
Fault Diagnosis and
Fault-Tolerant Control of
Robotic and Autonomous
Systems

Edited by
Andrea Monteriù, Alessandro Freddi and Sauro Longhi

The Institution of Engineering and Technology



Published by The Institution of Engineering and Technology, London, United Kingdom

The Institution of Engineering and Technology is registered as a Charity in England & Wales
(no. 211014) and Scotland (no. SC038698).

© The Institution of Engineering and Technology 2020

First published 2020

This publication is copyright under the Berne Convention and the Universal Copyright
Convention. All rights reserved. Apart from any fair dealing for the purposes of research
or private study, or criticism or review, as permitted under the Copyright, Designs and
Patents Act 1988, this publication may be reproduced, stored or transmitted, in any
form or by any means, only with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those
terms should be sent to the publisher at the undermentioned address:

The Institution of Engineering and Technology
Michael Faraday House
Six Hills Way, Stevenage
Herts, SG1 2AY, United Kingdom

www.theiet.org

While the authors and publisher believe that the information and guidance given in this
work are correct, all parties must rely upon their own skill and judgement when making
use of them. Neither the authors nor publisher assumes any liability to anyone for any
loss or damage caused by any error or omission in the work, whether such an error or
omission is the result of negligence or any other cause. Any and all such liability
is disclaimed.

The moral rights of the authors to be identified as authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing in Publication Data
A catalogue record for this product is available from the British Library

ISBN 978-1-78561-830-7 (hardback)
ISBN 978-1-78561-831-4 (PDF)

Typeset in India by MPS Limited
Printed in the UK by CPI Group (UK) Ltd, Croydon



Contents

List of contributors xiii
About the editors xxi
Foreword xxiii

1 Fault diagnosis and fault-tolerant control of unmanned aerial
vehicles 1
Ban Wang and Youmin Zhang

1.1 Introduction 1
1.1.1 Unmanned aerial vehicle 1
1.1.2 Fault detection and diagnosis 2
1.1.3 Fault-tolerant control 3

1.2 Modeling of an unmanned quadrotor helicopter 5
1.2.1 Kinematic equations 5
1.2.2 Dynamic equations 7
1.2.3 Control mixing 8
1.2.4 Actuator fault formulation 9

1.3 Active fault-tolerant control 9
1.3.1 Problem statement 10
1.3.2 Adaptive sliding mode control 11
1.3.3 Construction of reconfigurable mechanism 12

1.4 Simulation results 17
1.4.1 Fault estimation and accommodation results 18

1.5 Conclusions 21
References 21

2 Control techniques to deal with the damage of a quadrotor propeller 25
Fabio Ruggiero, Diana Serra, Vincenzo Lippiello, and Bruno Siciliano

2.1 Introduction 25
2.2 Problem statement 26
2.3 Modeling 28

2.3.1 Quadrotor 28
2.3.2 Birotor 30

2.4 Control design 31
2.4.1 PID control scheme 32
2.4.2 Backstepping control scheme 34

2.5 Numerical simulations 36
2.5.1 Description 36
2.5.2 Case study 37



viii Fault diagnosis and fault-tolerant control of robotic systems

2.6 Conclusion 38
Acknowledgments 39

References 39

3 Observer-based LPV control design of quad-TRUAV under
rotor-tilt axle stuck fault 43
Zhong Liu, Didier Theilliol, Liying Yang, Yuqing He and
Jianda Han

3.1 Introduction 44
3.2 Quad-TRUAV and nonlinear modeling 46
3.3 LPV control analysis 48

3.3.1 Polytopic LPV representation 48
3.3.2 Closed-loop analysis with observer-based LPV control 50

3.4 Observer-based LPV control for the quad-TRUAV 52
3.4.1 Observer-based LPV controller synthesis 52
3.4.2 Inverse procedure design 55

3.5 Fault-tolerant design 57
3.5.1 Actuator stuck fault 57
3.5.2 Degraded model method for FTC 57

3.6 Numerical results 59
3.6.1 Fault-free results 59
3.6.2 FTC results under fault 61

3.7 Conclusions 64
Acknowledgments 64

References 64

4 An unknown input observer-based framework for fault and icing
detection and accommodation in overactuated unmanned aerial
vehicles 67
Andrea Cristofaro, Damiano Rotondo, and Tor Arne Johansen

