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Abstract— A proportional-derivative (PD) control with on-
line gravity compensation is proposed for regulation tasks
of robot manipulators with flexible links. The control law is
an extension of a previous PD control with constant gravity
compensation at the desired configuration. It is based on a
gravity-biased modification of the desired link deflection and
requires measuring only position and velocity on the joint side.
Global asymptotic stability of the control law at the desired
robot configuration is proven via Lyapunov argument and La
Salle’s Theorem. Simulation tests on a two-link arm are carried
out in order to compare performance of the new scheme with
respect to the case of constant gravity compensation and results
on the advantages of the on-line compensation are shown.
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I. INTRODUCTION

Introducing flexible elements in robot mechanical structure

can be regarded as a useful means to increase the level of

safety and more in general dependability of robot manipu-

lators mainly addressed to interaction with humans. Take as

an example the application field of biomedical or assistive

robotics, where a very close human-robot interaction is

a key-element for the robot operating mode and intrinsic

compliance is often used to increase robot lightness and

safety in the interaction [1], [2], [3], [4].

However, the price to pay is a degradation of robot per-

formance when control algorithms conceived for completely

rigid robots are applied to the case of mechanical flexibility

[5], [6]. Phenomena of vibrational modes and, in the worst

case, instability during interaction [7], [8] may occur.

Mechanical flexibility can be thought to be concentrated at

joints (in this case robots are referred as robots with elastic

joints) or else at links (from here the name of robots with

flexible links) [9]. Further, just like for rigid robots, control

of flexible robots is aimed at pursuing the two main goals

of regulation and tracking control.

In this work, attention is focused on the control of robot

manipulators with flexible links for regulation to a desired

final configuration.

In the case of rigid robots, it is well known that global

regulation to a desired configuration qd can be achieved by a

PD control law, either with a constant gravity compensation
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term g(qd) (and sufficiently large positional gains) [10] or

with a nonlinear gravity compensation term g(q) evaluated

(on-line) at the current configuration [11].

In the case of link flexibility, it has been proven in [12]

that a simple PD controller suffices to globally stabilize

about any desired configuration flexible arms under gravity.

The control stability was demonstrated for the full nonlinear

model of multilink flexible robots in presence of constant

feedforward gravity compensation, which is evaluated at the

desired reference position, and in absence of feedback from

the elastic coordinates.

The extension to the on-line gravity compensation is

complicated by the fact that gravity torque depends on the

robot joint coordinates and on the link deflections, whereas

quite often only the joint positions are measurable. To this

regard, special attention is posed in the literature to the use

of observers to estimate link deflection rates [13], [14], [15].

The contribution of this paper is to provide a PD control

law with on-line gravity compensation for robot manipulators

with flexible links which requires only joint measurements

and has guaranteed global stabilization properties. In a way

similar to the approach in [16], [4] for robots with elastic

joints, the fundamental idea is to use a new variable, named

‘gravity-biased’ modification of the desired deflection, for

estimating the gravity torque at each configuration.

This controller allows improving the transient behavior of

the original control law in [12]. Also, if used in combination

with a point-to-point interpolating trajectory, it allows:

• operating at lower motor torques by preventing motor

saturation (typically occurring during the first instant of

motion);

• reducing the position error and the oscillations in link

deflections and joint torques.

The work is organized as follows. Section II recalls

dynamic modelling of robot manipulators with flexible links.

Section III introduces the PD control law with on-line gravity

compensation, the analysis of the closed-loop equilibria and

the proof of asymptotic stability via a Lyapunov argument.

Finally, simulation results on a two-link flexible arm are

reported in Sect. IV. They are compared with the PD control

with constant gravity compensation for robots with flexible

links.

II. DYNAMIC MODEL

Consider an n-link flexible arm where bending deforma-

tions are limited for each link to the plane of rigid motion.

