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Abstract— A nonprehensile manipulation system consisting
of a dexterous plate (e.g., a peel) which is intended to induce
a rotating movement on a disk (e.g., a pizza) is studied. A
dynamic model based on the Euler–Lagrange equations is first
derived. Then, a controllability analysis of this model is carried
out, which shows some intrinsic limitations of the proposed
system. Later, a closed-loop control strategy is proposed to
induce the desired rotating speed in the disk, while maintaining
the position of both the disk and the plate as close to zero
as possible. A stability analysis is performed to show the
boundedness of all the states, the oscillatory response of all
of them, and the maximum amplitude of these oscillations.
A numerical simulation is employed to verify the proposed
controller and the predicted behavior found in the stability
analysis.

I. INTRODUCTION

Nonprehensile manipulation consists in manipulating ob-
jects through a mechanical system (e.g., a robot), but in
contrast with the standard approach, the movement is induced
without grasping the object to be manipulated. The main
advantages of the nonprehensile manipulation are that it
extends the workspace of the robot and the number of tasks
it can perform. However, most of the times this tasks delivers
the mechanical system to be underactuated (i.e., fewer inputs
than degrees of freedom). This implies that the controller
design and the corresponding stability analysis usually are
more complicated than in the standard manipulation case.
Some early important achievements in this area are due to
Lynch for the planar case [1]. A broad overview of the topic
and state-of-the art are given in [2].

A complex nonprehensile manipulation task is commonly
divided into more simple sub-tasks called nonprehensile
motion primitives. Such primitives include rolling [3], [4],
[5], sliding [6], object transportation [7], throwing [8], [9],
and catching [10]. Most of these primitives are gathered
in a recent paper [11], in the framework of the RoDyMan
project1.
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In this work, we are interested in a particular task con-
cerning the sliding primitive. This task consists in induc-
ing a rotating movement on a disk (pizza) by employing
an actuated dexterous plate (peel), as shown in Figure 1.
This system was inspired by the movements of the Italian
pizza chefs and was initially proposed in [12]. Nevertheless,
the problem of positioning objects by sliding was studied
before in [13]. Later, in [14] the problem of positioning and
orienting of a rigid body over a 2D plate was considered.
Finally, a method for positioning and orienting a rigid body
with a six-degrees-of-freedom rigid plate was proposed and
successfully tested in [15]. From a practical point of view,
nonprehensile manipulation through the sliding primitive is
a very important control application in the industry, particu-
larly in the so-called part feeders.

The problem of position and orientation control of a
disk with a two-degrees-of-freedom manipulation system was
addressed in [16]. In that work, the authors study the physical
properties of the mechanical system to successfully drive the
disk to an arbitrary position and orientation on the plate. They
also show that the translation of the disk can be done without
rotating the disk but not vice versa. However, in contrast with
the linear positioning control scheme, the control strategy
for the rotation part is mainly carried out in an open loop
fashion, since no feedback of the disk rotation is employed
in the control loop.

The main contribution of our work, in contrast with the
mentioned above, is the design of a model based feedback
control strategy. To the best of the authors’ knowledge, this
is the first attempt to propose such a strategy along with a
closed-loop dynamic analysis that formally guarantees the
good behavior of the system.

The rest of the manuscript is organized as follows: in
Section II a dynamic model of the system based on the
Euler–Lagrange formulation is derived. Furthermore, a con-
trollability analysis is carried out to gain insight into the
limitations of the model. In Section III a feedback control
strategy is proposed to rotate the disk at a constant velocity
while maintaining the remaining coordinates close to the
origin. The corresponding closed-loop stability analysis is
provided in the same section. A numerical simulation is given
in Section IV to show the validity of the approach. Finally,
some conclusions and directions for future work are given
in Section V.

II. MATHEMATICAL MODEL

Let ow–xwywzw be the inertial frame, oh–xhyhzh a
frame attached to the plate and op–xpypzp a frame attached
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to the disk, as shown in Figure 1. The generalized coordinates
for the plate, which is driven by a robotic manipulator,
are given by xh ∈ R and θ ∈ R, where xh is the first
component of oh and θ is the rotation angle of the plate with
respect to the inertial frame, defined by the basic rotation
Rh = Rx(θ). The generalized coordinates for the disk are
chosen as xp, yp, φ ∈ R, where xp and yp are the first two
components2 of ohp, and φ is the angle of rotation of the
disk with respect to the zhp axis, defined by the basic rotation
matrix Rh

p = Rz(φ). The superscript denotes the frame in
which the vector/matrix is expressed and it is omitted when
referenced with respect to the world frame. Therefore, the
configuration of the system is completely described by the
vector

q =
[
xh θ xp yp φ

]T
. (1)

Fig. 1. Disk and plate system.

