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Abstract— In this paper, a force/position control law for a
robot manipulator in contact with a partially known envi-
ronment is proposed. The environment is a rigid object of
known geometry but of unknown and time-varying pose. An
algorithm for online estimation of the object pose is adopted,
based on visual data provided by a camera as well as on forces
measured during the interaction with the environment. This
information is used by a hybrid force/position control scheme.
Simulation results are presented for the case of an industrial
robot manipulator in contact with a planar surface.

I. INTRODUCTION

Vision and force are two complementary sensing capa-

bilities that can be exploited in a synergic way to enhance

the autonomy of a robot manipulator during the interaction

with the environment. In fact, a robot may achieve global

information on the environment using vision; on the other

hand, the perception of the force applied to the end effector

allows adjusting its motion so that the local constraints

imposed by the environment are satisfied.

In recent years, several approaches where force and vision

measurements are combined in the same feedback control

loop have been proposed, as hybrid visual/force control [1],

shared and traded control [2], [3] or visual impedance

control [4], [5], [6]. These algorithms improve classical

interaction control schemes [7], e.g., impedance control,

hybrid force/position control, parallel force/position control,

where only force and joint position measurements are used.

The approach adopted in this work is based on the classical

constrained hybrid force/position control [8], which requires

exact knowledge of the geometry of the environment in the

form of constraints imposed to the end-effector motion. This

hypothesis is relaxed here, in the sense that the geometry

of the environment is assumed to be known, but its position

and orientation with respect to the robot end-effector are

unknown. The relative pose is estimated online from all the

available sensor data, i.e., visual, force and joint position

measurements, using the Extended Kalman Filter (EKF). The

estimated pose is then exploited to compute the constraint

equations in the hybrid force/position control law.

The pose estimation algorithm is an extension of the visual

tracking scheme proposed in [9] to the case that also force

and joint position measurements are used. Remarkably, the

same algorithm can be adopted both in free space and during

the interaction, simply modifying the measurements set of

the EKF.
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A simulation case study on an industrial robot is presented.

The results confirm the effectiveness of the proposed ap-

proach.

II. MODELLING

Consider a robot in contact with an object, a wrist force

sensor and a camera mounted on the end-effector (eye-

in-hand) or fixed in the workspace (eye-to-hand). In this

Section, some modelling assumptions concerning the object,

the robot and the camera are presented.

A. Object

The position and orientation of a frame attached to a rigid

object Oo–xoyozo with respect to a base coordinate frame

O–xyz can be expressed in terms of the coordinate vector of

the origin oo = [xo yo zo ]
T

and of the rotation matrix

Ro(ϕo), where ϕo is a (p × 1) vector corresponding to a

suitable parametrization of the orientation. In the case that

a minimal representation of the orientation is adopted, e.g.,

Euler angles, it is p = 3, while it is p = 4 if unit quaternions

are used. Hence, the (m × 1) vector xo = [oT

o ϕT

o ]
T

defines a representation of the object pose with respect to

the base frame in terms of m = 3 + p parameters.

The homogeneous coordinate vector p̃ = [pT 1 ]
T

of a

point P of the object with respect to the base frame can be

computed as p̃ = Ho(xo)
op̃, where op̃ is the homogeneous

coordinate vector of P with respect to the object frame and

Ho is the homogeneous transformation matrix representing

the pose of the object frame referred to the base frame:

Ho(xo) =

[

Ro(ϕo) oo

0
T 1

]

,

where 0 is the (3 × 1) null vector.

It is assumed that the geometry of the object is known

and that the interaction involves a portion of the external

surface which satisfies a twice differentiable scalar equation

ϕ(op) = 0.

The unit vector normal to the surface at the point op and

pointing outwards can be computed as:

on(op) =
(∂ϕ(op)/∂ op)T

‖(∂ϕ(op)/∂ op‖
, (1)

where on is expressed in the object frame.

Notice that the object pose xo is assumed to be unknown

and may change during the task execution. As an example, a

compliant contact can be modelled assuming that xo changes

during the interaction according to an elastic law.

