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INTRODUCTION
During the execution of a surgical procedure, in Minimally
Invasive Robotic Surgery (MIRS), two or more tools can
come dangerously close to each other. The surgeon has a
limited vision on the surgical site, which reduces dexterity
and increases the cognitive workload. Moreover, collisions
can cause tools or tissues damage. Haptic feedback could
significantly affect the performances of novice surgeons,
reducing training duration and improving the effectiveness
of the procedures. A large number of surgical tasks can
benefit from the introduction of haptic feedback, such as
robotic polypectomy [1]. Collisions between surgical tools
in MIRS can be avoided with the application of shared
control techniques, such as Virtual Fixtures. Forbidden
Region Virtual Fixtures (FRVF) can be used to restrict
the motion of the robot’s tool through a repulsive force
rendered to the surgeon. The da Vinci Research Kit (dVRK)
is already used to test VF-based methods [1] [2]. Since
dVRK robot joints are driven through cables that introduce
elasticity, backlash and nonlinear friction [3], tools pose
obtained through direct kinematics is affected by errors.
Therefore, to ensure a correct application of the VF, a
method for tool tracking is strictly needed. In our work,
we propose a surgical tool collision-avoidance method,
to improve safety in surgical procedures. The method is
tested on the dVRK and includes marker-less surgical
tool tracking using an Extended Kalman Filter (EKF) that
couple vision and kinematics information to enhance the
robustness of VF application.

MATERIALS AND METHODS
The dVRK robot is composed of two Patient Side Manipu-
lators (PSMs) and an Endoscope Camera Manipulator
(ECM) commanded by two Master Tool Manipulators
(MTMs). The surgical scene can be seen by the surgeon
thanks to an endoscope, including a stereo camera with
5 mm baseline. Each PSM has a reference base frame,
F1 : ($1−G1H1I1), positioned at the PSM Remote Center
of Motion (RCM). The direct kinematics of the dVRK
allows computing the current pose of each gripper frame
F6 : ($6 − G6H6I6) respect to the corresponding base
frame. The tools tip frames FC : ($C−GC HC IC ) of each PSM
have their origins in the PSM tool tips. The method directly
uses laparoscopic images to track the surgical instrument.
A deep learning solution for instrument semantic binary
segmentation is employed. The system adopts the U-Net
modification proposed in [4], called TernausNet that is
trained using the dataset provided for MICCAI 2017
Endoscopic Vision Sub-Challenge: Robotic Instrument
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Fig. 1: Segmentation method: (a) Original frame; (b) Binary mask; (c)
Point identification in the image plane; (d) Reference frame definition.

Segmentation. The tool tip position on the image plane
is computed from the binary mask, reducing the search
area range re-projecting the tip kinematic position on the
image plane. Then, the 3D position of the PSM2 tip,
expressed in the camera frame F2 , is reconstructed by
using a triangulation method with direct linear transform.
The tool orientation is computed solving PnP problem,
which allows computing the orientation of the object from
a set of = correspondences between 3D points and their
2D projections. For the estimation and tracking of the
instrument pose, the Extended Kalman Filter (EKF) is
used, combining visual information from the endoscope
with the robot kinematics. The prediction step provides a
preliminary estimation of the instrument pose through the
linear and angular velocities of the gripper provided by the
manipulator kinematics. Then, the vision-based estimated
pose is used in the filter correction step. The filter provides
an estimate of the tool tip pose ' = [ pC , qC ]) , being pC
the true tool position, and qC = [[C , & C ]) its quaternion-
based true orientation in the base frame F1 . The process
dynamics for the state vector ' and the measurement model
are given by: 
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where [v6,86]) are the linear and angular velocity of the
gripper frame, Y(·) is the skew-symmetric operator, r6C is
the position vector of the tool tip respect to the gripper,
n =

[
n? , n@

]) ∼ N (0, T) and m ∼ N (0,S) are the
process and measurement noise respectively and
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Then, the control and measurement matrices used in the
EKF implementation are easily computed:
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The collision avoidance between the two tools is ensured
by the application of a FRVF. To this purpose, the VF is
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Fig. 2: First evaluation experiment. Duration: 20 seconds. Time histories
of: (Blue) Distance between surgical tools; (Red) Related estimated force
norm.