Under the following assumptions [9]:
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A1. the arm is a slender beam with uniform geometric

characteristics and homogeneous mass distribution;

A2. the arm is flexible in the lateral direction, being stiff

with respect to axial forces, torsion, and bending

forces due to gravity; further, only elastic deforma-

tions are present;

A3. nonlinear deformations as well as internal friction or

other external disturbances are negligible effects;

the closed-form dynamic equations of the arm can be written

as

H(q)q̈ + c(q, q̇) + g(q) +

(

0

Dδ̇ + Kδ

)

=

(

u
0

)

(1)

being q =
(

θT δT
)T

, with θ the (n × 1) vector of joint

coordinates and δ the (m × 1) vector of link coordinates of

an assumed mode description of link deflections. Equation

(1) can be rewritten more explicitly as

(

Hθθ(θ, δ) Hθδ(θ, δ)
HT

θδ(θ, δ) Hδδ(θ, δ)

)(

θ̈

δ̈

)

+

(

cθ(θ, δ, θ̇, δ̇)

cδ(θ, δ, θ̇, δ̇)

)

+

(

gθ(θ, δ)
gδ(θ, δ)

)

+

(

0

Dδ̇ + Kδ

)

=

(

u
0

)

. (2)

In (2) the ((n + m) × (n + m)) positive definite symmet-

ric inertia matrix H has been partitioned in blocks according

to the rigid and flexible components, c is the ((n + m) × 1)

vector of Coriolis and centrifugal forces, g =
(

∂Ug

∂q

)

is the

((n + m) × 1) vector of gravitational forces, being Ug the

potential energy due to gravity. Further, K and D are the

system stiffness and damping diagonal matrices.

It is worth noticing that three important properties hold,

which play an important role in demonstrating control sta-

bility. They are:

P1. It can be shown (as for the rigid case) that a

factorization of c exists

c(q, q̇) = S(q, q̇)q̇

such that Ḣ − 2S is skew-symmetric.

P2. Let Ue =
(

1
2δT Kδ

)

denote the elastic energy stored

in the links. Condition

Ue ≤ Uemax < ∞

leads to

‖δ‖ ≤

√

2Uemax

λmin(K)
. (3)

P3. The vector of gravitational torques can be partitioned

as

g(q) =

(

gθ(θ, δ)
gδ(θ)

)

where the dependence of gδ only on θ is due to the

assumption of small deformation of each link. For

it, the following inequalities hold:

∥

∥

∥

∥

∂g

∂q

∥

∥

∥

∥

≤ α0 + α1 ‖δ‖≤ α0 + α1

√

2Uemax

λmin(K)
=:α (4)

‖g(q1) − g(q2)‖ ≤ α ‖q1 − q2‖ . (5)

with α0, α1, α > 0.

III. PD CONTROL LAW

In this section, a control law is proposed which is aimed at

regulating robot position to a desired constant configuration

qd =
(

θT
d δT

d

)T
by means of a proportional-derivative

action in the space of joint variables and a sort of on-line

compensation of the gravitational torque at any configura-

tion during motion. The on-line gravity compensation has

the main purpose of improving robot performance during

regulation tasks.

Thus, the control in [12] is resumed, under the same

hypothesis that only the joint variables are measurable, and

is extended to the case of an on-line gravity compensation.

The PD control with constant gravity compensation in [12]

is expressed as

u = KP (θd − θ) − KD θ̇ + gθ(θd, δd), (6)

where KP and KD are (n × n) symmetric positive definite

matrices and

δd = −K−1gδ(θd). (7)

Global asymptotic stability of the (unique) closed-loop

equilibrium state q = qd, q̇ = 0 was proven under the

assumption that

λmin(Kq) = λmin

(

Kp 0
0 K

)

> α (8)

with α as in (4).

On the other hand, the PD control law with on-line gravity

compensation is formulated as follows:

u = KP (θd − θ) − KD θ̇ + gθ(θ, δ̃), (9)

where δ̃ is a ‘gravity-biased’ modification of the desired

deformation δd expressed as:

δ̃ = −
(

δd + 2K−1gδ(θ)
)

(10)

It should provide the correct gravity compensation at steady

state, even without a direct measure of δ. As a matter of

fact, the control law (9) can be implemented using only joint

variables.