A further assumption is that the contact between the robot

and the object is of point type and frictionless. Therefore,
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when in contact, the tip point Pq of the robot instantaneously

coincides with a point P of the object, so that the tip position
opq satisfies the constraint equation:

ϕ(opq) = 0. (2)

Moreover, the (3 × 1) contact force oh is aligned to the

normal unit vector on.

B. Robot

The case of a n-joints robot manipulator is considered,

with n ≥ 3. Assuming that the object frame is known, the

tip position pq can be computed via the direct kinematics

equation:

pq = k(q), (3)

where q is the (n×1) vector of the joint variables. Also, the

velocity of the robot’s tip vPq
can be expressed as

vPq
= J(q)q̇ (4)

where J = ∂k(q)/∂q is the robot Jacobian matrix. The

vector vPq
can be decomposed as

ovPq
= oṗq + Λ(opq)

oνo, (5)

with Λ(·) = [ I3 −S(·) ], where I3 is the (3 × 3) iden-

tity matrix and S(·) denotes the (3 × 3) skew-symmetric

matrix operator. In Eq. (5), oṗq is the relative velocity of

the tip point Pq with respect to the object frame while
oνo = [ ovT

Oo

oωT
o ]

T
is the velocity screw characterizing

the motion of the object frame with respect to the base frame

in terms of the translational velocity of the origin vOo
and

of the angular velocity ωo; all the quantities are referred to

the object frame.

When the robot is in contact to the object, the normal

component of the relative velocity oṗq is null, i.e.:

onT (opq)
oṗq = 0. (6)

C. Camera

A frame Oc–xcyczc attached to the camera (either in eye-

in-hand or in eye-to-hand configuration) is considered. By

using the classical pin-hole model, a point P of the object

with coordinates cp = [x y z ]
T

with respect to the

camera frame is projected onto the point of the image plane

with coordinates
[

X
Y

]

=
λc

z

[

x
y

]

(7)

where λc is the focal length of the lens of the camera.

Let Hc denote the homogeneous transformation matrix

representing the pose of the camera frame referred to the base

frame. For eye-to-hand cameras, the matrix Hc is constant,

and can be computed through a suitable calibration proce-

dure, while for eye-in-hand cameras this matrix depends on

the camera current pose xc and can be computed as:

Hc(xc) = He(xe)
eHc

where He is the homogeneous transformation matrix of the

end effector frame e with respect to the base frame, and

eHc is the homogeneous transformation matrix of camera

frame with respect to end effector frame. Notice that eHc

is constant and can be estimated through suitable calibration

procedures, while He depends on the current end-effector

pose xe and may be computed using the robot kinematic

model.

Therefore, the homogeneous coordinate vector of P with

respect to the camera frame can be expressed as

cp̃ = cHo(xo,xc)
op̃ (8)

where cHo(xo,xc) = cH−1(xc)Ho(xo). Notice that xc is

constant for eye-to-hand cameras; moreover, the matrix cHo

does not depend on xc and xo separately but only on the

relative pose of the object frame with respect to the camera

frame.

The velocity of the camera frame with respect to the

base frame can be characterized in terms of the translational

velocity of the origin vOc
and of angular velocity ωc. These

vectors, expressed in camera frame, define the velocity screw
cνc = [ cvT

Oc

cωT
c ]

T
. Analogously to (5), the absolute

velocity of the origin Oo of the object frame can be computed

as
cvOo

= cȯo + Λ(coo)
cνc, (9)

where coo is the vector of the coordinates of Oo with respect

to camera frame and cȯo is the relative velocity of Oo with

respect to camera frame; all the quantities are expressed

in camera frame. On the other hand, the absolute angular

velocity cωo of the object frame expressed in camera frame

can be computed as

cωo = cωo,c + cωc (10)

where cωo,c represents the relative angular velocity of the

object frame with respect to the camera frame. The two

equations (9) and (10) can be rewritten in the compact form

cνo = cνo,c + Γ(coo)
cνc (11)

where cνo = [ cvT
Oo

cωT
o ]

T
is the velocity screw corre-

sponding to the absolute motion of the object frame, cνo,c =

[ cȯT
o

cωT
o,c ]

T
is the velocity screw corresponding to the

relative motion of the object frame with respect to camera

frame, and the matrix Γ(·) is defined as

Γ(·) =

[

I3 −S(·)
O3 I3

]

,

where O3 denotes the (3 × 3) null matrix.