The position of the disk center of mass with respect to the
world frame is given by

op = oh +Rho
h
p =

[
xh + xp ypcθ ypsθ

]T
, (2)

where sx and cx are shorthand notations for sin(x) and
cos(x), respectively. The orientation of the disk frame with
respect to the inertial frame is described by the rotation
matrix

Rp = RhR
h
p . (3)

From this last matrix, one can obtain the disk angular velocity
vector ωp through the relation

Ṙp = S(ωp)Rp , (4)

where S(·) is the standard skew-symmetric matrix operator,
as explained for example in [17, p. 107].

The kinetic energy is given by

T (q, q̇) =
1

2
mhẋ

2
h+

1

2
Ihxθ̇

2+
1

2
mpȯ

T
p ȯp+

1

2
ωT

pRpIpR
T
pωp ,

(5)
where mh and mp are the masses of the plate and the disk
respectively, Ihx is the (1, 1) component of the inertia tensor
of the plate, and Ip is the inertia tensor of the disk, both
with respect to their frame. The potential energy is

U(q) = mpgsθyp , (6)

where g is the gravity acceleration constant. To derive a
dynamic model, consider the Euler–Lagrange equations of

2Due to the slight abuse of notation, care should be taken to not confuse
the scalars xh, xp, and yp with the vectors xh, xp, and yp.

motion
d

dt

(
∂L
∂q̇

)T

−
(
∂L
∂q

)T

= ξ (7)

with Lagrangian L(q, q̇) = T (q, q̇)−U(q). In this particular
problem, the Coulomb friction terms play a crucial role for
completing the task. These terms are defined as functions
of the relative linear velocities of the disk ẋp and ẏp with
respect to the plate referred to the plate frame, and are
described by [16]

fx = −mpgµpsign(ẋp) (8)
fy = −mpgµpsign(ẏp) , (9)

where µp is the Coulomb friction coefficient and sign(x) is
the function defined by

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

.

On the other hand, there is a torque over the zhp axis
produced by the movement of the xh coordinate and the
change of the pressure distribution which in turn is induced
by the acceleration on the θ coordinate [16], and is given by

τφ = −µφIpxsign(ẋp)θ̈ , (10)

where Ipx is the (1, 1) component of the tensor Ip. By
Newton’s third law of motion, there must be a reaction torque
acting on the θ coordinate. However, this torque can be
neglected by assuming that the inertia of the plate is much
bigger than that of the disk.

Overall, the non-conservative and external forces are rep-
resented by the vector

ξ =
[
fh τθ fx fy τφ

]T
, (11)

where fh is the external force applied over the plate in the
xh direction and τθ is the external torque over the same axis.

A further simplification can be made if it is considered the
linear and angular accelerations of the plate as inputs, i.e.

u ,
[
uh uθ

]T
,
[
ẍh θ̈

]T
. (12)

In order to employ continuous tools to analyze the system
dynamics, we make the following approximation of the sign
function

sign(xi) ≈ tanh(αixi) , (13)

where each αi is a positive constant.
Since we are interested in controlling the disk rotation

speed, we define the error

˜̇
φ = φ̇− φ̇d , (14)

where φ̇d is the desired disk rotation speed. Now, let the
state space vector x ∈ R9 be defined by

x =
[
x1 x2 · · · x9

]T
,
[
xh θ xp yp ẋh θ̇ ẋp ẏp

˜̇
φ

]T
. (15)
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Then the system dynamics can be put in the form

ẋ = f(x) + g1uh + g2(x)uθ , (16)

where

f(x) =


x5
x6
x7
x8

f2(x)

 g1 =

[
04

g12

]
g2(x) =

[
04

g22(x)

]
,

(17)
with

f2(x) =


0
0

−gµp tanh(k7x7)
−gµp tanh(k8x8)− g sin(x2) + x4x

2
6

0

 (18)

g12 =
[
1 0 −1 0 0

]T
(19)

g22(x) =
[
0 1 0 0 −µφ (Ipx/Ipz) tanh(k7x7)