A. Closed-loop equilibria

The equilibrium configurations of the closed-loop system

(1), (9) are computed by setting θ̇ ≡ δ̇ ≡ 0. This yields

gθ(θ, δ) = KP (θd − θ) + gθ(θ, δ̃) (11)

gδ(θ) = −Kδ. (12)
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The following expansion holds true:

gθ(θ, δ̃) − gθ(θd, δ̃d) = gθ(θ, δ̃) − gθ(θd, δd) = gθ(θd, δd)

+
∂gθ(θ, δ̃)

∂q̃

∣

∣

∣

∣

∣

θ=θd,δ=δd

(q̃ − q̃d) + o(‖q̃ − q̃d‖
2) − gθ(θd, δ̃d)

= gθ(θd, δd) +
(

∂gθ(θ,δ̃)
∂θ

∂gθ(θ,δ̃)

∂δ̃

)
∣

∣

∣

θ=θd,δ=δd

(

θ − θd

δ̃ − δ̃d

)

+o(‖q̃ − q̃d‖
2)−gθ(θd, δd)

=
(

∂gθ(θ,δ̃)
∂θ

∂gθ(θ,δ̃)

∂δ̃

)
∣

∣

∣

θ=θd,δ=δd

(

θ − θd

δ̃ − δ̃d

)

+o(‖q̃ − q̃d‖
2) (13)

being q̃ =
(

θT δ̃T
)T

From (11) and (13) it follows that

gθ(θ, δ)=KP (θd − θ)+gθ(θ, δ̃)+gθ(θd, δd)−gθ(θd, δd)

= KP (θd − θ)+
∂gθ(θ, δ̃)

∂q̃

∣

∣

∣

∣

∣

θ=θd,δ=δd

(q̃−q̃d)+gθ(θd, δd)

+o(‖q̃ − q̃d‖
2) (14)

and the closed-loop system (11), (12) becomes

KP (θd − θ) = gθ(θ, δ) − gθ(θd, δd)

−
∂gθ(θ, δ̃)

∂q̃

∣

∣

∣

∣

∣

θ=θd,δ=δd

(q̃ − q̃d) − o(‖q̃ − q̃d‖
2) (15)

K(δd − δ) = gδ(θ) − gδ(θd). (16)

where condition (7) has been used.

Equations (15), (16) can be written as

Kq(qd − q) = g(q) − g(qd)

−

(

∂gθ(θ,δ̃)
∂q̃

∣

∣

∣

θ=θd,δ=δd

(q̃ − q̃d) + o(‖q̃ − q̃d‖
2)

0

)

(17)

being

Kq =

(

Kp 0
0 K

)

.

Taking into account conditions (4), (5), the following

inequalities can be derived, if assumption (8) holds true:

‖Kq (qd − q)‖ ≥ λmin (Kq) ‖qd − q‖

> α ‖qd − q‖ ≥ ‖g(qd) − g(q)‖ (18)

and
∥

∥

∥

∥

∥

g(q)−g(qd)−

(

∂gθ(θ,δ̃)
∂q̃

∣

∣

∣

θ=θd,δ=δd

(q̃−q̃d)+o(‖q̃−q̃d‖
2)

0

)∥

∥

∥

∥

∥

2

= ‖g(qd) − g(q)‖
2

+

∥

∥

∥

∥

∥

∥

∂gθ(θ, δ̃)

∂q̃

∣

∣

∣

∣

∣

θ=θd,δ=δd

(q̃ − q̃d)

∥

∥

∥

∥

∥

∥

2

+
∥

∥o(‖q̃−q̃d‖
2)

∥

∥

2
≤ α2 ‖qd − q‖

2

+

∥

∥

∥

∥

∥

∂gθ(θ, δ̃)

∂q̃

∥

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

∣

θ=θd,δ=δd

‖q̃d − q̃‖
2

+
∥

∥o(‖q̃−q̃d‖
2)

∥

∥

2

≤ α2 ‖qd − q‖
2

+ α2
♯ ‖θd − θ‖

2
+

∥

∥o(‖q̃−q̃d‖
2)

∥

∥

2

= α2 ‖θd − θ‖
2

+ α2 ‖δd − δ‖
2

+ α2
♯ ‖θd − θ‖

2

+
∥

∥o(‖q̃−q̃d‖
2)

∥

∥

2
=

(

α2 + α2
♯

)

‖θd − θ‖
2

+α2‖δd − δ‖
2
+

∥

∥o(‖q̃−q̃d‖
2)

∥

∥

2
, (19)

with α♯ to be defined below.