The velocity screw rνs of a frame s with respect to a

frame r can be expressed in terms of the time derivative of

the vector xs representing the pose of frame s through the

equation
rνs = rL(xs)ẋs (12)

where rL(·) is a Jacobian matrix depending on the particular

choice of coordinates for the orientation. The expressions of
rL(·) for different kinds of parametrization of the orientation

can be found, e.g., in [10].
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III. OBJECT POSE ESTIMATION

When the robot moves in free space, the unknown object

pose can be estimated online by using the data provided

by the camera; when the robot is in contact to the target

object, also the force measurements and the joint position

measurements can be used. In this Section, the equations

mapping the measurements to the unknown position and

orientation of the object are derived. Then, the estimation

algorithm based on the EKF is presented.

A. Vision

Vision is used to measure the image features, i.e., any

structural feature that can be extracted from an image,

corresponding to the projection of a physical feature of the

object onto the camera image plane.

An image feature can be characterized by a set of

scalar parameters fj that can be grouped in a vector f =
[ f 1 · · · fk]T , where k is the dimension of the image fea-

ture parameter space. The mapping from the position and

orientation of the object to the corresponding image feature

vector can be computed using the projective geometry of the

camera and can be written in the form

f = gf (cHo(xo,xc)), (13)

where only the dependence from the relative pose of the

object frame with respect to camera frame has been explicitly

evidenced.

For the estimation of the object pose, it is required the

computation of the Jacobian matrix Jf = ∂gf/∂xo. To this

purpose, the time derivative of (13) can be computed in the

form

ḟ =
∂gf

∂xo

ẋo +
∂gf

∂xc

ẋc, (14)

where the second term in the right hand side is null for

eye-to-hand cameras. On the other hand, the time derivative

of (13) can be expressed also in the form

ḟ = Jo,c
cνo,c (15)

where the matrix Jo,c is the Jacobian mapping the relative

velocity screw of the object frame with respect to the camera

frame into the variation of the image feature parameters.

The expression of Jo,c depends on the choice of the image

features; examples of computation can be found in [10].

Taking into account the velocity composition (11),

Eq. (15) can be rewritten in the form

ḟ = Jo,c
cνo − Jc

cνc (16)

where Jc = Jo,cΓ(coo) is the Jacobian corresponding to

the contribution of the absolute velocity screw of the camera

frame, known in the literature as interaction matrix [11].

Considering Eq. (12), the comparison of (16) with (14) yields

Jf = Jo,c
cL(xo). (17)

B. Force and joint measurements

In the case of frictionless point contact, the measure of the

force h at the robot tip during the interaction can be used to

compute the unit vector normal to the object surface at the

contact point opq, i.e.,

nh =
h

‖h‖
. (18)

On the other hand, vector nh can be expressed as a function

of the object pose xo and of the robot position pq in the

form

nh = Ro
on(opq) = gh(xo,pq), (19)

being opq = RT
o (pq − oo).

For the estimation of the object pose, it is required the

computation of the Jacobian matrix Jh = ∂gh/∂xo. To this

purpose, the time derivative of (19) can be expressed as

ṅh =
∂gh

∂xo

ẋo +
∂gh

∂pq

ṗq. (20)

On the other hand, the time derivative of (19) can be

computed also in the form

ṅh = Ṙo
on(opq) +Ro

oN(opq)
oṗq, (21)

where oN(opq) = ∂on/∂opq depends on the surface cur-

vature and oṗq can be computed from (5). Hence, compar-

ing (20) with (21) and taking into account (12) and the

equality Ṙo
on(opq) = −S(nh)ωo, the following expression

can be found:

Jh = − [N S(nh)−NS(pq−oo) ]L(xo), (22)

where N = Ro
oN(opq)R

T
o .

The measurement of the joint position vector q can be used

to evaluate the position of the point P of the object when in

contact to the robot’s tip point Pq, using the direct kinematics

equation (3). In particular, it is significant computing the

scalar

δhq = nT
hpq = ghq(xo,pq), (23)

using also the force measurements via Eq. (18).

