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1 Introduction

From a mechanical viewpoint, a robotic system is in general constituted by
a locomotion apparatus (legs, wheels) to move in the environment and by a
manipulation apparatus to operate on the objects present in the environment.
It is then important to distinguish between the class of mobile robots and the
class of robot manipulators.

The mechanical structure of a robot manipulator consists of a sequence of
links connected by means of joints. Links and joints are usually made as rigid
as possible so as to achieve high precision in robot positioning. The presence
of elasticity at the joint transmission or the use of lightweight materials for the
links poses a number of interesting issues which lead to separating the study of
flexible robot manipulators from that of rigid robot manipulators; the latter are
implicitly meant here by using the term “robots” all throughout.

This contribution is aimed at surveying the fundamentals of robot kinemat-
ics. Basic mathematical tools such the rotation matrix, the unit quaternion and
the Euler angles are briefly recalled. They serve to describe the orientation of
the robot’s end effector which, together with the position, can be expressed as
a function of the joint variables. This is the direct kinematics equation which
is derived through a systematic procedure based on the use of homogeneous
transformations and the so-called Denavit-Hartenberg convention. The inverse
kinematics problem is considered and closed-form solutions are found for sim-
ple geometries. Further, a treatment of differential kinematics is provided that
is based on the robot’s Jacobian (geometric or analytical). Specific attention
is paid to the occurrence of singularities or redundancy in the context of the
differential kinematics inversion. The material ends with the presentation of
inverse kinematics algorithms with special concern to the definition of the end-
effector orientation error; both a pseudoinverse and a transpose of the Jacobian
are considered.

2 Description of Orientation

Robot manipulation tasks are typically specified in terms of the position and
orientation of an end-effector frame with respect to a base frame. Position
is uniquely described by the Cartesian coordinates of the origin of the end-
effector frame, whereas various representations of orientation exist. Therefore,
as a natural prelude to deriving the direct kinematics equation of a robot, some
basic concepts about the orientation of a rigid body in space are briefly recalled
in the sequel.



2.1 Rotation Matrix

The location of a rigid body in space is typically described in terms of the (3x 1)
position vector p and the (3 x 3) rotation matriz R describing the origin and
the orientation of a frame attached to the body with respect to a fixed reference
frame, i.e.

R=[z y 2] (1)

where x,y, z are the unit vectors expressing the direction cosines of the axes
of the body frame with respect to the reference frame. It is straightforward to
verify that the matrix R is orthogonal, meaning that

R'R=1 (2)

and thus implying the useful result that the transpose of a rotation matrix is
equal to its inverse, i.e. RT = R~'. Frame orientation is conventionally taken
to be left-handed.

A rotation matrix possesses three equivalent geometrical meanings:

e It describes the mutual orientation between two coordinate frames (as
above).

e It represents the coordinate transformation between the coordinates of a
point expressed in two different frames (with common origin).

e It is the operator that allows rotating a vector in the same coordinate
frame.

Elementary rotations are those made about one of the coordinate axes, i.e.

[cosa —sina 0]

Rx(a) = |sina  cosa O (3)
| O 0 1]
[ cosp 0 sinpg]

Ry(B)=1 0 1 0 (4)
| —sin3 0 cosf |
(10 0 ]

Rz(y) =10 cosy —siny (5)
|0 siny  cosy |

denote the elementary rotation matrices with respect to X,Y, Z axes. These are
useful to describe rotations about an arbitrary axis in space, as shown below.

Rotation matrices between multiple frames —say frames 0,1,2— can be
nicely composed according to the simple rule

‘R, =°R,'R;, (6)



where the notation / R; denotes the rotation matrix of frame i with respect to
frame 7, and successive rotations are composed with respect to the axes of the
current frame. Note also that ‘R; = (R;)".

It is often desired to express a rotation of a given angle about an arbitrary
axis in space. Let 7 = [r, 7, 7.]T be the unit vector of a rotation axis with
respect to the reference frame. In order to derive the rotation matrix R(¢,r)
expressing the rotation of an angle ¥ about axis r, it is convenient to compose
elementary rotations about the coordinate axes of the reference frame. The
angle is taken to be positive if the rotation is made counter-clockwise about
axis r.

3

Figure 1: Rotation of a given angle about an arbitrary axis.

As shown in Fig. 1, a possible solution is obtained through the following
sequence of rotations:

e align Z with r, which is obtained as the sequence of a rotation by « about
Z and a rotation by 8 about Y;

e rotate by ¥ about Z;

e realign with the initial direction of Z, which is obtained as the sequence
of a rotation by —f about Y and a rotation by —a about Z.

The resulting rotation matrix is

R(Y,7) = Rz(a)Ry (B)Rz (V) Ry (—8)Rz(—a). (7)



By using the following relations:

. Ty Tz
sina = ——— cosSq = ————
[r2 4 g2 [r2 4 g2
Ty +Ty T+ Ty
= . r2 42 _
sinf = /13 + 713 cosff=r,.

the rotation matrix of the angle/azis description in (7) can be expressed as

r2(1 —cy) + ¢y T2y (1 —cg) — 1389 Tars(1—cy) +Tysy
R(W,r) = | rory(1 —cy) + 7259 rf}(l —cy)+ ey ryrs(1 —cy) — 1289
rarz(1—cy) —rysy Tyr(1—cy) + 189 r2(1—cy) +cp

(8)
where standard abbreviation for cos? and sin ¢ have been used. Equation (8)
can be cast in the more compact form

R(W,7) = coI + (1 —cy)rr’ —s58(r) 9)

where I is the (3 x 3) identity matrix and S(+) is the matrix operator performing
the cross product between two (3 x 1) vectors, i.e. S(a)b=a x b

Although the axis can be arbitrary, the three components of r are con-
strained by the unit norm condition

rir=1. (10)

Also, it is clear that R(—9,—r) = R(¥,r), i.e. a rotation by —¢ about —r
cannot be distinguished from a rotation by ¢ about r; hence, for ¥ = 7 the
representation is not unique.

The angle and axis corresponding to a given rotation matrix

™1 Ti2 T13
R = T21 29 T23 (11)
31 T32 T33
are:

9 = cos L <7“11 + rog + 133 — 1)

2
T32 — T23

T = 5 sin ¢ T13 —T31 (12)
T21 —T12

for sind # 0. Instead, if sin?Y = 0, then it is necessary to refer directly to the
particular expressions attained by R and find the solving formulae in the two
cases: if ¥ = 0 the unit vector is arbitrary (no rotation has occurred), while
if ¥ = 7, the above nonuniqueness problem is encountered. This drawback can
be overcome by adopting a different four-parameter description; namely, the
unit quaternion which is introduced next.



2.2 Unit Quaternion

With reference to the above angle/axis description of orientation, the wunit
quaternion (viz. Euler parameters) is defined as:

Q={n.e} (13)
where
= oS v
TR
€ = sin 57 (14)

with n > 0 for ¢ € [, 7]; i is called the scalar part of the quaternion while &
is called the vector part of the quaternion.
The constraint (10) transforms into

¥ +ele=1. (15)

It is worth remarking that, differently from the angle/axis description, a rotation
by —1 about —r gives a vector part of the quaternion of opposite sign from the
one associated with a rotation by 1 about 7, while the scalar part does not
change; this solves the above nonuniqueness problem. The rotation matrix
corresponding to a given quaternion is

R(n,e) = (1> —Te)I + 2ee™ — 28 (e). (16)

On the other hand, the unit quaternion corresponding to a given rotation
matrix (11) is

1
n= 5\/7“11 + 1799 + 133+ 1

%sgn(rgg —Ta3)\/r11 — 22 — 733 + 1
e = | 3sgn(riz3 —rs1)V/rs —ra3 — 7111 + 1 | . (a7
55gn(ra1 — 112)V/ras — 11 — 122 + 1

2.3 Euler Angles

Rotation matrices in general give a redundant description of frame orientation;
in fact, they are characterized by nine elements which are not independent but
related by six constraints due to the orthogonality conditions in (2). Even
in the case of describing orientation in terms of rotation about an arbitrary
axis, or else a unit quaternion, a representation in terms of four parameters
is obtained. These components are not independent but are constrained by



the either condition (10) or condition (15). This implies that the actual free
parameters to describe orientation are three.