]T
,

(20)

where Ipz is the (3, 3) component of the inertia tensor Ip.
For the present system, the exact linearization via feedback

cannot be applied, since it does not satisfy the necessary
condition (iii) of [18, Theorem 2.4, p. 250], that is, the
distribution G0 , span{g1, g2} fails to be involutive. Notice
also that (16) has drift for which Chow’s theorem does not
apply. Therefore, a less strong property, i.e. accessibility
will be investigated to gain some insight for the control
design. By computing the Philip Hall basis [19, p. 344]
with the vector fields f , g1, and g2, one can check that
the accessibility distribution is of dimension 9 in the set
D =

{
x ∈ R9 : θ̇ 6= 0, ẋp 6= 0, yp 6= 0

}
, and thus the system

is accessible. Furthermore, by computing the base

{g1, g2, [g1,f ] , [g2,f ] , [g1, g2] , [f , [g1,f ]] , [f , [g2,f ]] ,

[f , [g1, g2]] , [g1, [g1,f ]] , [g2, [g2,f ]]}

one can prove that the system is strongly accessible in
D [20, p. 180]. However, if the centripetal force term
x4x

2
6 is neglected, as is commonly assumed in the related

literature (see for example [15], [16]), the strong accessibility
condition is no longer met, but only the accessibility one, re-
stricted to Da =

{
x ∈ R9 : ẋp 6= 0, ẏp 6= 0

}
. The following

assumption is addressed in this work.
Assumption 1: The centrifugal force term x4x

2
6 in (16)

can be neglected. �
Remark 1: This assumption is made to simplify the con-

troller design and the stability analysis, but the term x4x
2
6 is

kept for simulating the system dynamics. �

III. CONTROL DESIGN AND STABILITY ANALYSIS

The control objective of this work is inducing a rotating
movement on the disk dough at a desired angular speed φ̇d
while keeping the remaining coordinates as close to zero as
possible.

A. Control design

For fulfill the objective mentioned above, we propose the
following control law

uh = −k1x1 − k5x5 + ah sin (ωht) (21)

uθ =
tanh(k7x7)Ipz

µφIpx
k9x9 − k2x2 − k6x6 . (22)

The first term of (21) is a PD control to stabilize the peel
linear direction plus a feedforward term, ah sin (ωht), to
ensure the condition ẋp = x7 6= 0. On the other hand,
the control law (22) is a PD control to stabilize the peel
orientation plus a nonlinear term to induce a rotation in the
disk by exploiting the torque generated in (10).

The corresponding closed-loop dynamics is given by

ẋ1 =x5 , ẋ2 = x6 , ẋ2 = x7 , ẋ4 = x8,

ẋ5 =− k1x1 − k5x5 + ah sin (ωht)

ẋ6 =− k2x2 − k6x6 +
Ipz
µφIpx

tanh(k7x7)k9x9

ẋ7 =− gµp tanh(k7x7) + k1x1 + k5x5 − ah sin (ωht)

ẋ8 =− gµp tanh(k8x8)− g sin(x2)

ẋ9 =− k9x9 tanh2(k7x7)

+
µφIpx
Ipz

tanh(k7x7) (k2x2 + k6x6) . (23)

B. Stability analysis

The following analysis will be carried out considering
that stationary state has reached. Furthermore, the closed-
loop dynamics is divided into the four subsystems shown in
Figure 2.

Fig. 2. Closed-loop dynamics.

1) The first subsystem Σ1, comprised of the states x1 and
x5, is a linear stable system with poles arbitrarily chosen
by means of the gains k1 and k5, under the effect of
the sinusoidal input ah sin(ωht). In stationary state the
amplitude of the states x1 and x5 are sinusoidals with
frequency ωh and amplitude easily calculated to be

|x1| = ah/D(k1, k5, ωh) (24)
|x5| = ahωh/D(k1, k5, ωh) , (25)

where

D(k1, k5, ωh) =

√
(k1 − ω2

h)
2

+ k25ω
2
h . (26)

2) The second subsystem, corresponding to the states x3
and x7, will be analyzed by employing the describing
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function method [21, p. 157], for which the config-
uration shown in Figure 3 is considered with input
u = −uh and output y = x7. The describing function

Fig. 3. Nonlinear feedback loop.

that approximates the nonlinearity in the Σ2 subsystem
for α7 >> 0 in (13), is given by

gµp tanh(·) ≈ 4gµp

πA(·)
, (27)

where A(·) is the input amplitude of the nonlinear block
signal, which is assumed to be sinusoidal. The approxi-
mate closed-loop transfer function of the subsystem Σ2

is

y(s) =

(
1

s+ 4gµp/(πA(·))