4.1 Introduction 67
4.2 Vehicle model 68

4.2.1 Linearization 70
4.2.2 Measured outputs 71
4.2.3 Control allocation setup 71
4.2.4 Wind disturbance 72

4.3 Icing and fault model 73
4.4 Unknown input observer framework 74
4.5 Diagnosis and accommodation 76

4.5.1 Detection and isolation in UAVs using UIOs 76
4.5.2 Control allocation-based icing/fault accommodation 81

4.6 Enhanced quasi-LPV framework 82
4.6.1 Nonlinear embedding 83
4.6.2 LPV unknown input observer 83



Chapter 2

Control techniques to deal with the damage
of a quadrotor propeller

Fabio Ruggiero1, Diana Serra1, Vincenzo Lippiello1, and
Bruno Siciliano1

This chapter can be considered a tutorial to guide the readers toward the implemen-
tation of active fault-tolerant control systems dealing with the damage of a propeller
of an unmanned aerial vehicle. The addressed aerial device is a quadrotor with fixed
propellers. The presented methodology also supposes to turn off the motor, the oppo-
site of the broken one. In this way, a birotor configuration with fixed propellers is
achieved. State-of-the-art approaches, using a PID-based controller and a backstep-
ping controller, are presented in a tutorial form, thus neglecting the stability proofs,
to leave room to a fast and concise description of the implementation procedures.

2.1 Introduction

Civilians, servicemen, mass media, and researchers paid close attention to unmanned
aerial vehicles (UAVs) in the last decade. The growth of applications in which vertical
takeoff and landing UAVs are becoming present in everyday life is incredible. Pro-
fessional photographers and film-makers are now always accompanied by certified
UAV pilots to see the scene from different points of view. One of the most prominent
electronic commerce websites around the world is planning to deliver packages to
customers’ hands in 30 min, or less, using hexacopters [1]. The White House and
the National Science Foundation accelerated the use of UAVs for civilian uses in
monitoring and inspection of physical infrastructures, quick response to disasters,
agricultural and meteorological domains with a considerable amount of funding [2].
Some companies started to think about a sort of personal UAV equipped with a cam-
era to record self-movies [3], particularly indicated for a sportsman. Oil and gas
facilities see the nondestructive measurement tests as a prosperous application for
the UAVs in refineries since they are currently performed by human operators climb-
ing huge and costly scaffolding. Several robotic commercial solutions are currently

1PRISMA Lab, Department of Electrical Engineering and Information Technology, University of Naples
Federico II, Naples, Italy
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(or are ready-to-be) available like the APELLIX drone [www.apellix.com], the Texo
Drone Survey and Inspection platform [www.texodroneservices.co.uk/blog/56], and
the RoNik Inspectioneering UT device [www.inspectioneering.eu].

Researchers see in the UAVs an unstable dynamic system that perfectly fits
the challenge of implementing safe and robust control and mechatronic designs to
accomplish every application mentioned above and go further beyond. As a matter of
fact, the UAVs can be both employed for passive tasks like inspection and surveillance,
and active tasks like grasping and aerial manipulation. This scenario requires the
introduction not only of rules and regulation but also of safe controllers. An overview
about control applied to UAVs, and the related applications in aerial manipulation,
can be found in [4]. The design of controllers for safety-critical systems is thus
required: fault detection, diagnosis, and tolerance approaches become essential. Fault
tolerance methods try to maintain the same functionalities of the system, allowing
reduced performance when damage appears [5]. Passive fault-tolerant control systems
(PFTCSs) do not alter the structure of the controller, while the active fault tolerant
control systems (AFTCSs) reconfigure the control actions to guarantee stability and
acceptable performance of the system [6].

This chapter wants to be a tutorial to guide the reader toward the implemen-
tation of an AFCTS dealing with the damage of a UAV propeller. In particular,
the quadrotor with fixed propellers is the aerial device taken into account. The
quadrotor is a versatile and agile device with four rotors lying on the same plane,
with the adjacent propellers rotating in the opposite directions [https://www.youtube.
com/watch?v=w2itwFJCgFQ]. This chapter resumes the results provided in [7,8] in a
tutorial form, thus neglecting the stability proofs, to leave room to a fast and concise
description of the implementation procedures.

The outline of the chapter is as follows. The problem statement and the litera-
ture review about it are provided in the next section. The notation and mathematical
modeling are introduced in Section 2.3. The control methodologies are described
in Section 2.4 with the related control schemes. The comparison between the pro-
posed methodologies is carried out through numerical simulation within Section 2.5.
Section 2.6 concludes the chapter.