A minimal representation of orientation can be obtained by using a set of
three Fuler angles ¢ =[a [ w]T. Among the 12 possible definitions of Euler
angles, without loss of generality, the XY Z representation is considered leading
to the rotation matrix

R(p) = Rx(a)Ry (B)Rz(7)
C3Cy —C3Sy S
=1 85453Cy +CaSy —S5a535y +CaCy —5aC3 | . (18)
[—cas[;cy + SaSy  CaS3Sy + SaCy CaCp J

The set of the Euler angles corresponding to a given rotation matrix (11) is

a = Atan2(—r23, 1“33)

B = Atan2 <r13, \/73 + r%2>

v = Atan2(—ry2,711) (19)
with § € (—n/2,7/2), whereas the solution is

o = Atan2(r23, —1“33)

B = Atan2 <r13, —\/r3 + r%2>

v = Atan2(ry2, —711) (20)

with § € (7/2,3m/2); the function Atan2(y,z) computes the arctangent of the
ratio y/z but utilizes the sign of each argument to determine which quadrant
the resulting angle belongs to.

Solutions (19) and (20) degenerate when § = +m/2; in this case, it is possible
to determine only the sum or difference of o and +, i.e.

o+ vy = Atan2(r21, 1“22) (21)

where the plus sign applies for § = +7/2 and the minus sign applies for g =
—7/2.

3 Direct Kinematics

A robot manipulator consists of a kinematic chain of n + 1 links connected
by means of n joints. Joints can essentially be of two types: revolute and
prismatic; complex joints can be decomposed into these simple joints. Revolute
joints are usually preferred to prismatic joints in view of their compactness and
reliability. One end of the chain is connected to the base link to which a suitable



base frame is attached, whereas an end effector is connected to the other end
and a suitable end-effector frame is attached. The basic structure of a robot
is the open kinematic chain which occurs when there is only one sequence of
links connecting the two ends of the chain. Alternatively, a robot contains a
closed kinematic chain when a sequence of links forms a loop. In Fig. 2, an
open-chain robot manipulator is illustrated with conventional representation of
revolute and prismatic joints.

Figure 2: Schematic of an open-chain robot manipulator with base frame and
end-effector frame.

Direct kinematics of a robot consists of determining the mapping between
the joint variables and the position and orientation of the end-effector frame
with respect to the base frame.

3.1 Homogeneous Transformation

As discussed above, the position of a rigid body in space is expressed in terms
of the position of a suitable point on the body with respect to a reference frame
(translation), while its orientation is expressed in terms of the components of
the unit vectors of a frame attached to the body —with origin in the above
point— with respect to the same reference frame (rotation).

The complete coordinate transformation between two frames —say frames
0,1—is given by composing the translation “p; between the origins of the frames
and the rotation ° R; between the axes of the frames into a (4 x 4) homogeneous



transformation matrix

0 0
0/111 — Rl D1 ) (22)

0O 0 0 1

Similarly to the composition of rotations expressed by (6), a sequence of co-
ordinate transformations from frame 0 to frame n can be composed as in the
product

op, =T, ... .77 T, (23)

where =T} denotes the homogeneous transformation expressing the position
and orientation of frame ¢ with respect to frame i — 1. The relationship (23) is
the basic tool to deriving the direct kinematics equation of a robot.

3.2 Denavit-Hartenberg Convention

An effective procedure for computing the direct kinematics function for a gen-
eral robot is based on the so-called modified Denavit-Hartenberg convention.
According to this convention, a coordinate frame is attached to each link of the
chain and the overall transformation matrix from link 0 to link n is derived by
composition of transformations between consecutive frames. With reference to
Fig. 3, let joint 7 connect link 2 — 1 to link i, where the links are assumed to be
rigid; frame 4 is attached to link 7 and can be defined as follows.

e Choose axis Z; aligned with the axis of joint 4.

e Choose axis X; along the common normal to axes Z; and Z;;; with di-
rection from joint ¢ to joint i + 1.

e Choose axis Y; so as to complete a right-handed frame.

Once the link frames have been established, the position and orientation of
frame i with respect to frame i — 1 are completely specified by the following
kinematic parameters:

«; angle between Z; ; and Z; about X;_; measured counter-clockwise,
{; distance between Z; 1 and Z; along X; 1,
¥; angle between X; ; and X; about Z; measured counter-clockwise,

d; distance between X;_; and X; along Z;.

Let Rot(K,0) (Trans(K,J)) denote the homogeneous transformation ma-
trix expressing the rotation (tramslation) about (along) axis K by an angle



JOINT 1—1

JOINT 1

JOINT 7+1

Figure 3: Kinematic parameters with modified Denavit-Hartenberg convention.

(distance) §. Then, the coordinate transformation of frame ¢ with respect to
frame i —1 can be expressed in terms of the above four parameters by the matrix

=1
1

Rot(X, a;)Trans(X, ¢;)Rot(Z,9;) Trans(Z, d;)

r cosv; —sin; 0 'z
cosq;sint; cosa;cosd; —sinq; —d;sina;
sina;sind; sina;cosd;  cosa; d; cos a;

L 0 0 0 1

-1 -1
TR, s

(24)

LO 0 0 1

where "1 R; is the (3 x 3) matrix defining the orientation of frame i with respect
to frame i — 1, and *~!p; is the (3 x 1) vector defining the origin of frame i with
respect to frame i — 1.

Dually, the transformation matrix defining frame ¢ — 1 with respect to frame

i is given by

‘T, | = Trans(Z, —d;)Rot(Z, —9;)Trans(X, —¢;)Rot(X, —a;)

10



—{; cosY;

iilR;-I‘ {; sin ¥;
— A (25)
0 0 0 1

Two of the four parameters (¢; and «;) are always constant and depend
only on the size and shape of link 7. Of the remaining two parameters, only
one is variable (degree of freedom) depending on the type of joint that connects
link 7 — 1 to link 4. If ¢; denotes joint ¢ variable, then it is

¢ = &0 + &ids (26)
where & =1 —&;, i.e.
e & =0 if joint 7 is revolute (q; = V¥;),
e & = 1if joint 7 is prismatic (q; = d;).
In view of (26), the equation
3 = &V + &ids (27)

gives the constant parameter at each joint to add to «; and /;.

The above procedure does not yield a unique definition of frames 0 and n
which can be chosen arbitrarily. Also, in all cases of nonuniqueness in the
definition of the frames, it is convenient to make as many link parameters zero as
possible, since this will simplify kinematics computation. A number of remarks
are in order.

e A simple choice to define frame 0 is to take it coincident with frame 1
when ¢; = 0; this makes a; = 0 and ¢; =0, and q; = 0.

e A similar choice for frame n is to take X, along X,,_; when ¢, = 0; this
makes g, = 0.

e If joint 4 is prismatic, the direction of Z; is fixed while its location is
arbitrary; it is convenient to locate Z; either at the origin of frame i — 1
(¢; = 0) or at the origin of frame i +1 (¢;11 = 0).

e When the joint axes ¢ and ¢ + 1 are parallel, it is convenient to locate X;
so as to achieve either d; = 0 or d;;; = 0 if either joint is revolute.

In view of (23), by composition of the individual link transformations, the
coordinate transformation describing the position and orientation of frame n
with respect to frame 0 is given by

°T,(q) = "Ti(q1)' To(q2) - .. " " Tu(gn), (28)

11



where g denotes the (n x 1) vector of joint variables. In order to derive the
direct kinematics, two further constant transformations have to be introduced;
namely, the transformation from the base frame b to frame 0 (°Tp) and the
transformation from frame n to the end-effector frame e ("T,), i.e.

"T.(q) = "T,°Tn(q)"T.

b

n.(q) Pe(q) (29)

0 0 0 1

where the normal, sliding and approach unit vectors m, s, a have been formally
introduced (Fig. 2). Subscripts and superscripts can be omitted when the rele-
vant frames are clear from the context.

The terminology “modified” Denavit-Hartenberg convention stems from the
fact that, in the “classical” convention, axis Z; is aligned with the axis of joint
i+ 1 and the kinematic parameters differ accordingly.

As an example of open-chain robot, consider the anthropomorphic robot.
With reference to the frames illustrated in Fig. 4, the Denavit-Hartenberg pa-
rameters are specified in Tab. 1.

1] 0 0 |qi] 0
2 7T/2 0 q2 0
3 0 83 qs 0
4 —7T/2 0 q4 d4
50 7/2 | 0|g | O
6| —7/2|0 | g | O

Table 1: Denavit-Hartenberg parameters of the anthropomorphic robot.