For the estimation of the object pose it is required the

computation of the Jacobian matrix Jhq = ∂ghq/∂xo. As

in the previous subsection, the time derivative of δhq can be

expressed as

δ̇hq =
∂ghq

∂xo

ẋo +
∂ghq

∂pq

ṗq. (24)

On the other hand, the time derivative of δhq can be com-

puted also as

δ̇hq = ṅT
hpq + nT

hRo(
oṗq + Λ(opq)

oνo)

where the expression of the absolute velocity of the point

Pq in (5) has been used. Using the identity (6), the above

equation can be rewritten as

δ̇hq = pT
q ṅh + nT

h Λ(pq − oo)νo. (25)
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Hence, comparing (24) with (25) and taking into ac-

count (21), (22) and (12), the following expression can be

found

Jhq = pT
q Jh + nT

h Λ(pq − oo)L(xo). (26)

C. Extended Kalman Filter

The pose vector xo of the object with respect to the base

frame can be estimated using an Extended Kalman Filter.

To this purpose, a discrete-time state space dynamic model

has to be considered, describing the object motion. The state

vector of the dynamic model is chosen as w = [xT

o ẋT

o ]
T

.

For simplicity, the object velocity is assumed to be constant

over one sample period Ts. This approximation is reasonable

in the hypothesis that Ts is sufficiently small. The corre-

sponding dynamic modeling error can be considered as an

input disturbance γ described by zero mean Gaussian noise

with covariance Q. The discrete-time dynamic model can be

written as

wk = Awk−1 + γk, (27)

where A is the (2m × 2m) block matrix

A =

[

Im TsIm

Om Im

]

.

The output of the Kalman filter, in the case that all the

available data can be used, is the vector of the measurements

at time kTs

ζk = [ ζT
f,k ζT

h,k ζhq,k
T ]

T
,

where ζf,k = fk + µf,k, ζh,k = hk + µh,k, and ζhq,k =
δk+µhq,k, being µ the measurement noise. The measurement

noise is assumed to be zero mean Gaussian noise with

covariance Π.

Taking into account the Eqs. (13), (19), and (23), the

output model of the Kalman filter can be written in the form:

ζk = g(wk) + µk,

where [µT
f,k µT

h,k µT
hq,k ]

T
and

g(wk) = [ gT
f (wk) gT

h (wk) gT
hq(wk) ]

T
(28)

where only the explicit dependence on the state vector wk

has been evidenced.

Since the output model is nonlinear in the system state,

the EKF must be adopted, which requires the computation

of the Jacobian matrix of the output equation

Ck =
∂g(w)

∂w

∣

∣

∣

∣

w=ŵk,k−1

=
[ ∂g(w)

∂xo

O
]

w=ŵk,k−1

,

where O is a null matrix of proper dimensions corresponding

to the partial derivative of g with respect to the velocity

variables, which is null because function g does not depend

on the velocity.

The Jacobian matrix ∂g(w)/∂xo, in view of (17), (22),

and (26) has the expression

∂g(w)

∂xo

= [JT
f JT

h JT
hq ]

T
.

The equations of the recursive form of the EKF are

standard and are omitted here.

IV. HYBRID FORCE/POSITION CONTROL

The proposed algorithm can be used to estimate online the

pose of an object in the workspace; this allows to compute

the constraint (2) with respect to the base frame in the form

ϕ(RT

o (pq − oo)) = ϕ(q, t) = 0,

where the last equality holds in view of the direct kinematic

equation of the robot manipulator (3). In the following, it

is assumed that the object does not move; the general case

of moving object is more complex but can be analyzed in a

similar way. Hence, the constraint equation can be rewritten

in the form

ϕ(q) = 0, (29)

hence Jϕ(q)q̇ = 0, where Jϕ = ∂ϕ/∂q is a (1×n) vector.