2.2 Problem statement

In this chapter, the damage of a quadrotor propeller is addressed. To cope with such a
situation, the adopted solution is to turn off the damaged motor completely. Besides,
the motor aligned on the same quadrotor axis of the broken propeller is turned off
as well. This configuration is a birotor with fixed propellers. Such a solution also
includes the case of two broken propellers provided that they are aligned on the same
axis. Other case studies are not taken into account.

It is assumed that the system already detected the failure: it is out the scope
of this work the implementation of a fault-detection procedure. Besides, the control
methodologies addressed in this chapter starts from a birotor configuration with a
given initial condition of the state. The switch between the nominal quadrotor working
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condition into the birotor emergency condition is out of this scope of this chapter.
Therefore, it is possible to provide the following problem formulation.

● Problem. Control the position of the birotor from an initial position to the desired
one in the Cartesian space, along a desired trajectory.

The next sections solve the problem above by providing a tutorial extracting the
solutions from [7,8].

In the literature, several alternative solutions can be found solving similar
problems, or considering the parts that are neglected in this chapter.

Regarding the fault-detection, a method was proposed in [9]. A Luenberger
observer was instead employed in [10] along with a sliding mode controller. When
the loss in the efficiency is verified in each of the four propellers, the gain scheduling
approach proposed in [11] may be employed.

A thorough literature review reveals that there exist many methods addressing the
control of a UAV in the case of one or more motor partial failures. Most of them belong
to theAFTCS class. Instead, a PFTCS for a coaxial counter-rotating octorotor based on
the super-twisting algorithm was designed in [12]. The proposed second-order sliding
mode technique ensured robustness with respect to uncertainties and disturbances, and
it could also deal directly with faults and failures by compensating for the actuator loss
in the system without prior knowledge on the fault, its location, and severity. About
AFTCS, a method was tackled in [13] to estimate the aerial vehicle model after the
failure detection (50% loss in the efficiency of a quadrotor propeller), guaranteeing
the stability of the UAV. A backstepping approach was proposed in [14] but only
25% performance loss in the motors was considered. A comparison among different
methodologies was compared in [15] for a 50% loss in propellers performance.

On the other hand, additional methods consider the complete failure of a quadrotor
propeller. Despite the impossibility to control the yaw angle, a feedback linearization
with a proportional-derivative (PD)-based controller was employed in [16] to control
a quadrotor with a wholly broken motor. However, no stability analysis and coupling
effects between inner and outer loops were considered as instead in [7]. A controller
for an equidistant trirotor was designed in [17], but the formulation is available only
for spiral motions. An H -infinity loop shaping technique was adopted in [18] for the
safe landing of a quadrotor with a propeller failure. Periodic solutions were exploited
in [19] together with a linear-quadratic regulator (LQR) to control the quadrotor in the
case of single, two opposing, or three propellers failure. A reconfigurability analysis
of UAVs with four and six rotors was investigated in [20]. The hovering control in the
presence of the blockage or the complete loss of a rotor was pursued. The quadrotor
is shown to be not reconfigurable, while the hexrotors can handle a blockage without
difficulties. Furthermore, it is shown that whenever a UAV is stabilisable, it is also
possible to recover the system’s behavior accurately. A three-loop hybrid nonlinear
controller was instead designed in [21] to achieve high-speed flight of a quadrotor with
a complete loss of a single rotor. Robustness against complex aerodynamic effects
brought by both fast translational and fast spinning motion of a damaged quadrotor
was shown. As a result, the UAV can continue high-speed missions instead of having
an emergency landing immediately. A morphing quadrotor was shown in [22] that
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can stay in hover after rotor failure. Similarly to [7,8], an emergency fault-tolerant
controller was developed in [23] employing a birotor through a bounded control law.
Instead of using a birotor, an emergency controller based on quadrotor to trirotor
conversion maneuver was applied experimentally in [24] on the AR Drone 2 platform
to recover from a total failure of one rotor. The proposed controller was based on
control re-allocation, where the infected actuator was exempted from the control
effect, and control efforts are redistributed among the remaining actuators. Hence, the
emergency controller transformed the infected quadrotor into a trirotor, using a simple
proportional–integral–derivative (PID)-based controller. To control the attitude of a
quadrotor and to increase robustness against model uncertainties and actuator faults,
a sliding mode controller was applied in [25]. Besides, an adaptive fuzzy system was
employed to compensate for the estimation error of nonlinear functions and faulty
parts. In order to avoid instability and to increase the robustness of the closed-loop
system, a new parallel fuzzy system was proposed along with a main fuzzy system.
The adaptation rules of the main and parallel fuzzy systems were extracted from
Lyapunov’s stability theory.