Computing the transformation matrices in (24) and composing them as
in (28) gives

0 0 0

0
0T = Ne "S¢ A6 D6 (30)
0 0 0 1
where
o 1 (02Z3 - 523d4)

Pe = | s1(cals — s23d4) (31)
52d3 + co3dy

12
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/ Xo Xy Xe
E/ 3

Figure 4: Anthropomorphic robot with frame assignment.

for the position, and

C1 (023(040506 - 8486) - 5238506) - 81(840506 + 0436)
ng = | s51(cas(cacsce — S456) — $2355¢6) + C1(54¢5¢6 + C456) (32)
sa3(cacsce — S486) + C2355C6

0

c1(—cas(cacsse + s4c6) + 5238586) + $1(S4C586 — C€4C6)
Vs = | 54 (—cas(cacsse + S4ca) + $238586) — €1(84¢586 — Cace) (33)
—523(C4¢586 + 84C6) — 235556

—ci(ca3cass + S23C5) + 515455
ag = —51(0230455 + 82305) — (18485 (34)
—823€485 + C23C5

0

for the orientation, where ¢; = cos®;, s; = sind;, cag = cos(¥o + ¥3) and
S23 = SiIl('l92 + '193)

13



3.3 Joint Space and Task Space

If a task has to be assigned to the end effector, it is necessary to specify both
end-effector position and orientation. This is easy for the position p.. Instead,
specifying the orientation through the unit vector triple (n., s., a.) is difficult,
since their nine components must be guaranteed to satisfy the orthonormality
constraints imposed by (2). Even with a four-parameter description of orienta-
tion, still one constraint in the form either (10) or (15) should be satisfied.

On the other hand, if a minimal representation is adopted in terms of the
Euler angles describing the orientation of the end-effector frame with respect to
the base frame, a suitable (m x 1) vector can be considered as

T = [pE], (35)

Pe

where p. describes the end-effector position and ¢, its orientation. This repre-
sentation of position and orientation allows the description of the end-effector
task in terms of a number of inherently independent parameters. The vector @
is defined in the space in which the robot task is specified; hence, this space is
typically called task space (operational space). The dimension of the task space
is at most m = 6, since 3 coordinates specify position and 3 angles specify orien-
tation. Nevertheless, depending on the geometry of the task, a reduced number
of task space variables may be specified; for instance, for a planar robot it is
m = 3, since two coordinates specify position and one angle specifies orientation.

On the other hand, the joint space (configuration space) denotes the space
in which the (n x 1) vector of joint variables g is defined. Accounting for
the dependence of position and orientation from the joint variables, the direct
kinematics equation can be written in a form other than (24), i.e.

z = k(q). (36)

It is worth noticing that the explicit dependence of the function k(q) from the
joint variables for the orientation components is not available except for simple
cases. In fact, on the most general assumption of a six-dimensional task space
(m = 6), the computation of the three components of the function ¢.(g) cannot
be performed in closed form but goes through the computation of the elements
of the rotation matrix.

The notion of joint space and task space naturally allows introducing the
concept of kinematic redundancy. This occurs when the dimension of the task
space is smaller than the dimension of the joint space (m < n). Redundancy
is, anyhow, a concept relative to the task assigned to the robot; a robot can be
redundant with respect to a task and nonredundant with respect to another,
depending on the number of task space variables of interest.

For instance, a three-degree-of-freedom planar robot becomes redundant if
end-effector orientation is of no concern (m = 2, n = 3). Yet, the typical

14



example of redundant robot is constituted by the human arm that has seven
degrees of freedom: three in the shoulder, one in the elbow and three in the
wrist, without considering the degrees of freedom in the fingers (m =6, n = 7).

4 Inverse Kinematics

The direct kinematics equation, either in the form (24) or in the form (36),
establishes the functional relationship between the joint variables and the end-
effector position and orientation. Inverse kinematics concerns the determination
of the joint variables g corresponding to a given end-effector position p. and
orientation R.. The solution to this problem is of fundamental importance in
order to translate the specified motion, naturally assigned in the task space,
into the equivalent joint space motion that allows execution of the desired task.

With regard to the direct kinematics equation (24), the end-effector position
and rotation matrix are uniquely computed, once the joint variables are known.
In general, this cannot be said for eq. (36) too, since the Euler angles are not
uniquely defined. On the other hand, the inverse kinematics problem is much
more complex for the following reasons.

e The equations to solve are in general nonlinear equations for which it is
not always possible to find closed-form solutions.

e Multiple solutions may exist.

o Infinite solutions may exist, e.g. in the case of a kinematically redundant
robot.

e There might not be admissible solutions, in view of the robot kinematic
structure.

For what concerns existence of solutions, this is guaranteed if the given end-
effector position and orientation belong to the robot workspace.

On the other hand, the problem of multiple solutions depends not only on
the number of degrees of freedom but also on the Denavit-Hartenberg param-
eters; in general, the greater is the number of nonnull parameters, the greater
is the number of admissible solutions. For a 6-degree-of-freedom robot without
mechanical joint limits, there are in general up to 16 admissible solutions. This
occurrence demands some criterion to choose among admissible solutions.

The computation of closed-form solutions requires either algebraic intuition
to find out those significant equations containing the unknowns or geometric
intuition to find out those significant points on the structure with respect to
which it is convenient to express position and orientation. On the other hand,
in all those cases when there are no —or it is difficult to find— closed-form
solutions, it might be appropriate to resort to numerical solution techniques;
these clearly have the advantage to be applicable to any kinematic structure,
but in general they do not allow computation of all admissible solutions.

15



4.1 Closed-Form Solutions

Most of the existing robots are kinematically simple, since they are typically
formed by an arm (three or more degrees of freedom) which provides mobility
and by a wrist which provides dexterity (three degrees of freedom). This choice
is partly motivated by the difficulty to find solutions to the inverse kinematics
problem in the general case. In particular, a siz-degree-of-freedom robot has
closed-form inverse kinematics solutions if three consecutive revolute joint axes
intersect at a common point. This situation occurs when a robot has a so-called
spherical wrist which is characterized by

Uy =ds =0 =0 §1=6& =§& =0, (37)

with sinas # 0 and sinag # 0 so as to avoid parallel axes (degenerate robot).
In that case, it is possible to articulate the inverse kinematics problem into two
subproblems, since the solution for the position is decoupled from that for the
orientation.

In the case of a three-degree-of-freedom arm, for given end-effector position
9p, and orientation °R., the inverse kinematics can be solved according to the
following steps:

e compute the wrist position °p, from %p,;
e solve inverse kinematics for (¢, g2, q3);

e compute " R3(q1, g2, q3);
e compute ® Rg(q4,q5,¢6) = > Ro’ Re® R;
e solve inverse kinematics for (¢4, g5, qs)-

Therefore, on the basis of this kinematic decoupling, it is possible to solve
the inverse kinematics for the arm separately from the inverse kinematics for
the spherical wrist.

Consider the anthropomorphic robot in Fig. 4, whose direct kinematics was
given in (30). It is desired to find the vector of joint variables g corresponding to
given end-effector position °p, and orientation °R.; without loss of generality,
assume that °p, = pg and °* R, = I.

Observing that °ps = °p4, the first three joint variables can be solved
from (31) which can be rewritten as

Pz C1 (0253 - 823d4)
py = 81(02Z3 — 823d4) . (38)
P= 8203 + ca3dy

From the first two components of (38), it is

q1 = Atan2(py, ps)- (39)
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Notice that another solution is
¢ = ™+ Atan2(py, p.). (40)

The second joint variable can be found by squaring and summing the first
two components of (38), i.e.

Pl + Py = (cals — s23ds)*; (41)
then, squaring the third component and summing it to (41) leads to the solution

g3 = Atan2(ss, c3) (42)

s :€§+di—pﬁ—pz—pz c3 = +4/1— 52
s 205d, 3 3

Substituting ¢s in (41), taking the square root thereof and combining the result
with the third component of (38) leads to a system of equations in the unknowns
so and ¢o; its solution can be found as

(3 — s3da)p: — caday/ D} + D

where

S9 =
P2+ p} + p?
(€3 — s3dy)\/P3 + pj + c3dap:
Cy = )

p: +p; +p2
and thus the second joint variable is
go = Atan2(ss, co). (43)

Notice that four admissible solutions are obtained according to the values of
q1, G2, q3; namely, shoulder-right/elbow-up, shoulder-left/elbow-up, shoulder-
right /elbow-down, shoulder-left /elbow-down.