It has to be noted that in (19) the following inequalities

have been used:

∥

∥

∥

∥

∂g(q)

∂q

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

(

∂gθ(θ,δ)
∂q

∂gδ(θ)
∂q

)∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∂gθ(θ, δ)

∂q

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∂gδ(θ)

∂q

∥

∥

∥

∥

2

≤ (α∗

01 + α1 ‖δ‖)
2

+ α∗2
02 (20)

∥

∥

∥

∥

∂gθ(θ, δ)

∂q

∥

∥

∥

∥

≤ α∗

01+α1 ‖δ‖≤α∗

01+α1

√

2Umax

λmin (K)
= α∗

1 (21)

∥

∥

∥

∥

∂gδ(θ)

∂q

∥

∥

∥

∥

≤ α∗

02 = α∗

2. (22)

and, consequently,

‖gθ(q1) − gθ(q2)‖ ≤ α∗

1 ‖q1 − q2‖ (23)

‖gδ(θ1) − gδ(θ2)‖ ≤ α∗

2 ‖θ1 − θ2‖ (24)

and

∥

∥

∥

∥

∥

∂gθ(θ, δ̃)

∂q̃

∥

∥

∥

∥

∥

2
∣

∣

∣

∣

∣

∣

θ=θd,δ=δd

‖q̃d − q̃‖
2
≤ α∗2

1 ‖q̃d − q̃‖
2

= α∗2
1

(

‖θd − θ‖
2

+
∥

∥2K−1 (gδ(θd) − gδ(θ))
∥

∥

2
)

≤ α∗2
1 ‖θd − θ‖

2
+ α∗2

1

∥

∥2K−1
∥

∥

2
‖gδ(θd) − gδ(θ)‖

2

≤ α∗2
1 ‖θd − θ‖

2
+ α∗2

1 α∗2
2

∥

∥2K−1
∥

∥

2
‖θd − θ‖

2

= α∗2
1 ‖θd − θ‖

2
(

1 + α∗2
2

∥

∥2K−1
∥

∥

2
)

≤α∗2
1

(

1+α∗2
2 λ2

max

(

2K−1
))

‖θd − θ‖
2

=α2
♯ ‖θd − θ‖

2
. (25)

with α∗

1, α
∗

01, α
∗

2, α♯ > 0.

From (18) it follows that

‖Kq (qd − q)‖
2
≥ K2

qm ‖qd − q‖
2

= K2
qm ‖θd − θ‖

2
+K2

qm ‖δd − δ‖
2

(26)

being Kqm = λmin(Kq). Thus, neglecting o(‖q̃ − q̃d‖
2
),

equality (17) holds true only for (θ, δ) = (θd, δd) under the

assumption that

K2
qm >

(

α2 + α2
♯

)

(27)

is satisfied.

Summarizing, locally around (θ, δ) = (θd, δd), (θd, δd) is a

unique isolated equilibrium configuration of the closed-loop

system (1), (9).
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B. Proof of asymptotic stability

The stability of the proposed control law is proven by us-

ing the direct Lyapunov method and then invoking LaSalle’s

Theorem.