defined as the swept surface along one of the tool axis.
The VF has a cylindrical shape with a radius which is
double the tool radius. The minimum distance between the
PSM tool tip position x and the cylindrical FRVF of the
other tool corresponds to the length of the line segment
which joins perpendicularly the point to the axis minus the
radius of the cylinder. A constraint enforcement method is
defined, consisting in the application of a spring-damper
like force:

f E 5 (x̃, ¤̃x) = −QE 5 x̃ − JE 5
¤̃x (4)

where x̃ = x3 − x is the displacement between the point
x3 , belonging to the constraint geometry having minimum
distance from x. The matrices QE 5 and JE 5 are properly
designed diagonal and positive definite. The external force
is not directly measurable, it is estimated by resorting
to a non-linear dynamic observer [2]. Finally, the force
imposed by the Virtual Fixture is mapped on the MTM, that
is controlled through an impedance controller, to generate
the force cues.

RESULTS
The collision avoidance strategy is evaluated in two differ-
ent tasks. During the first evaluation test, the PSM1 tool is
fixed and the PSM2 is moved by the user in teleoperation
mode towards PSM1. Figure 2 shows the distance between
the two surgical tools, computed considering the proposed
tracking method, and the related repulsive haptic force
norm rendered to the user through the master side (MTM)
during the task. The maximum reached force is 3.2 N.
The second evaluation test consists in a human subject
study to show significant differences in performance caused
by the introduction of force feedback. The study involves
12 subjects divided into two groups, 6 experienced and
6 novice surgeons, based on self-evaluation about their
experience in the use of daVinci Robotic system for
minimally invasive surgical procedures. During each test,
the subject keeps the PSM1 centered in the middle of
a circle with a diameter of 20 mm. Meanwhile, the
PSM2 has to follow the circular path for 270◦ from a
definite starting point. In the first experiment, the subjects
perform the test 5 times moving the surgical tool in free

TABLE I: Maximum force and t-test results on minimum distance for
novice and expert users. The result of the test is 1 if the test rejects the
null hypothesis at the 5% significance level, and 0 otherwise.

Novice test p �" [N] Expert test p �" [N]
1 1 0.0044 2.4416 1 0 0.1352 3.4527
2 1 0.0127 3.0749 2 0 0.0856 2.8175
3 1 0.0030 3.3411 3 0 0.8286 3.5239
4 1 0.0219 2.8188 4 0 0.8757 2.6180
5 1 0.0206 3.9998 5 0 0.1140 3.0035
6 1 0.0012 3.4170 6 0 1 2.8800

motion and 5 times with the proposed collision avoidance
constraint applied. The minimum distance between the
tools is considered as performance parameter and it is
computed using the proposed tracking method, in the VF
constraint test the maximum force felt during the task is
also computed. To demonstrate the statistical relevance
of the results, a comparison is made between the mean
values of minimum distance, through a statistical unpaired
t-test, with a significance level U = 0.05. As presented in
Table I, the test shows statistically significant differences
between the means for all subject in the novice group and
an increase in the minimum distance values of ∼ 10% in
collision tests with respect to free-hand tests.

CONCLUSIONS AND DISCUSSION
This paper introduces a method based on haptic guidance
and virtual fixtures that allows avoiding surgical tools col-
lision in MIRS. A marker-less algorithm allows estimating
the PSM position and orientation, using kinematic and
visual information. The PSM estimated pose is used to
generate a FRVF, that aims to avoid collision between
the two instruments through a repulsive force felt at the
MTM during the surgical task execution. The proposed
strategies are evaluated through multiple experiments on
dVRK, showing good results in improving novice surgeon’s
performance. Therefore, the method can be considered
effective both in a training stage of novice surgeon, as
well as when the level of expertise increases. The goal
for future works is to improve the accuracy of the tool
pose estimation. For this purpose, more advanced methods
for hand-eye calibration and 3D reconstruction will be
considered. Moreover, the application of the method can be
extended to the collision avoidance of both PSMs and the
ECM, when automatic movement of the ECM is imposed.
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