In order to solve for the three joint variables of the wrist, the following
procedure can be followed. Given the matrix

Ng Sz Qg

0 _

Rs=|ny sy ay |, (44)
n, s a;

the matrix °R3 can be computed from the first three joint variables via (24),
and thus the following equation is to be considered

3. %sp Zay CAC5C6 — S4S6  —C4C5S6 — S4C6 —C4S5
dny sy Pay | = 85C6 — 58586 cs . (45)
3712 35z 3az —S84C5Cg — C45¢ S4C558¢ — C4Cq 5485
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The elements of the matrix on the right-hand side of (45) have been obtained
by computing ® Rg via (24), whereas the elements of the matrix on the left-hand
side of (45) can be computed as * Ry’ Rg with ° Rg as in (44), i.e.
3, _
Ng = caz(C1ng + s1My) + Sa3n;
Sny = —sa3(c1ng + s11y) + So3n. (46)
3’I’LZ = S1Mg — C1MNy;
the other elements (3s,,?s,.% s.) and (3a;,? a,,® a.) can be computed from (46)
by replacing (ng,ny,n.) with (s, sy, s.) and (as, ay,a), respectively.
At this point, inspecting (45) reveals that from the elements [1, 3] and [3, 3],
g4 can be computed as

qa = Atan2(®a., —2a,). (47)

Then, g5 can be computed by squaring and summing the elements [1,3] and
[3, 3], and from the element [2, 3] as

g5 = Atan2(\/(3a,)? + (3a.)2,%ay). (48)
Finally, ¢g¢ can be computed from the elements [2,1] and [2, 2] as
g6 = Atan2(—?s,,%n,). (49)

It is worth noticing that another set of solutions is given by the triplet

a1 = Atan2(=3a.,? ay) (50)
g5 = Atan2(—+/(3a;)? + (302)2a30y) (51)
g6 = Atan2(®s,, —%n,). (52)

Notice that both sets of solutions degenerate when 3a, = 3a. = 0; in this case,

q4 is arbitrary and simpler expressions can be found for ¢5 and gg.

In conclusion, 4 admissible solutions have been found for the arm and 2
admissible solutions have been found for the wrist, resulting in a total of 8
admissible inverse kinematics solutions for the anthropomorphic robot with a
spherical wrist,.

5 Differential Kinematics

The (3 x 1) vector p of linear velocity of a rigid body in space is given by the
time derivative of the position vector, while the (3 x 1) vector w of angular
velocity can be defined through the time derivative of the rotation matrix in the
form

R = S(w)R. (53)



With reference to the other descriptions of orientation, the relationship between
the angular velocity and the time derivative of the unit quaternion is

] _1[0 —w' ][n

[é] T2 [w —S(w)| | e (54)
which is known as quaternion propagation rule, whereas that between the an-
gular velocity and the time derivative of the Euler angles is

w=T(p)p (55)

where T'(¢) depends on the particular choice of Euler angles.

The mapping between the (n x 1) vector of joint velocities ¢ and the (6 x 1)
vector of end-effector (linear and angular) velocities v is established by the
differential kinematics equation

v= [ f,} — J(9)q, (56)

where J(q) is the (6 x n) Jacobian matrix. The computation of this matrix usu-
ally follows a geometric procedure that is based on computing the contributions
of each joint velocity to the linear and angular end-effector velocities. Hence,
J(q) can be termed as the geometric Jacobian of the robot.

5.1 Geometric Jacobian

In view of simple geometry, the velocity contributions of each joint to the linear

and angular velocities of link n give the following relationship

. ) ] dr

|:pn:| . |:§1Z1 +£1(Z1 Xpln) £nzn+£n(zn Xpnn) .

Wn &121 e &nzn )

an

where zj, is the unit vector of axis Z; and py,, denotes the vector from the origin

of frame k to the origin of frame n. Notice that J,, is a function of g through the

vectors zj and pg, which can be computed on the basis of direct kinematics.
The geometric Jacobian can be computed with respect to any frame i; in

that case, the k-th column of *.J,, is given by

[fkizk + f_kiRkS(ka)kpn]

&'z (©8)

Zjnk =

where *p,, = ¥py,,. In view of the expression of ¥z, = [0 0 1], eq. (58) can
be rewritten as

. [fkiZk + f_k(—k?nyimk + kpnziyk):| (59)

&'z
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where ¥p,,, and ¥p,,, are the z and y components of ¥p,,. A number of remarks
are in order.

e The transformation of the Jacobian from frame i to a different frame [ can
be obtained as

lR. 0 1].

7, = [ 0 ,Ri]’Jn. (60)

e The Jacobian relating the end-effector velocity to the joint velocities can
be computed either by using (57) and replacing py,, with py., or by using
the relationship

ij = [é _S(;pne):| i, (61)

A Jacobian .J,, can be decomposed as the product of three matrices, where
the first two are full-rank, while the third one has the same rank as ‘J, but
contains simpler elements to compute. To achieve this, the Jacobian of link n
can be expressed as a function of a generic Jacobian

flzl + 51 (zl X plh) e gnzn + 5n(zn X pnh):| (62)

Jnn = — it
. |: flzl e fnzn

giving the velocity of a frame fixed to link n attached instantaneously to frame
h. Then J, can be computed via (61) as

n=ly g (63)

which can be expressed with respect to frame i, giving

i |1 _S(ithpn)i
Jn—[o I n,h- (64)

Combining (60) with (64) yields the result that the matrix !.J,, can be computed
as the product of three matrices

'R, O1[I —-S(Ry'p,)],
lJn:[O le:| |:0 (Ih P ):| n,hs (65)

where remarkably the first two matrices are full-rank. In general, the values of
h and ¢ leading to the Jacobian *J), j of simplest expression are given by

i = int(n/2) h =int(n/2) + 1.

Hence, for a robot with 6 degrees of freedom, the matrix 3.Jg 4 is expected to
have the simplest expression; if the wrist is spherical (psg = 0), then the second
matrix in (65) is identity and 3Jg 4 = 3Jg.
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As an example, the geometric Jacobian for the anthropomorphic robot in
Fig. 4 can be computed on the basis of the matrix

0 5383 — d4 —d4 0 0 0
0 5303 0 0 0 0
—Vl3cy + dys 0 0 0 O 0
3 _ 362 4523
Js = S93 0 0 0 s4 —c485 (66)
Ca23 0 0 1 0 Cs
0 1 1 0 Cq 5485

5.2 Analytical Jacobian

If the end-effector position and orientation are specified in terms of a minimum
number of parameters in the task space as in (36), it is possible to compute the
Jacobian matrix also by direct differentiation of the direct kinematics equation,
i.e.

. | Pe| _ .

o= || = i (67

Pe
where the matrix J,(q) = 0k/dq is termed analytical Jacobian.
The relationship between the analytical Jacobian and the geometric Jacobian

is expressed as

1= | =Ttea, (63)

where T'(p,) is the transformation matrix defined in (55) which depends on the
particular set of Euler angles used to represent end-effector orientation.

It can be easily recognized that the two Jacobians are in general different;
note, however, that the two coincide for the positioning part. Concerning their
use, the geometric Jacobian is adopted when physical quantities are of interest
while the analytical Jacobian is adopted when task space quantities are of inter-
est. It is always possible to pass from one Jacobian to the other, except when
the transformation matrix is singular; the orientations at which the determinant
of T'(y.) vanishes are called representation singularities of ¢.. For instance,
with reference to the XY Z representation in (18), the transformation matrix is

1 0 Sg
T(pe) =0 ca —SaCs | - (69)
0 sq cacs

It can be recognized that T becomes singular at the representation singularities
B = £m/2; notice that, in these configurations, it is not possible to describe an
arbitrary angular velocity with a set of Euler angles time derivatives. It should
be remarked that each of the other Euler angles descriptions suffers from the
occurrence of two representation singularities.
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5.3 Singularities

The differential kinematics equation (56) defines a linear mapping between the
vector of joint velocities ¢ and the vector of end-effector velocities v. The Jaco-
bian is in general a function of the robot configuration g; those configurations
at which J is rank-deficient are called kinematic singularities.

