and final configurations with force 
ellipsoids (pa free) 

Figure 12. Initial and final configurations with force 
ellipsoids (pa, a,l and a,a free) 
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Figure 9. Time history of constraint value (pa free) Figure 13. Time histo of constraint value (pa, a,l 
and carp f rey  