Consider the auxiliary configuration-dependent function

P (q, q̃) = P (θ, δ) =
1

2
δT Kδ +

1

2
(θd − θ)

T
KP (θd − θ)

+Ug(q) − Uθ(q̃). (28)

where Ug is the potential energy due to gravity such that

∂Ug(q)

∂q
=

(

gθ(θ, δ)
gδ(θ)

)

(29)

and Uθ is defined as Uθ(q̃) =
∫ ∂Ug(q̃)

∂θ
dθ such that

∂Uθ(q̃)

∂θ
= gθ(q̃). (30)

It is easy to see that this function, under assumption (27),

has a unique minimum in (θd, δd). In fact, the necessary

condition for a minimum of P (q, q̃) is

∇P (q, q̃) =

[

∇θP
∇δP

]

=

[

−KP (θd − θ) + gθ(θ, δ) − gθ(θ, δ̃)
Kδ + gδ(θ)

]

= 0. (31)

Equation (31) is exactly in the form (11), (12). Using the

same arguments of Section III-A, it can be obtained that

∇P (q, θ) = 0 only at (θd, δd). Moreover,

∇2P (θd, δd) =

[

∇2
θP ∇θ∇δP

∇δ∇θP ∇2
δP

]
∣

∣

∣

∣

θ=θd,δ=δd

=

[

KP + ∂gθ(θ,δ)
∂θ

− ∂gθ(θ,δ̃)
∂θ

∂gδ(θ)
∂θ

∂gθ(θ,δ)
∂δ

− ∂gθ(θ,δ̃)
∂δ

K

]
∣

∣

∣

∣

∣

θ=θd,δ=δd

=

[

KP
∂gδ(θd)

∂θ

0 K

]

. (32)

The sufficient condition for a minimum, i.e.

∇2P (θ, δ)|θ=θd,δ=δd
> 0. (33)

is satisfied under the assumption (8).

The function derived from (28) as

V (θ, δ, θ̇, δ̇) =
1

2
q̇T H(q)q̇ + P (θ, δ) − P (θd, δd)

is zero at the chosen equilibrium state, θ = θd, δ = δd,

θ̇ = δ̇ = 0, and positive for any other state in an open neigh-

borhood of this equilibrium, provided that condition (27)

holds true. Hence, V is a candidate Lyapunov function.

Along the trajectories of the closed-loop system (1), (9),

the time derivative of V becomes

V̇ = q̇T H(q)q̈ +
1

2
q̇T Ḣ(q)q̇ + δ̇T Kδ − θ̇T KP (θd − θ)

+ q̇T

(

∂Ug(q)

∂q

)T

−θ̇T

(

∂Uθ(q̃)

∂θ

)T

= q̇T (−c(q, q̇) − g(q))

+

(

−

(

0

Dδ̇ + Kδ

)

+

(

u
0

))

+
1

2
q̇T Ḣ(q)q̇ + δ̇T Kδ

−θ̇T KP (θd − θ) + q̇T g(q) − θ̇T gθ(θ, δ̃) = −q̇T g(q)

+q̇T

(

KP (θd − θ) − KD θ̇ + gθ(θ, δ̃)

−
(

Dδ̇ + Kδ
)

)

+ δ̇T Kδ

−θ̇T KP (θd − θ)+q̇T g(q) − θ̇T gθ(θ, δ̃)= θ̇T KP (θd − θ)

−θ̇T KD θ̇ + θ̇T gθ(θ, δ̃) − δ̇T Dδ̇ − δ̇T Kδ + δ̇T Kδ

−θ̇T KP (θd − θ) − θ̇T gθ(θ, δ̃)

= −θ̇T KD θ̇ − δ̇T Dδ̇ ≤ 0 (34)

where the skew-symmetry of matrix Ḣ − 2S as appears in

Property P1. has been used.

When V̇ = 0, it is θ̇ = δ̇ = 0 and the closed-loop

equations give

gθ(θ, δ) = KP (θd − θ) + gθ(θ, δ̃) (35)

gδ(θ) = −Kδ. (36)

In view of the previous equilibrium analysis and of con-

dition (27), it is q̈ = 0 if and only if q = qd, or θ = θd and

δ = δd. Invoking LaSalle’s invariant set Theorem, asymptotic

stability of the desired point follows.