The simplest means to find singularities is to compute the determinant of
the Jacobian matrix. For instance, for the above Jacobian in (66) it is

det(3Js) = l3dycsss(dysas — lacs) (70)

leading to three types of singularities (¢3,ds # 0). These are the elbow singu-
larity
C3 = 0

occurring when link 2 and link 3 are aligned; the shoulder singularity
dsS93 — l3co =0
occurring when origin of frame 4 is along axis Zy; and the wrist singularity
s5 =0

occurring when axes Z, and Zg are aligned. Notice that the elbow singularity
is not troublesome since it occurs at the boundary of the robot workspace (g3 =
+m/2). The shoulder singularity is characterized in the task space and thus
it can be avoided when planning an end-effector trajectory. Instead, the wrist
singularity is characterized in the joint space (g5 = 0, 7), and thus it is difficult
to predict when planning an end-effector trajectory.

An effective tool to analyze the linear mapping from the joint velocity space
into the task velocity space defined by (56) is offered by the singular value
decomposition (SVD) of the Jacobian matrix; this is given by

J=UxvV"' =) oun, (71)
i=1

where U is the (m x m) matrix of the output singular vectors w;, V is the
(n x n) matrix of the input singular vectors v;, and ¥ =[S O] is the (m x n)
matrix whose (m x m) diagonal submatrix S contains the singular values o; of
the matrix J. If r denotes the rank of J, the following properties hold:

01 >02>...20,>0p41=...=0p =0,
e R(J) =span{ui,...,u,},
o N(J)=span{v,i1,...,0,}.
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The null space N (J) is the set of joint velocities that yield null task velocities
at the current configuration; these joint velocities are termed null space joint
velocities. A base of NV(J) is given by the (n — r) last input singular vectors,
which represent independent linear combinations of the joint velocities. Hence,
one effect of a singularity is to increase the dimension of N'(J) by introducing
a linear combination of joint velocities that produce a null task velocity.

The range space R(J) is the set of task velocities that can be obtained as
a result of all possible joint velocities; these task velocities are termed feasible
space task velocities. A base of R(J) is given by the first r output singular vec-
tors, which represent independent linear combinations of the single components
of task velocities. Accordingly, another effect of a singularity is to decrease the
dimension of R(J) by eliminating a linear combination of task velocities from
the space of feasible velocities.

The singular value decomposition (71) shows that the i-th singular value
of J can be viewed as a gain factor relating the joint velocity along the wv;
direction to the task velocity along the w; direction. When a singularity is
approached, the r-th singular value tends to zero and the task velocity produced
by a fixed joint velocity along w, is decreased proportionally to o,. At the
singular configuration, the joint velocity along v, is in the null space and the
task velocity along u, becomes infeasible.

In the general case, the joint velocity has components in any v; direction,
and the resulting task velocity can be obtained as a combination of the single
components along each output singular vector direction.

6 Differential Kinematics Inversion

The differential kinematics equation, in terms of either the geometric or the
analytical Jacobian establishes a linear mapping between joint space velocities
and task space velocities, even if the Jacobian is a function of the joint configu-
ration. This feature suggests the use of the differential kinematics equation (56)
to solve the inverse kinematics problem.

Assume that a task space trajectory is given (x(t),v(t)). The goal is to
find a feasible joint space trajectory (g(t),q(t)) that reproduces the given tra-
jectory. Joint velocities can be obtained by solving the differential kinematics
equation for ¢ at the current joint configuration; then, joint positions q(t) can
be computed by integrating the velocity solution over time with known initial
conditions. This approach is based on the knowledge of the robot Jacobian and
thus is applicable to any robot structure, on condition that a suitable inverse
for the matrix J can be found.
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6.1 Pseudoinverse

With reference to the geometric Jacobian, the basic inverse solution to (56) is
obtained by using the pseudoinverse J' of the matrix .J; this is a unique matrix
satisfying the Moore-Penrose conditions

JJtr=J Jtagt =gt
(JIHT =gt JnT =gty (72)

or, alternatively, the equivalent conditions

Jla=a Ya € N*:(J)
Jb=0 Vb e RH(J)
J(a+b)=Ja+Jb Va € R(J),Vb € R (J). (73)

The inverse solution can then be written as
q=J(q (74)

that provides a least-squares solution with minimum norm to equation (56); in
detail, solution (74) satisfies the condition

min /4] (75)

of all g that fulfill
min ||[v — Jq||. (76)
q

If the Jacobian matrix is full-rank, the right pseudoinverse of J can be computed

as
JH=J%Jgam1, (77)

and (74) provides an exact solution to (56); further, if J square, the pseudoin-
verse (77) reduces to the standard inverse Jacobian matrix J 1.

To gain insight into the properties of the inverse mapping described by (74),
it is useful to consider the singular value decomposition (71) of J, and thus

1
Ji=vxiuT = ; U—i'viul-T (78)
where 7 denotes the rank of J. The following properties hold:
© 012002 ...20,>0p41=...=0y =0,
o R(JV) = NL(J) = spanfwy,...,v,},
o N(J) =RY(J) = span{u,i1,...,u,}
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The null space NV(JT) is the set of task velocities that yield null joint space
velocities at the current configuration; these task velocities belong to the or-
thogonal complement of the feasible space task velocities. Hence, one effect of
the pseudoinverse solution (74) is to filter the infeasible components of the given
task velocities while allowing exact tracking of the feasible components; this is
due to the minimum norm property (75).

The range space R(J') is the set of joint velocities that can be obtained
as a result of all possible task velocities. Since these joint velocities belong to
the orthogonal complement of the null space joint velocities, the pseudoinverse
solution (74) satisfies the least-squares condition (76).

If a task velocity is assigned along wu;, the corresponding joint velocity com-
puted via (74) lies along v; and is magnified by the factor 1/0;. When a sin-
gularity is approached, the r-th singular value tends to zero and a fixed task
velocity along u, requires large joint velocities. At a singular configuration, the
u, direction becomes infeasible and v, adds to the set of null space velocities of
the robot.

6.2 Redundancy

For a kinematically redundant robot a nonempty null space N (J) exists which is
available to set up systematic procedures for an effective handling of redundant
degrees of freedom. The general inverse solution can be written as

qg=J g+ (I-Tq)J(q))io (79)

which satisfies the least-squares condition (76) but loses the minimum norm
property (75), by virtue of the addition of the homogeneous term (I — J'.J)qo;
the matrix (I — J1J) is a projector of the joint vector go onto N (J).

In terms of the singular value decomposition, solution (79) can be written

in the form
r m n
q= Zviu;rv + Z v,»viqu + Z vi'u;rqo. (80)
1=1 i=r+1 i=m-+1

Three contributions can be recognized in (80); namely, the least-squares joint
velocities, the null space joint velocities due to singularities (if 7 < m), and the
null space joint velocities due to redundant degrees of freedom (if m < n).

This result is of fundamental importance for redundancy resolution, since
solution (79) evidences the possibility of choosing the vector gy so as to exploit
the redundant degrees of freedom. In fact, the contribution of gq is to generate
null space motions of the structure that do not alter the task space configuration
but allow the robot to reach postures which are more dexterous for the execution
of the given task.

A typical choice of the null space joint velocity vector is

i —a (81(1;5;1)>T (81)
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with @ > 0; w(q) is a scalar objective function of the joint variables and
(0w(q)/8q)T is the vector function representing the gradient of w. In this way,
it is sought to locally optimize w in accordance with the kinematic constraint
expressed by (56). Usual objective functions are:

e the manipulability measure defined as

w(q) = y/det (J(q)J*(q)), (82)

which vanishes at a singular configuration, and thus redundancy may be
exploited to escape singularities;

e the distance from mechanical joint limits defined as
w(q) = 1 zn: (M)Q (83)
2n = \giv = qim )

where ¢;ps (gim) denotes the maximum (minimum) limit for ¢; and §; the
middle of the joint range, and thus redundancy may be exploited to keep
the robot off joint limits;

e the distance from an obstacle defined as
w(q) = min [lp(g) —of, (84)

where o is the position vector of an opportune point on the obstacle and
p is the position vector of the closest robot point to the obstacle, and thus
redundancy may be exploited to avoid collisions with obstacles.