The dynamic model of a robot manipulator in contact with

the environment can be written in the Lagrangian form as

B(q)q̈ + n(q, q̇) = τ − JT

ϕ(q)λ,

whereB is the (n×n) symmetric and positive definite inertia

matrix, n(q, q̇) is the (n × 1) vector taking into account

Coriolis, centrifugal, friction and gravity torques, τ is the

(n × 1) vector of the joint torques, and λ is the lagrangian

multiplier associated to the constraint (29). The scalar λ can

be computed from the measured contact force in the form

λ = J
†
φ(q)JT(q)h,

where J†
ϕ(q) is a pseudo-inverse of JT

ϕ(q) and J(q) is the

robot Jacobian matrix defined in (4).

According to the hybrid force/position control strategy, it

is useful to apply the change of coordinates

r =

[

rF

rP

]

=

[

ϕ(q)
ψ(q)

]

(30)

where ψ(q) is a suitable ((n − 1) × 1) vector function,

assumed to be twice differentiable and such that ϕ(q) and

the n− 1 components of ψ are linearly independent at least

locally in a neighborhood of the operating point. Hence,

the inverse transformation of (30) is well defined; moreover,

differentiation of (30) gives ṙ = Jr(q)q̇, where the matrix

Jr(q) is nonsingular. Notice that, in the new coordinates

r, the constraint equation (29) is equivalent to rF = 0.

Moreover, the vector rP allows to specify any end-effector

position and orientation which satisfies the constraint. On the

other hand, the force vector in the new coordinates r is

F =

[

λ
0

]

and ṙ and F are orthogonal, i.e., FTṙ = 0 for any ṙ that

satisfy the constraint (such that ṙF = 0).

In sum, a force/position control task can be assigned by

specifying the desired force λd(t) and the n−1 components

of the vector rPd(t). An inverse dynamics control law can

be adopted, by choosing the control torque τ as

τ = B(q)αr + n(q, q̇)q̇ + JT

ϕ(q)hλ,
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where αr and hλ are control inputs to be properly designed.

It is possible to recognize that the choice (see, e.g., [12])

αr = J−1

r (q)(ar + J̇r(q)) ar =

[

0
aP

]

leads to r̈ = ar, where ar attains the meaning of a resolved

acceleration in terms of the new coordinate vector r. Notice

that, by virtue of the choice of ar, this equation corresponds

to the equations r̈F = 0 and r̈P = aP . The solution of

the first equation is rF = 0 and ṙF = 0, assuming that

the system is initialized on the constraint. The resolved

acceleration can be chosen as

aP = r̈Pd +KDr(ṙPd − ṙP ) +KPr(rPd − rP ), (31)

while the control input hλ can be chosen as

fλ = λd + kIλ

∫ t

0

(λd(τ) − λ(τ))dτ (32)

where KDr, KPr and kIλ are suitable feedback gains.

Details concerning the stability of the constrained hybrid

force/position control can be found, e.g., in [12].

V. CASE STUDY

A planar object surface is considered, described by the

equation onT op = 0, assuming that the origin Oo of the

object frame is a point of the plane and the axis zo is aligned

to the normal on. During the interaction with the robot, the

normal vector n remains constant in the base frame while

the plane is assumed to be elastically compliant along n

according to a simple elastic law. The contact force of the

object on the robot’s tip at pq is given by

h =

{

knnT (po − pq) if nT (po − pq) ≥ 0

0 if nT (po − pq) < 0

where pq is on the plane when h 6= 0 while po is a constant

vector representing the position of a point of the plane when

h = 0. The scalar k, representing the stiffness of the surface,

has been set to 10000 N/m.

An industrial robot Comau SMART-3 S is considered for

the simulation case study, using MATLAB/Simulink. The

robot has a six-degree-of-freedom anthropomorphic geom-

etry (see [7] for the kinematic and dynamic model).

The end-effector tool is a rigid stick of 25 cm length.

The robot has a force/torque sensor mounted at the wrist.

Neglecting the weight and inertia of the tool, the force at

the robot’s tip pq and that measured at the robot wrist by

the force sensor are the same, while a moment is measured

by the sensor if the stick is not aligned to on.

A camera is mounted on the robot end effector. It is

assumed that the intrinsic parameters of the camera are

affected by a 3% error, while the extrinsic parameters are

supposed to be known with a tolerance of ±1 cm for the

position and ±3 deg for the orientation. The object features

are 4 points at the corners of a square of 10 cm side.