A complete AFCTS architecture, including error detection, fault isolation, and
system recovery, was presented in [26]. The diagnosis system was based on the
motor speeds and currents measurements. Once the motor failure or the rotor loss is
diagnosed, a recovery algorithm was applied using the pseudo-inverse control allo-
cation approach to redistribute the control efforts among the remaining actuators. An
approach coping with not only fault detection and isolation but also fault-tolerant
control was proposed in [27]. An incremental nonlinear dynamic inversion approach
was introduced to design the fault-tolerant controller for the quadrotor in the presence
of the fault. The complete AFTCS enabled the quadrotor to achieve any position even
after the complete loss of one rotor.

Recently, multicopter (more than four or six) and tilting propellers can provide
novel solutions and control approaches and also achieve an actuator redundancy in
the system in the case of failure of one or more motors.

2.3 Modeling

In this section, the mathematical models of both the quadrotor and the birotor are
introduced.

2.3.1 Quadrotor

Let�i − {xi, yi, zi} and�b − {xb, yb, zb} be the inertial world-fixed frame and the body
frame placed at the center of the UAV, respectively. To clarify the notation, the main
terms are resumed in the following:

Rb ∈ SO(3) rotation matrix from �b to �i

ηb = [
φ θ ψ

]T ∈ R
3 roll, pitch, and yaw angles, respectively,

representing a minimal orientation repre-
sentation
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ωb
b ∈ R

3 angular velocity of �b with respect to �i

expressed in �b

m ∈ R mass of the vehicle
Ib = diag{Ix, Iy, Iz} ∈ R

3×3 inertia matrix with respect to �b

g ∈ R gravity acceleration
pb = [

x y z
]T ∈ R

3 position of �b in �i

u ∈ R
+ the total thrust perpendicular to the pro-

peller’s rotation plane
τ b

b = [
τφ τθ τψ

]T ∈ R
3 torque around the axes of �b expressed in

the same frame
In ∈ R

n×n identity matrix of proper dimensions
e3 = [

0 0 1
]T ∈ R

3 definition of the vertical axis vector in �i

Fp = diag{Fpx, Fpy, Fpz} ∈ R
3×3 linear velocity air drag matrix

Fo = diag{Fox, Foy, Foz} ∈ R
3×3 angular velocity air drag matrix

Neglecting the gyroscopic torques, due to the combination of the UAV rotation
and the propellers, the equations of motion for a UAV can be written as

mp̈b = mg − uRe3 − Fpṗb, (2.1a)

Ibω̇
b
b = −ωb

b × Ibω
b
b − Foωb + τ b

b , (2.1b)

Ṙb = RbS(ωb
b), (2.1c)

where × represents the cross-product operator, S(·) ∈ R
3×3 is the skew-symmetric

matrix. The configuration of the UAV is thus defined by the position pb and the
attitude expressed by the rotation matrix Rb, which lies within SO(3) = {R ∈ R

3×3 :
RT R = I3, det(R) = 1}.

The dynamic model (2.1a)–(2.1c) has the linear configuration expressed with
respect to �i, while the angular configuration is expressed with respect to �b. For
control purposes, neglecting air drag, the equations of motion can be both expressed
in the inertial frame as

mp̈b = mg−uRe3, (2.2a)

M η̈b = −Cη̇b + QT τ b
b , (2.2b)

with M = QT IbQ ∈ R
3×3 the positive definite mass matrix, C = QT S(Qη̇b)IbQ +

QT IBQ̇ ∈ R
3×3 the Coriolis matrix, and

Q =
⎡
⎢⎣

1 0 −sθ
0 cφ cθ sφ
0 −sφ cθcφ

⎤
⎥⎦ ∈ R

3×3,

a suitable transformation matrix such that ωb
b = Qη̇b. Notice the use of notation sα

and cα for the sin (α) and cos (α), respectively.
The dynamic models (2.1a)–(2.1c) and (2.2a) and (2.2b) can be referred to most

of the available UAVs. The control inputs are generalized as the total thrust u and the
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torques τ b
b in the body frame. In this chapter, a particular UAV like the quadrotor is

addressed. Looking at Figure 2.1, this vehicle has four rotors and propellers located
in the same plane in a cross or X configuration symmetrical to the center of mass.
Neglecting the dynamics of the rotors and the propellers, it is assumed that the torque
generated by each propeller is directly proportional to the thrust. Notice that the
rotation clockwise of propellers 1 and 3, and counterclockwise of 2 and 4, generate a
thrust always directed in the opposite direction of zb-axis, but along it. These common
assumptions yield the following equations between the control input and the propeller
speed ωi ∈ R, with i = 1, . . . , 4,

u = ρu(ω2
1 + ω2

2 + ω2
3 + ω2

4), (2.3a)

τφ = lρu(ω2
2 − ω2

4), (2.3b)

τθ = lρu(ω2
3 − ω2

1), (2.3c)

τψ = ρc(ω2
1 − ω2

2 + ω2
3 − ω2

4), (2.3d)

with l > 0 the distance between each propeller and the quadrotor center of mass,
ρu > 0 and ρc > 0 two aerodynamic parameters.