6.3 Damped Least-Squares Inverse

In the neighborhood of singular configurations the use of a pseudoinverse is not
adequate and a numerically robust solution is achieved by the damped least-
squares inverse technique. This is based on the solution to the modified differ-
ential kinematics equation

JTo = (JTT +X°1)q (85)

in place of equation (56); in (85) the scalar A is the so-called damping factor.
Note that, when A = 0, equation (85) reduces to (56).
The solution to (85) can be written in either of the equivalent forms
qg=J"(JI" + X)) v (86)
qg=J'T+ 3D J . (87)
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The computational load of (86) is lower than that of (87), being usually n > m.
Let then
q=J%(q (88)

indicate the damped least-squares inverse solution computed with either of the
above forms. Solution (88) satisfies the condition

min |lv - J¢|I* + X*[|4]/* (89)
q

that gives a trade-off between the least-squares condition (76) and the minimum
norm condition (75). In fact, condition (89) accounts for both accuracy and
feasibility in choosing the joint space velocity g required to produce the given
task space velocity v. In this regard, it is essential to select a suitable value for
the damping factor; small values of A give accurate solutions but low robustness
in the neighborhood of singular configurations, while large values of A result in
low tracking accuracy even if feasible and accurate solutions would be possible.

Resorting to the singular value decomposition, the damped least-squares
inverse solution (88) can be written as

q= ; ﬁ’uiu?v. (90)
Remarkably, it is:
o R(J#) =R(JT) = Nt (J) = span{uvy,...,v,},
o N(J#) =N (") =RH(J) =span{usy1, ..., up},

that is, the structural properties of the damped least-squares inverse solution
are analogous to those of the pseudoinverse solution.

It is clear that, with respect to the pure least-squares solution (74), the
components for which o; > X are little influenced by the damping factor, since
in this case it is

ag; 1

—_— —. 91
oZ+ XN o; (91)

On the other hand, when a singularity is approached, the smallest singular
value tends to zero while the associated component of the solution is driven
to zero by the factor o;/A?; this progressively reduces the joint velocity to
achieve near-degenerate components of the commanded task velocity. At the
singularity, solutions (88) and (74) behave identically as long as the remaining
singular values are significantly larger than the damping factor. Note that an
upper bound of 1/2\ is set on the magnification factor relating the task velocity
component along u; to the resulting joint velocity along v;; this bound is reached
when o; = .
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The damping factor A determines the degree of approximation introduced
with respect to the pure least-squares solution; then, using a constant value
for A may turn out to be inadequate for obtaining good performance over the
entire robot workspace. An effective choice is to adjust A as a function of some
measure of closeness to the singularity at the current configuration of the robot;
to this purpose, manipulability measures or estimates of the smallest singular
value can be adopted. Remarkably, currently available microprocessors even
allow real-time computation of full singular value decomposition.

A singular region can be defined on the basis of the estimate of the smallest
singular value of .J; outside the region the exact solution is used, while inside
the region a configuration-varying damping factor is introduced to obtain the
desired approximate solution. The factor must be chosen so that continuity of
joint velocity ¢ is ensured in the transition at the border of the singular region.

Without loss of generality, for a 6-degree-of-freedom robot, the damping
factor can be selected according to the following law:

0 5’626

2 ~ 2
= <1_(§)>Agm 92

where G¢ is the estimate of the smallest singular value, and e defines the size of
the singular region; the value of A\,.x is at user’s disposal to suitably shape the
solution in the neighborhood of a singularity.

Equation (92) requires computation of the smallest singular value. In or-
der to avoid a full singular value decomposition, we can resort to a recursive
algorithm to find an estimate of the smallest singular value. Suppose that an
estimate vg of the last input singular vector is available, so that vg ~ vg and
96| = 1. This estimate is used to compute the vector ¥4 from

(JVT + X2 1)) = . (93)

Then the square of the estimate g of the smallest singular value can be found
as

1
A2 2
Og = —5 7 — A 5 (94)
A
while the estimate of vg is updated using
by = o8 (95)
Vg = 7= .
leAl

The above estimation scheme is based on the assumption that vg is slowly
rotating, which is normally the case. However, if the robot is close to a double
singularity (e.g. a shoulder and a wrist singularity for the anthropomorphic
robot), the vector vg will instantaneously rotate if the two smallest singular
values cross. The estimate of the smallest singular value will then track o3
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initially, before vg converges again to vg. Therefore, it is worth extending the
scheme by estimating not only the smallest but also the second smallest singular
value. Assume that the estimates g and ¢ are available and define the matrix

M = JVT + X1 — (62 + \*)dg0q . (96)
With this choice, the second smallest singular value of J plays in
ML = o5 (97)

the same role as o in (93) and then will provide a convergent estimate of v5 to
Vs and 6’5 to o5.

At this point, suppose that 95 is an estimate of vy so that 05 ~ vs and
||o5]| = 1. This estimate is used to compute 9f from (97). Then, an estimate of
the square of the second smallest singular value of J is found from

1
~2 2
G; = —— — A%, (98)

and the estimate of v; is updated using

v

Ot~

’iJ5 = (99)

(<3
i~

On the basis of this modified estimation algorithm, crossing of singularities
can be effectively detected; also, by switching the two singular values and the
associated estimates ¥; and ¥g, the estimation of the smallest singular value
will be accurate even when the two smallest singular values cross.

6.4 User-Defined Accuracy

The above damped least-squares inverse method achieves a compromise between
accuracy and robustness of the solution. This is performed without specific
regard to the components of the particular task assigned to the robot’s end-
effector. The user-defined accuracy strategy based on the weighted damped
least-squares inverse method allows discriminating between directions in the
task space where higher accuracy is desired and directions where lower accuracy
can be tolerated. This is the case, for instance, of spot welding or spray painting
in which the tool angle about the approach direction is not essential to the
fulfillment of the task.
Let a weighted end-effector velocity vector be defined as

v =W (100)

where W is the (m x m) task-dependent weighting matrix taking into account
the anisotropy of the task requirements. Substituting (100) into (56) gives

v =J(q)q (101)
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where J = WJ. It is worth noticing that if W is full-rank, solving (56) is
equivalent to solving (101), but with different conditioning of the system of
equations to solve. This suggests selecting only the strictly necessary weighting
action in order to avoid undesired ill-conditioning of .J.

Equation (101) can be solved by using the weighted damped least-squares
inverse technique, i.e.

7" (@)% = (7" (@) (@) + XT). (102)

Again, the singular value decomposition of the matrix J is helpful, i.e.

J =) ciav] (103)

i=1

and the solution to (102) can be written as
&
. [,
q= ; Fa el LI (104)

It is clear that the singular values &; and the singular vectors u; and v; depend
on the choice of the weighting matrix W. While this has no effect on the solution
q as long as 6, > A, close to singularities where ¢, < A, for some r < m, the
solution can be shaped by properly selecting the matrix W.

For a 6-degree-of-freedom robot with spherical wrist, it is worthwhile to de-
vise a special handling of the wrist singularity, since such a singularity is difficult
to predict at the planning level in the task space. It can be recognized that,
at the wrist singularity, there are only two components of the angular velocity
vector that can be generated by the wrist itself. The remaining component
might be generated by the inner joints, at the expense of loss of accuracy along
some other task space directions, though. For this reason, lower weight should
be put on the angular velocity component that is infeasible to the wrist. For
the anthropomorphic robot, this is easily expressed in the frame attached to
link 4; let R4 denote the rotation matrix describing orientation of this frame
with respect to the base frame, so that the infeasible component is aligned with
the z-axis. Then the weighting matrix can be chosen as
I (0] ]

O Rydiag{w,1,1} R} (105)

vl

Similarly to the choice of the damping factor as in (92), the weighting fac-
tor w is selected according to the following expression:

0 6’6>E

(1-w)?*= (1 - <@>2) (1= wmin)? 66 . e, (106)

9

where wpnin > 0 is a design parameter.
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7 Inverse Kinematics Algorithms

The differential kinematics equation has been utilized above to solve for joint
velocities. Open-loop reconstruction of joint variables through numerical inte-
gration unavoidably leads to solution drift and then to task space errors. This
drawback can be overcome by devising a closed-loop inverse kinematics algo-
rithm based on the task space error between the desired and actual end-effector
locations ¢4 and x, i.e. € = ¢4 — x(q). It is worth considering also the differen-
tial kinematics equation in the form (67) where the definition of the task error
has required consideration of the analytical Jacobian J, in lieu of the geometric
Jacobian.