)
u(s) = h(s)u(s) , (28)

where s is a complex variable of Laplace domain.
According to [22, Ch. 3] the output of this system is the
sum of a self-oscillatory response and a forced response.
The frequency of the self oscillatory component ωs is
obtained by solving the equation

jωs = 4gµp/(πA(·)) . (29)

Since A(·) is a positive and real function, no unforced
periodic response is present. On the other hand, the
gain for the closed-loop pseudo-transfer function can
be computed as

|h(s)| = 1√
ω2
h + 16g2µ2

p/(π
2A2(·))

, (30)

which is minimum at zero for A(·)→ 0 and maximum
at 1/ωh for A(·)→∞. The input to this subsystem is
u = −uh, which is a sinusoidal signal with zero mean,
frequency ωh and amplitude bounded by

|uh| ≤ ah
(

k1 + k5ωh

D(k1, k5, ωh)
+ 1

)
. (31)

Thus, the approximate steady state output of this sub-
system is a sinusoidal with zero mean given by

x7 = a7 sin (ωht+ φ7) , (32)

where

|a7| ≤
ah
ωh

(
k1 + k5ωh

D(k1, k5, ωh)
+ 1

)
(33)

and φ7 is the phase shift given by

φ7 = atan2(−ahωh, 4gµp/(πA(·))) , (34)

which can be bounded by −π/2 ≤ φ7 ≤ 0. The steady
state response for x3 can be approximated by

x3 = a3 sin (ωht+ φ3) + c3 , (35)

where φ3 is a phase shift, c3 is a bias constant, and

|a3| ≤
ah
ω2
h

(
k1 + k5ωh

D(k1, k5, ωh)
+ 1

)
. (36)

3) To show stability of this subsystem we first recall the
following [23, Theorem 10.3].
Theorem 1: Consider the system

ẋ = f(x) + εg(t,x, ε) . (37)

Suppose
– f , g, and their first partial derivatives with respect

to x are continuous and bounded for all (t,x, ε) ∈
[0,∞)×D0×[−ε0, ε0], for every compact set D0 ⊂
D, where D ⊂ Rn is a domain that contains the
origin;

– The origin is an exponentially stable equilibrium
point of the autonomous system

ẋ = f(x) ; (38)

– g(t,x, ε) is T -periodic in t.
Then, there exist positive constants ε∗ and k such that
for all |ε| < ε∗, equation (37) has a unique T-periodic
solution x̄(t, ε) with the property that ‖x̄(t, ε)‖ ≤ k|ε|.
Moreover, this solution is exponentially stable. �
By employing the identity tanh2(x) = 1 − sech2(x),
the dynamics of the subsystem Σ3 can be written as
equation (37) with x =

[
x2 x6 x9

]T
and

f =

 x6
−k2x2 − k6x6
−k9x9

 (39)

g =

 0
1
cµ

tanh(k7x7)k9x9
g3(x)

 , (40)

where

g3(x) = sech2(k7x7)k9x9

+ cµ tanh(k7x7) (k2x2 + k6x6) ,

cµ = µφIpx/Ipz, f(x) = f and g(t,x, ε) = g, with
ε = 1. As proven before, the steady state solution
for x7 is a T -periodic function of time t, with period
T = 2π/ωh, and so it is g in (40). It is easy to show
that the autonomous subsystem ẋ = f(x), with f(x)
defined in (39), is exponentially stable. By applying
Theorem 1 in the region D , {x : ‖x‖ ≤ ρ}, with
ρ > 0, one can conclude that the solution trajectories for
the states x =

[
x2 x6 x9

]T
are T -periodic functions

of time, and the states converge exponentially to these
solutions. As stated in Theorem 1, the periodic solution
is bounded by ‖x̄(t, ε)‖ ≤ k|ε|. Furthermore, from the
theory of linear bounded input–bounded output systems,
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TABLE I
PARAMETERS USED FOR SIMULATION.

Meaning Parameter Value
Pizza mass mp 0.25 kg

Pizza x-inertia moment Ipx 0.01 kgm2

Pizza z-inertia moment Ipz 0.028 kgm2

Linear Coulomb friction coefficient µp 0.5
Rotational Coulomb friction coefficient µφ 0.5

Gravity acceleration constant g 9.81m/s2

the ultimate bound k|ε| can be made arbitrarily small by
making the gains k2, k6, and k9 arbitrarily large.