2.3.2 Birotor

This chapter proposes the following technique to deal with motor failure. Suppose
that a motor is either completely broken or losing power. The choice carried out here
is to completely turn off both such a damaged motor and the symmetric one to the
center of mass, even though if this last is correctly working. Without loss of generality,
with reference to Figure 2.1, suppose that the motor 2 is damaged. Then, it is decided
to turn off also motor 4. Therefore, ω2 = ω4 = 0 yields τφ = 0 from (2.3b). The
resulting configuration is a birotor with fixed propellers. The equations of motion are

Oy

yb yb
zb zb

Ob Ob
xb xb

w4
w1 w1 w3

w2

w3

x

z

Figure 2.1 Left: The quadrotor and related frames: black; the inertial frame �i:
green; the body frame �b: blue; the speed and label of each motor.
Right: The birotor configuration with in red the turned-off propellers
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again either (2.1a)–(2.1c) or (2.2a) and (2.2b), while the computation of the propellers
speed in (2.3a)–(2.3d) changes into

u = ρu(ω2
1 + ω2

3), (2.4a)

τφ = 0, (2.4b)

τθ = lρu(ω2
3 − ω2

1), (2.4c)

τψ = ρc(ω2
1 + ω2

3). (2.4d)

If motor 4 is damaged, the situation is identical by turning off motor 2. Instead,
suppose that either motor 1 or 3 is damaged, then motor 3 or 1 is turned off, respec-
tively. In this case, the computation of the propellers speed in (2.3a)–(2.3d) changes
into

u = ρu(ω2
2 + ω2

4),

τφ = lρu(ω2
2 − ω2

4),

τθ = 0,

τψ = −ρc(ω2
2 + ω2

4).

Without loss of generality, in the remainder of the chapter, only the case with
motor 2 and 4 turned is considered. Notice that the case of two defective motors but
not aligned on the same quadrotor axis is out of the scope of this work.

An analysis of (2.4a)–(2.4d) reveals that τψ cannot be freely controlled since it
is impossible to change its sign. On the other hand, it is possible to control the total
thrust u and the pitch torque τθ independently. Folding (2.4a) into (2.4d) yields

τψ = τ̄ψ = ρc

ρu
u, (2.5)

which is the spinning torque of the birotor around the zb-axis of �b and depending
on the current total thrust scaled by some aerodynamic parameters. The effect is a
continuous rotation of the birotor around its vertical axis.

2.4 Control design

This section addresses two control solutions to deal with birotor control. In both
of them it is demonstrated that, apart from the yaw angle that is uncontrollable as
seen above, the birotor can reach any position in the Cartesian space. Despite the
uncontrollability of the yaw angle, the device can be safely landed in a predetermined
location following a desired emergency landing trajectory.

The two control techniques are, namely, a PID-based approach and a back-
stepping procedure. Since this chapter is a tutorial to guide the reader step-by-step in
the implementation of the control laws, the proofs of stability of each of the control
schemes mentioned above are not here reported. The interested reader can find them
in [7,8], respectively.
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In order to implement the control schemes, the following assumptions must be
introduced

● Assumption 1. The birotor configuration is always within the configuration space
defined by Q = {pb ∈ R

3, ηb ∈ R
3 : θ �= π/2 + kπ ,φ �= π/2 + kπ , k ∈ Z}.

● Assumption 2. The planned linear acceleration p̈d is bounded.

While the second assumption can be easily guaranteed by a suitable planner, the first
assumption usually depends on initial conditions of the birotor once the controller is
activated. Notice that the desired quantities are denoted by the subscript d.