7.1 Jacobian Pseudoinverse

The joint velocity vector shall be chosen so that the task error tends to zero.
The simplest algorithm is obtained by using the Jacobian pseudoinverse

q=Jl(q) (&a + Ke), (107)
which plugged into (67) gives
e+ Ke =0. (108)
If K is a positive definite (diagonal) matrix, the linear system (108) is asymp-
totically stable; the tracking error along the given trajectory converges to zero
with a rate depending on the eigenvalues of K.

A block scheme of the inverse kinematics algorithm based on the Jacobian
pseudoinverse is illustrated in Fig. 5.

k()

Figure 5: Block scheme of the inverse kinematics algorithm with Jacobian pseu-
doinverse.

If it is desired to exploit redundant degrees of freedom, solution (107) can
be generalized to

q=Ji(q) (&a+ Ke)+ (I - T (q)Ja(q))qo (109)
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that logically corresponds to (79). In case of numerical problems in the neighbor-
hood of singularities, the pseudoinverse can be replaced with a suitable damped
least-squares inverse.

7.2 Jacobian Transpose

A computationally efficient inverse kinematics algorithm can be derived by con-
sidering the Jacobian transpose in lieu of the pseudoinverse.
Consider the joint velocity vector

q=1J,(9)Ke (110)

where K is a symmetric positive definite matrix. A simple Lyapunov argument
can be used to analyze the convergence of the algorithm. Consider the positive
definite function candidate

1
V= 5eTKe; (111)
its time derivative along the trajectories of the system (67) and (110) is
V=e"Ki,—e"KJ,(q)J (q)Ke. (112)

If &4 = 0, it is easy to see that V is negative definite as long as J, is full-
rank, and then it can be concluded that e = 0 is an asymptotically stable
equilibrium point for the system (67) and (110) as long as J, is full-rank for all
joint configurations q. A number of remarks are in order.

o If &; # 0, only boundedness of tracking errors can be established; an
estimate of the bound is given by

||i'd||max

ho?(J,) (113)

lle]|max =

where K has been conveniently chosen as a diagonal matrix K = kI. It is
anticipated that k can be increased to diminish the errors, but in practice
upper bounds exist due to discrete-time implementation of the algorithm.

e When a singularity is encountered, N'(J}) is non-empty and V is only
semi-definite; V = 0 for e # 0 with Ke € N(JJ), and the algorithm
may get stuck. It can be shown, however, that such an equilibrium point
is unstable as long as @4 drives Ke outside N'(J)). An enhancement of
the algorithm can be achieved by rendering the matrix JI K less sensi-
tive to variations of joint configurations along the task trajectory; this is
accomplished by choosing a configuration-dependent K that compensates
for variations of J,.
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Xy + e q

Figure 6: Block scheme of the inverse kinematics algorithm with Jacobian trans-
pose.

A block scheme of the inverse kinematics algorithm based on the Jacobian
transpose is illustrated in Fig. 6.

The most attractive feature of the Jacobian transpose algorithm is certainly
the need of computing only direct kinematics functions k(q) and J,(q). Further
insight into the performance of solution (110) can be gained by considering the
singular value decomposition of the Jacobian transpose, and thus

m
JT = Z Uiviu;r (114)
i=1

which reveals a continuous, smooth behavior of the solution close and through
singular configurations; note that in (114) the geometric Jacobian has been
considered and it has been assumed that no representation singularities are
introduced.

7.3 Use of Redundancy

In case of redundant degrees of freedom, it is possible to combine the Jacobian
pseudoinverse solution with the Jacobian transpose solution as illustrated be-
low. This is carried out in the framework of the so-called augmented task space
approach to exploit redundancy in robotic systems. The idea is to introduce an
additional constraint task by specifying a (p x 1) vector x. as a function of the
robot joint variables, i.e.

z. = k(q), (115)

with p < n —m so as to constrain at most all the available redundant degrees
of freedom. The constraint task vector x. can be chosen by embedding scalar
objective functions of the kind introduced in (82)—(84).

Differentiating (115) with respect to time gives

&, = Je(q)q (116)
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where J.(q) = 0k./dq is the constraint Jacobian. The result is an augmented
differential kinematics equation given by (67) and (116), based on a Jacobian
matrix

J = Ja . 117
5] (117)

When a constraint task is specified independently of the end-effector task,
there is no guarantee that the matrix J' remains full-rank along the entire
task path. Even if rank(J,) = m and rank(J.) = p, then rank(J') = m + p
if and only if R(JL) NR(JT) = {0}; singularities of J' are termed artificial
singularities and it can be shown that those are given by singularities of the
matrix J.(I — J}J,).

The above discussion suggests that, when solving for joint velocities, a task
priority strategy is advisable so as to avoid conflicting situations between the
end-effector task and the constraint task. Substituting (109) into (116) gives

.= J.(q) T} (q)(@q + Ke) + T.(q) (I — J}(a)Tu(q))do (118)

which could be solved for go provided that artificial singularities —those of
the matrix J.(I — J!J,)— are avoided. Observing that equality (118) can be
achieved only for the components of @. belonging to R(J.), it is sufficient to
consider the equation

TH@)we = T} (q)(@a + Ke) + (I - 1 (q)Tu(q)) o (119)

that can be solved for ¢g giving

o = (I - I} (@)1u(@) (T (@2 — T} (@)(a + Ke)). (120)

By recalling that (I —J!J,)f = (I—J}J,), solution (120) reduced to the simple
form
qo = (I — I} (q)Ju(q)) T} (@) (121)

0 p—y
Folding (121) back into (109) and exploiting the idempotence of (I — Ji.J,)
gives

q=Jl(q)(&q+ Ke)+ (I - T} (q)Tu(q) T} (q)(&ea + K.ec) (122)

where e, = .4 — @, being x4 the desired value of the constraint task, and K.
is a positive definite matrix. The operator (I — J!.J,) projects the secondary
velocity contribution ¢g on the null space N (J,,), guaranteeing correct execution
of the primary end-effector task while the secondary constraint task is correctly
executed as long as it does not interfere with the end-effector task. Obviously,
if desired, the order of priority can be switched, e.g. in an obstacle avoidance
task when an obstacle comes to be along the end-effector path.

In the case when J. becomes singular, a damped least-squares inverse of .J.
in lieu of the pseudoinverse in (121) can be used. Otherwise, by recalling the
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Jacobian transpose solution for the end-effector task (110), the null space joint
velocity vector can be conveniently chosen as

QU = J;T(q)Kc(mcd - mc)- (123)

which allows the algorithm to work at a singularity of J,. and even at an artificial
singularity. A tracking error arises for the constraint task but, observing that
the desired constraint task is often constant over time (&.q = 0), it can be
concluded that the solution based on (123) performs equally well.

7.4 Orientation Errors

The above inverse kinematics algorithms make use of the analytical Jacobian
since they operate on error variables (position and orientation) which are defined
in the task space. More insight about the implications of different end-effector
orientation descriptions can be gained by separating the position from the ori-
entation components. With reference to the pseudoinverse algorithm based
on (107), using the geometric Jacobian in lieu of the analytical Jacobian, the
solution can be rewritten as

a=1')| ] (124)

Vo

where v),, v, represent two resolved velocities that shall be chosen so as to ensure
tracking of the desired end-effector motion. Substituting (124) into (56) gives
Pe = Up (125)
We = Y, (126)
where the explicit end-effector linear and angular velocities have been evidenced.
For what concerns position, the choice is rather straightforward, i.e.
vy, = pa + Kpep (127)
where the position error
€p = Pd — pe(Q) (128)
between the desired and actual end-effector positions has been defined. Substi-
tuting (127) into (125) gives
e, +Kpe,=0 (129)

and the choice of a positive definite matrix K, guarantees asymptotic stability
of the error system which in turn implies tracking of pg.

On the other hand, for what concerns the orientation error, some considera-
tions are in order depending on the type of description adopted. If Fuler angles
are adopted, the resolved angular velocity in (124) is chosen as

v, =T(pe)(Pd + Ko€oFul) (130)
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where
€o.Ful = Pd — ¥e(q) (131)

is the orientation error. Substituting (130) into (126) gives
€oEul + Koo pu = 0 (132)

provided that the matrix T'(¢p.) is nonsingular. The system (132) is asymptot-
ically stable for a positive definite K,, which in turn implies tracking of 4.

In order to overcome the drawback of representation singularities in (130),
an algorithm based on an alternative Euler angles description can be conceived
which makes use of the rotation matrix describing the mutual orientation be-
tween the desired and the actual end-effector frame, i.e.