IV. SIMULATION RESULTS

Simulation tests have been carried out in order to measure

dynamic performance of the PD controller with on-line vs.

constant gravity compensation.

To this purpose, the planar two-link flexible arm un-

der gravity shown in Fig. 1 is modeled. Robot dynam-

ics as well as the regulation task are the same as those

reported in [12]. The arm has the initial vertical equi-

librium configuration θi = [−π/2 0 ]T rad, δi =
[ 0 0 0 0 ]T m and is commanded to reach the de-

sired configuration θd = [−π/4 0 ]T rad, δd =
[−0.15 −0.0045 −0.0056 −0.000076 ]T m. The task is

repeated for the two cases of constant gravity compensation

(i.e. control law (6)) and on-line gravity compensation (i.e.

control law (9)) and results are reported in Figs. 2-3 and

Figs. 4-5, respectively.

Although both controllers achieve the correct steady-state

position, the transient with the on-line gravity compensation

is smoother than that with the constant gravity compensation

and link deformations and motor torques are visibly reduced

(Figs. 3, 5). It has to be noted that simulation tests have

been carried out with the same PD feedback gains KP =
diag{15, 15} Nm/rad and KD = diag{3, 3} Nms/rad.

Improvements due to on-line gravity compensation are

particularly evident when the control is applied to the case

of a desired variable reference position over time instead of
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Fig. 1. A planar two-link flexible arm
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Fig. 2. Joint position error and joint angles with constant gravity
compensation for constant reference
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Fig. 3. Link positions and motor torques with constant gravity compensa-
tion for constant reference
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Fig. 4. Joint position error and joint angles with on-line gravity compen-
sation for constant reference
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Fig. 5. Link positions and motor torques with on-line gravity compensation
for constant reference

a constant configuration. This choice is motivated by the fact

that the big initial error inevitably present in a regulation to a

constant reference position can be cause of motor saturation

and large torque values. Using a variable position reference

can overcome this critical issue.

A point-to-point quintic polynomial trajectory (with zero

velocity and acceleration boundary conditions) has been

planned from the initial configuration qi = ( θT
i δT

i )
T

up to the final configuration qd = ( θT
d δT

d )
T

in a time

interval of 4 s, with 2 s for the adjustment. Due to the

initial null error, both controllers (6) and (9) can perform

the motion with sufficiently high positional gains KP =
diag{1000, 1000} Nm/rad.

The results are shown in Figs. 6 and 7 for constant

gravity compensation and, respectively, in Figs. 8–9 for on-

line gravity compensation. A comparison of Fig. 6 with

Fig. 8 indicates a reduction of the overall positional error

obtained thanks to on-line gravity compensation. Also, the

torque profile is different; in particular at the initial time

instants, a ripple is present for the case of constant gravity

compensation (Figs. 7 and 9). Ripple is still present even if

the control gains are changed, although the results are not

presented here for brevity.
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Fig. 6. Joint position error and joint angles with constant gravity
compensation for polynomial trajectory

V. CONCLUSIONS

This paper has proposed a PD control action on the joint

variables with on-line gravity compensation for flexible link

manipulators. The novelty of the control with respect to the

previous work in [12] is the estimate of gravity torque in a

gravity-biased modification of the desired link deformation
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Fig. 7. Link positions and motor torques with constant gravity compensa-
tion for polynomial trajectory
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Fig. 8. Joint position error and joint angles with on-line gravity compen-
sation for polynomial trajectory

δd based on joint variables, in lieu of the actual link deflec-

tion. This avoids the use of extra sensors on the link side

for measuring link deflections. Global asymptotic stability

of this control law has been proven through a Lyapunov

argument and La Salle’s Theorem. Control performance has

been evaluated by means of simulations tests on a two-

link arm with flexible links. The results have shown that

the proposed controller with on-line gravity compensation

typically outperforms the previous controller with constant

gravity compensation in terms of transient behavior and

torque values. This has been studied for the case of con-

stant reference position and for the case of an interpolating

reference trajectory for regulation tasks, in order to avoid the

problem of actuator saturation.
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