4) For this subsystem consider again the block diagram
depicted in Figure 3, with u = −g sin(x2), y = x8, and
w = x4. The approximate transfer function is given
by (28). By the same arguments given in point 2, the
solution trajectories for this system can be approximated
by

x4 = a4 sin(ωht+ φ4) + c4 (41)
x8 = a8 sin(ωht+ φ8) , (42)

where c4 is a bias constant and

a4 ≤ c8g/ω2
h , a8 ≤ c8g/ωh , (43)

with c8 = sup
t

(| sin(x2(t))|).

Overall, we have shown that the approximate solutions of
the closed-loop system are bounded and periodic. Moreover,
the ultimate bound for the states x2, x6, and x9 can be driven
arbitrarily close to zero, which means that the peel will be as
close as desired to the horizontal position and that the pizza
rotation speed will be arbitrarily close to the desired value,
i.e. φ̇ ≈ φ̇d.

IV. NUMERICAL SIMULATION

To validate the results of Section III, a numerical simu-
lation is proposed. As mentioned before, we have kept the
centrifugal term x4x

2
6 in (20) to test the robustness of the

control design. The parameters considered for the system
are given in Table I. The controller parameters in (21)–(22)
were chosen empirically as ωh = 18 rad/s, ah = 2, k1 = 10,
k2 = 10, k5 = 10, k6 = 50, k7 = 20, and k9 = 40. The
sample time considered for the control loop was T = 5 ms.
The desired velocity for the disk rotation is φ̇d = 1 rad/s
in counterclockwise direction. The desired rotation speed is

Fig. 4. Pizza rotation speed: real (—), desired (- - -)

shown in Figure 4 along with the actual speed. In this figure,
it can be appreciated that the disk rotation speed is very close
to the desired one in steady state. In Figure 5, the phase
portrait of xh is shown. In this plot, and in all following plots,
a blue marker is used to indicate the initial point, a green
line to denote the first 15 seconds (transient response) and a
red line to indicate the last 15 seconds (steady state). In this
figure it can be appreciated that the xh and ẋh coordinates
keep oscillating around zero. The amplitude of xh coincides
with the one predicted by (24), i.e |xh| = 0.0055 m. On the
other hand, the phase portrait for the θ coordinate is shown
in Figure 6. In this figure, it can be seen that this coordinate
remains oscillating very close to zero in stationary state. This
in accordance with the stability analysis of Section III. In
Figure 7, the phase portrait for the xp coordinate is shown.
The theoretical bounds for the amplitude of the oscillations
of x3 = xp computed in (36) and x7 = ẋp in (33) are
|a3| ≤ 0.0094 m and |a7| ≤ 0.1694 m/s, respectively, which
are very conservative ones, as can be seen in the figure.
The reason behind these large margins, is simply because
we are taking the worst case for the pseudo-transfer function
gain in (30). Finally, the phase portrait for the yp coordinate
is displayed in Figure 8. As can be seen in this figure,
the oscillation amplitude of this coordinate can be made
arbitrarily small, as it depends on the amplitude of θ, which
in turn can be made arbitrarily small. However, in this case
there is a non-negligible bias term of about 6 mm as stated
in (41).

Fig. 5. Phase portrait of xh: t = 0 s (∗), t ≤ 15 s (—), t > 15 s (—).

V. CONCLUSIONS

A closed-loop control strategy for an underactuated non-
prehensile manipulation system was proposed. The control
strategy is based on the properties of the dynamical model
of the system plus PD controllers. The controllability of this
model was studied to understand the intrinsic limitations
of the system. Then, a closed loop stability analysis was
carried out, assuming a steady state. This analysis showed
that all the states are bounded and that some of them could
be delivered close to zero arbitrarily. It also predicted the
oscillatory response of some states and the amplitude of
these oscillations, which was then verified in the numerical
simulation. As a future work, it will be studied the possibility
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Fig. 6. Phase portrait of θ: t = 0 s (∗), t ≤ 15 s (—), t > 15 s (—).

Fig. 7. Phase portrait of xp: t = 0 s (∗), t ≤ 15 s (—), t > 15 s (—).

Fig. 8. Phase portrait of yp: t = 0 s (∗), t ≤ 15 s (—), t > 15 s (—).
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