The control parameters in (31) and (32) are cho-

sen as: KPr = diag{250, 250, 250, 15, 15, 15}, KDr =

sec

m

sec

x

y z

Fig. 1. Pose estimation error in the first simulation. Top: position error;
bottom: orientation error.

sec

N

x

y

z

sec

Nm

x

y

z

Fig. 2. Measured force (top) and moment (bottom) in the first simulation.

diag{220, 220, 220, 10, 10, 10}, kIλ = 0.05; a 1 ms sam-

pling time has been selected.

The desired task is planned in the object frame and con-

sists in a straight-line motion of the end-effector along the zo

axis keeping a fixed orientation with the stick normal to the

xoyo plane. The final position is the estimated rest position of

the plane. During this phase, only the end-effector position

and orientation are controlled, according to the law (31’)

applied to all the task directions. When force is detected, the

motion controller is replaced by the hybrid force/position

control law (31) and (32), with a constant position and

orientation and a desired force of −20 N along the zo axis.

After 2 sec, a desired circular trajectory on the contact plane

with 10 cm radius and 8 sec duration is commanded for

the end-effector position, while the desired orientation is

unchanged and the desired force is kept constant to −20 N.

In the EKF, the non null elements of the matrix Π has been

set equal to 625·10−11 for f , 10−5 for nh and 10−6 for δhq.

The state noise covariance matrix has been selected so as to

give a rough measure of the errors due to the simplification

introduced on the model (constant velocity), by considering

only velocity disturbance, i.e.

Q=diag{0, 0, 0, 0, 0, 0, 0, 5, 5, 0.5, 102, 103, 103, 103}·10−11.
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sec

m

sec

x

y

z

Fig. 3. Pose estimation error in the second simulation. Top: position error;
bottom: orientation error.

sec

N

x

y

z

sec

Nm

x

y

z

Fig. 4. Measured force (top) and moment (bottom) in the second
simulation.

Notice that the unit quaternion has been used for the orienta-

tion in the EKF. Moreover a 20 ms sampling time has been

set for the estimation algorithm, corresponding to the typical

camera frame rate of 50 Hz.

Two different simulations are presented, to show the effec-

tiveness of the use of force and joint position measurements,

besides visual measurements.

In the first simulation, only the visual measurements are

used. The object pose estimation errors are reported in

Fig. 1. The position error is computed as the difference

between the real position of the origin of the objet frame

and the estimated position referred to the object frame;

the orientation error is defined as the norm of the vector

part of the quaternion extracted from the rotation matrix

representing the mutual orientation of the real object frame

with respect to the estimated frame. The task starts at time

to = 0 s, when an estimate of the object pose is available

from visual measurements; notice that the initial value of the

pose estimation error in non null, due to camera calibration

errors and remains different from zero during all the task.

The time history of the force and moments measured by

the sensor are reported in Fig. 2. Notice that the normal

component of the measured force (the z component), after a

transient, reaches a value close to the desired one. However,

the y component of the force remains non null and a

moment different from zero can be observed during the task

execution, due to the error in the estimation of zo.

The same task is repeated using also the contact force and

the joint position measurements for object pose estimation;

the results are reported in Fig. 3 and Fig. 4. Before the

contact (i.e. before time tc ≃ 2.2 s), the estimation errors are

the same as in the previous simulation. After the contact,

the benefit of using additional measurements in the EKF

produces a significant reduction of the pose estimation error,

especially for the z component of the position (aligned to

zo) and for the orientation. The peak of the measured force

during the transient is lower than before and the value of

the normal component of the force, during the execution of

the circle, remains very close to the desired value of −20 N.

Finally, all the other components of the measured force, as

well as the measured moment, become null after a short

transient, meaning that the stick remains aligned to zo.

VI. CONCLUSION

A 6-DOF hybrid force/position control scheme was pro-

posed in this paper. The environment is a rigid object of

known geometry but of unknown and possibly time varying

pose. A pose estimation algorithm is adopted, based on

visual, force and joint positions data. Simulation results

have demonstrated the superior performance of the proposed

control scheme with respect to an algorithm using only visual

measurements for the estimation of the object pose.
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