2.4.1 PID control scheme

The design of the PID-based control scheme starts from the following control law:

τθ =
(

Iycφ + Iys2
φ

cφ

)
τ̄θ + α1, (2.6)

where τ̄θ ∈ R is a virtual control input, and

α1 = Iysφ
τ̄ψ − α2

Izcφ
+ α3,

α2 = −Ixφ̇θ̇cφ + Iyφ̇θ̇cφ − Izφ̇θ̇cφ + Ixψ̇
2cθsφsθ

−Iyψ̇
2cθ sφsθ − Ixφ̇ψ̇cθsφ + Iyφ̇ψ̇cθsφ

−Izφ̇ψ̇cθsφ + Ixψ̇ θ̇cφsθ − Iyψ̇ θ̇cφsθ − Izψ̇ θ̇cφsθ ,

α3 = −Ixφ̇θ̇sφ − Iyφ̇θ̇sφ + Izφ̇θ̇sφ − Ixψ̇
2cφcθsθ

+Izψ̇
2cφcθsθ + Ixφ̇ψ̇cφcθ + Iyφ̇ψ̇cφcθ

−Izφ̇ψ̇cφcθ + Ixψ̇ θ̇sφsθ − Iyψ̇ θ̇sφsθ − Izψ̇ θ̇sφsθ .

Substituting (2.6) into (2.2b) and considering (2.4b) and (2.5) yield

θ̈ = τ̄θ , (2.7)

meaning that it is possible to entirely control the pitch angle through τ̄θ . Let θd ∈ R

the desired pitch angle. A simple PD controller can be designed for the pitch angle as
follows:

τ̄θ = θ̈d + kd,θ ėθ + kp,θeθ , (2.8)

with eθ = θd − θ ∈ R, ėθ = θ̇d − θ̇ ∈ R, ëθ = θ̈d − θ̈ ∈ R, and kp,θ > 0 and kd,θ > 0
two gains.

Let μ = [
μx μy μz

]T ∈ R
3 be the acceleration of the birotor, expressed in �i,

where the magnitude is the desired thrust ud produced by the remaining propellers,
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while the orientation Rd ∈ SO(3) is given by the desired pitch and the current measured
roll and yaw as follows:

Rd =
⎡
⎢⎣

cθd cψ sφsθd cψ − cφsψ cφsθd cψ + sφsψ
cθd sψ sphisθd sψ + cφcψ cφsθd sψ − sφcψ
−sθd sφcθd cφcθd

⎤
⎥⎦ .

The definition of such an acceleration is thus given by

μ = ud

m
Rde3 + ge3. (2.9)

Substituting θ = θd − eθ into (2.2a) and taking into account the definition in (2.9)
yield

p̈b = μ+ u

m
δ, (2.10)

where δ = [
δx δy δz

]T ∈ R
3 is the following interconnection vector

δx = 2 cos (φ) cos (ψ) sin (eθ /2) cos (θd − eθ /2) , (2.11a)

δy = 2 cos (φ) sin (ψ) sin (eθ /2) cos (θd − eθ /2) , (2.11b)

δz = −2 cos (φ) sin (eθ /2) sin (θd − eθ /2) . (2.11c)

The acceleration μ can be designed as follows:

μ = p̈d + Kpep + Kdėp, (2.12)

where Kp, Kd ∈ R
3×3 are positive definite gain matrices, pd , ṗd , p̈d ∈ R

3 represent
the desired position trajectory for the birotor, and ep = pd − pb, ėp = ṗd − ṗb, ëp =
p̈d − p̈b ∈ R

3 are the related tracking errors. Substituting (2.12) into (2.10) and (2.8)
into (2.7) yields the following closed-loop equations:

ëp + Kdėp + Kpep = − u

m
δ, (2.13a)

ëθ + kd,θ ėθ + kp,θeθ = 0. (2.13b)

It remains to derive how to retrieve the desired total thrust ud of the birotor and the
desired pitch angle θd . Once the errors ep and ėp are computed, knowing the planned
acceleration p̈d , the virtual control input μ can be computed from (2.12). The desired
total thrust and the desired pitch angle can be computed by inverting (2.9) as follows:

ud = m
√
μ2

x + μ2
y + (μz − g)2, (2.14a)

θd = tan−1

(
μxcψ + μysψ
μz − g

)
, (2.14b)

where ψ is measured from the inertial measurement unit (IMU). A second-order
low-pass digital filter can be employed to reduce noise and compute both first and
second derivatives of θd , to compute the pitch tracking errors eθ and ėθ in turn. The
control input τθ is then computed from (2.6), with τ̄θ obtained as from (2.8). Finally,
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Planner

PID
position

controller

Eq. (2.12)

pd

θdṗd

pb

ηb

ṗbPropellers
input

Eq. (2.4)

u

τθ

w1

w3

Thrust and
pitch

reference

Eq. (2.14)

PID pitch
controller

Eqs. (2.6)–
(2.8)

Birotor
model

Eq. (2.1)
pd θd

θd
ηb

μ

Figure 2.2 Block scheme of the PID-based control architecture. In red, the
corresponding equations in the paper related to each block

the propeller inputs of the birotor can be computed inverting (2.4a) and (2.4c). The
proposed controller is drawn in Figure 2.2.