‘Ri= R, (q)Ry. (133)
Differentiating (133) with respect to time and accounting for (53) gives
‘Ry = S("wa) Ry (134)

where wge = wg — we(q) is the end-effector angular velocity error.

Let ¢g4. denote the set of Euler angles that can be extracted from ©Ry.
Then, in view of (55) and (53), the angular velocity “wg. in (134) is related to
the time derivative of ¢4, as

ewde - T(Qode)¢de- (135)
At this point, the resolved angular velocity in (124) can be chosen as
Vo = wWq + ReT(Qode)Koeo,EulAlt (136)

where
€0,EulAlt = Pde- (137)

Substituting (136) into (126) gives
€,,Eulals + Ko€o Buiale = 0 (138)

provided that the matrix T'(¢4.) is nonsingular.

The clear advantage of the alternative over the classical Euler angles algo-
rithm based on (130) is that, by adopting a representation ¢4, for which T'(0) is
nonsingular, representation singularities occur only for large orientation errors,
e.g. when B4. = £m/2 for the XY Z representation. In other words, the ill-
conditioning of matrix 7T is not influenced by the desired or actual end-effector
orientation but only by the orientation error; hence, as long as the error param-
eter |Bqe| < m/2, the behavior of system (138) is not affected by representation
singularities. In this respect, the choice of a particular Euler angles description
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among the twelve possible should be carefully made, i.e. in the sense of avoiding
a representation singularity for the second angle of the type g = 0.

In order to overcome the problem of representation singularities, an inverse
kinematics algorithm based on the angle/azis description of orientation can be
devised. From (133), the rotation ¥4, and the unit vector 4. can be extracted
using the formulae (12). Then, the orientation error can be defined as

€5, AnAx = sin ﬂderde- (139)

Notice that (139) gives a unique solution for —7/2 < ¥ < 7/2, but this interval
is not limiting for a convergent inverse kinematics algorithm. It can be shown
that a computational expression of the orientation error in (139) is given by

€0, AnAx = %(S(ne(q))nd + S(sc(q))sq + S(ac(q))aaq). (140)

where the triplet of unit vectors has been used for both the desired and the
actual end-effector rotation matrix. Note that the above limitation on ¢ sets
the conditions n ng > 0, sTs; >0, aTay > 0.

Differentiation of (140) with respect to time gives

éoanax = LTwy — Lw (141)

where
L= —%(S(nd)s(na +8(s4)S(se) + S(aa)S(a)). (142)

At this point, the resolved angular velocity in (124) can be chosen as
v, =L (L wy+ Ky, anax)- (143)
Substituting (143) into (126) gives
€o,anAx + Ko€o anax =0 (144)

provided that the matrix L is nonsingular. In this respect, if the angle ¥4, is
extended to the interval (—m, ), then a singularity occurs at ¥4, = +m/2 for
the matrix L which does not allow the computation of v, as in (143).

The final inverse kinematics algorithm is based on the unit quaternion de-
scription of orientation. Let Q4 = {n4,e4} and Q. = {n., .} represent the unit
quaternions associated with R; and R., respectively. The mutual orientation
can be expressed in terms of the unit quaternion Q4. = {n4e, 4.} where

Nae = Ne(@)a + € (@)ea

Ede = ne(q)ed - ndse(q) - S(Ed)se(q)' (145)
It can be recognized that Q4. = {1,0} if and only if R, and R, are aligned,
and thus it is sufficient to consider 4. to express an end-effector orientation

error, i.e.
€y,Quat — Ede- (146)
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Notice that the explicit computation of 7.(q) and €.(q) is not possible, but
it requires the intermediate computation of the rotation matrix R.(q) that is
available from the robot direct kinematics; then, the unit quaternion can be
extracted using the formulae (17).

At this point, the resolved angular velocity in (124) can be chosen as

Vo = WwWq + KoemQuat (147)
Substituting (147) into (126) gives
wae + Ko€o,Quat = 0. (148)

It should be observed that now the orientation error equation is not homoge-
neous in e, quat since it contains the end-effector angular velocity error instead
of the time derivative of the orientation error. To study stability of system (148),
consider the positive definite Lyapunov function

V=(na—n)"+ (ea—ec)" (€a — €e)- (149)

In view of the quaternion propagation (54), the time derivative of V' along the
trajectories of system (148) is given by

V = —eq quatKo€o,quat (150)

which is negative definite, implying that e, quat converges to zero.

8 Further Reading

Kinematic modelling of rigid robot manipulators can be found in any classical
robotics textbook, e.g. [43, 17, 19, 54, 56, 51]. Precious reference sources on
kinematics are also [25, 3, 1, 57, 38]. Symbolic software packages have been
developed to derive robot kinematic models, e.g. [26].

The Denavit-Hartenberg notation dates back to the original work of [18],
which was recently modified in [17, 28]. One advantage of the so-called modified
Denavit-Hartenberg notation over the classical one is that it can be used also for
tree-structured and closed-chain robots [28]. The homogeneous transformation
representation for direct kinematics of open-chain robots was first proposed
in [45].

Sufficient conditions for the inverse kinematics problem to have closed-form
solutions were given in [45]. These ensure the existence of solutions to 6-degree-
of-freedom robots provided that there are three revolute joints with intersecting
axes or three prismatic joints; in the former case, at most 8 admissible solutions
exist, while the number reduces to 2 in the latter case. The kinematic decoupling
resulting for spherical-wrist robots was developed in [22, 24, 44, 27]. An alge-
braic approach to the inverse kinematics problem for robots having closed-form
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solutions was presented in [43], which consists of successively post- (or pre-)
multiplying both sides of the direct kinematics equation by partial transforma-
tion matrices so as to isolate the joint variables one after another; the types
of equations that can be obtained with this approach were formalized in [19].
Recent methods [32, 46] have found the inverse kinematics solution to general
six-revolute-joint robots in the form of a polynomial equation of degree 16, i.e,
the maximum number of admissible solutions is 16. On the other hand, nu-
merical solution techniques based on iterative algorithms have been proposed,
e.g. [55, 23].

The geometric Jacobian of the differential kinematics equation was origi-
nally proposed in [59]. The decomposition of the Jacobian into the product of
three matrices is due to [47]. The problem of efficient Jacobian computation
was addressed in [42]. The analytical Jacobian concept was introduced in [29] in
connection with the operational space control problem. A treatment of differ-
ential kinematics mapping properties can be found in [51]; the reader is referred
to [31] for SVD decomposition.

The inversion of differential kinematics dates back to [59] under the name
of resolved motion rate control. The adoption of the pseudoinverse of the Jaco-
bian is due to [30]. More on the properties of the pseudoinverse can be found
in [4]. The use of null-space joint velocities for redundancy resolution was pro-
posed in [33], and further refined in [60, 36] as concerns the choice of objective
functions. The reader is referred to [39] for a complete treatment of redundant
robots.

The adoption of the damped least-squares inverse was independently pre-
sented in [40] and [58]. More about kinematic control in the neighborhood of
kinematic singularities can be found in [9]. The technique for estimating the
smallest singular value of the Jacobian is due to [37], and its modification to
include the second smallest singular value was achieved by [10]. The use of the
damped least-squares inverse for redundant robots was presented in [21]. The
user-defined accuracy strategy was proposed in [12] and further refined in [13].
A review of the damped least-squares inverse kinematics with experiments on
an industrial robot was recently presented [16].

Closed-loop inverse kinematics algorithms are discussed in [51]. The origi-
nal Jacobian transpose inverse kinematics algorithm was proposed in [49]; the
choice of suitable gains for achieving robustness to singularities was discussed
in [7]. Singular value decomposition of the Jacobian transpose is due to [14].
Combination of the Jacobian transpose solution with the pseudoinverse solu-
tion was proposed in [8]. References on the augmented task space approach
are [20, 50, 52, 48]. The occurrence of artificial singularities was pointed out
in [2], and their properties were studied in [6]. The task priority strategy was
originally proposed in [41] and has recently been refined in [11] concerning ro-
bustness to artificial singularities. The use of the Jacobian transpose for the
constraint task was presented in [15, 53]. The expression of the end-effector ori-
entation error based on an angle/axis description of orientation is due to [35],

39



and its properties were studied in [34]. The use of a quaternion-based orienta-
tion error is due to [61]. More about the possible definitions of the orientation
error can be found in [5].
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