Notice that two PD controllers are employed in (2.8) and (2.12). As noticed
in [28], an integral action can be added without destroying the stability properties.
The PD gains play like programmable stiffness and damping parameters, giving a
physical interpretation to their choice.

Similar considerations can be made in the case of damage to motor 1 and/or motor
3. In such a case, the desired angle becomes the roll that can be computed by inverting
μ = −(u/m)Rdre3 + ge3, with Rc ∈ SO(3) the equivalent of Rd by substituting θd with
the measured θ and φ with the desired φd = sin−1((m/ud)(μycψ − μxsψ )

)
.

2.4.2 Backstepping control scheme

The derivation of the proposed backstepping control scheme starts from the definition
of the virtual acceleration μ as in (2.9). The desired total thrust and the desired pitch
can be then retrieved from (2.14a) and (2.14b). Again, the goal is to design the vector
μ suitably. The approach is different from the previous control scheme. First, an
altitude control is derived. Afterward, the planar position control is designed. Finally,
the control to achieve the desired pitch is addressed.

The following PD controller can be employed to control the altitude of the UAV

μz = z̈d + kd,z ėz + kp,zez, (2.15)

with zd ∈ R the desired altitude in �i, ez = zd − z, ėz = żd − ż, kp,z, kd,z > 0 some
gains.

For the planar control, it is worth noticing that the considered birotor, since it is
an underactuated system continuously spinning around the vertical axis of �b, can
only rotate around the yb-axis of �b. Therefore, the projection of the birotor vertical
axis zb into the xiyi-plane of �i is a rotating vector with rate ψ̇ . Figure 2.3 sketches
the above concept. The following kinematic constraint can be thus introduced

[
ẋ ẏ
]T = βυ, (2.16)
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y

x

P

Pd

atan2(ey, ex)

Figure 2.3 The xiyi-plane of �i is here represented. The point P represents the
current position pb of the birotor projected in such a plane. The point Pd

represents the desired position pd of the birotor on the same plane. The
green vector is the current heading vector of the birotor in the xiyi-plane
of �i, which continuously rotates as the yaw angle. The red vector is the
planar error creating an angle of atan2(ey,ex) with respect to the xi-axis

with β = [
cosψ sinψ

]T
, and υ ∈ R the magnitude of the projection vector. The

term υ is employed as a virtual input to design the desired planar velocities in �i.
The desired planar accelerations of the vector μ are obtained by differentiating (2.16)
with respect to time as follows:

[
μx μy

]T = β̇υ + βα, (2.17)

with α = υ̇ ∈ R. The virtual inputs υ and α must be now designed to zero the error
in the horizontal plane of �i. Consider a regulation problem with ẋd = ẏd = 0. The
planar errors are defined as ex = xd − x and ey = yd − y. By deriving these two
quantities and taking into account (2.16) yield

[
ėx ėy

]T = −βυ, (2.18a)

υ̇ = α. (2.18b)

Through a backstepping approach [8,29], the following virtual input can be designed
to provide at least marginal stability in zeroing the planar errors:

υ = kυ
√

e2
x + e2

y cos (atan2(ey, ex) − ψ), (2.19)

with kυ > 0, and

α = (ėx(kυ + kα) + ex)cψ + (ėy(kυ + kα) + ey)sψ

+ kυkα
√

e2
x + e2

y cos (atan2(ey, ex) − ψ(t)), (2.20)

with kα > 0.
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Finally, the low-level attitude control for the birotor is designed as for the PID-
based controller. Then, control law (2.6) is first introduced to get (2.7). The virtual
control input τ̄θ can be designed as in (2.8) to entirely control the pitch angle.

The derived backstepping controller is represented in Figure 2.4. To recap, as
first, the position errors components ex, ey, ez are computed, as well as the related
time derivatives ėx, ėy, ėz. Knowing the feedforward acceleration z̈d , it is possible to
compute the control inputμz from (2.15). Taking into account both (2.19) and (2.20),
the other two components of the virtual control input μ are retrieved from (2.17).
The desired total thrust ud and the pitch angle θd are then computed as in (2.14a)
and (2.14b). A second-order low-pass digital filter is employed to reduce noise and
compute both first and second derivatives of θd . Afterward, the pitch tracking errors
eθ and ėθ are computed. The control input τθ is then computed from (2.6), with τ θ
obtained from (2.8). Finally, the propellers’ speeds for the birotor are given by (2.4a)
and (2.4c). An integral action might be added in (2.15) and (2.8) to increase tracking
accuracy without destroying stability properties.

2.5 Numerical simulations

In this section, the two above-described controllers are compared in a case study
simulating an emergency landing.As stated in Section 2.2, the employed controllers do
not consider the switch from a nominal operating condition, in which all the motors are
active, to the emergency landing procedure. Only the control of the birotor is evaluated
through numerical simulations. The comparison between the results obtained with the
two described control methodologies is thus analyzed. The next subsection introduces
the parameters employed in the two controllers and the choices made for the simulation
as well as the software environment. Afterward, the case study is presented and
analyzed.

2.5.1 Description

The proposed control methodologies are tested in a MATLAB®/Simulink® environ-
ment running on a standard PC (2.6 GHz Intel Core i5, 8 GB 1,600 MHz DDR3).
The two schemes depicted in Figures 2.2 and 2.4 have been implemented.
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To simulate the dynamic of the birotor, the more accurate dynamic model (2.1a)–
(2.1c), including air drag, is implemented. The dynamic parameters of the employed
UAV are taken from a real AscTec Pelican quadrotor [30]. In detail, the following
parameters are considered: m = 1.25 kg, Ib = diag{3.4, 3.4, 4.7} kg2, l = 0.21 m,
ρu = 1.8 · 10−5 N s2/rad2, ρc = 8 · 10−7 N ms2/rad2. Besides, to consider saturations
of the actuators, a maximum speed of about ωi = 940 rad/s (about 6, 000 rpm) is
considered. It was verified in practice that the birotor at steady state has a con-
stant rotation of about 7 rad/s around its zb-axis. Therefore, the friction coefficients
in (2.1a)–(2.1c) are set to Fp = diag{1.25, 1.25, 5} and Fo = diag{1, 1, 2}. Finally, the
controllers are discretized at 100 Hz, to further test the robustness of the proposed
controllers.

The gains for the PID-based controller are experimentally tuned as Kp =
diag{6.25, 16, 25}, Kd = diag{6, 8, 10}, kp,θ = 900, and kd,θ = 60.

The gains for the backstepping controller are experimentally tuned as kυ = 2,
kα = 0.1, kp,θ = 144, kd,θ = 26.4, kp,z = 16, and kd,z = 8.

In the following, a comparative case study is addressed. Given the desired trajec-
tory, the two controllers are compared through a numerical simulation starting from
the same initial conditions.

2.5.2 Case study

The considered case study is the tracking of a possible landing trajectory. The birotor
starts from the position pb = [

1 1.5 4
]T

m, which is the same desired initial position
for the landing trajectory at t = 0 s, with t > 0 the time variable, and an initial yaw
velocity of 3 rad/s. The desired goal position for the birotor is

[
0 0 0.5

]T
m with

respect to �i at t = 20 s. The initial and final linear velocities and accelerations are
zero. A seventh-order polynomial is employed to generate the desired trajectory and
guarantee the conditions defined above. The birotor desired trajectory stays for other
10 s in a steady-state condition equal to the final one.

The time histories of the position error are depicted in Figure 2.5. The pictures
show the position error for each of the �i axes for the two implemented controllers.
Both approaches successfully achieve the sought task. However, the backstepping
approach needs more time to converge to the desired trajectory. The backstepping
approach has a maximum error of about 0.15 m along the x-axis, 0.25 m along the
y-axis, and 0.09 m along the vertical axis of �i. The tridimensional Cartesian path
followed by the birotor in both cases is depicted in Figure 2.6. The pitch error of
the inner loop of both controllers is depicted in Figure 2.5(d). Also, in this case, the
backstepping controller shows a more significant error of around 1 degree, which
worsens the overall performance of the task.

The time histories of the commanded velocities for the birotor active pro-
pellers are illustrated in Figure 2.7. The propeller speeds do not saturate in both
cases. Nevertheless, the behavior related to the backstepping controller appears
overwrought.

It is worth recalling that the results show in any case robustness of both the control
designs. The friction is indeed not included in the mathematical model employed
for the control designs, even though it brings benefits to the stability analysis of
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Figure 2.5 Position and pitch error for the considered case study. In blue, the
results obtained with the PID-based controller. In red, the results
obtained with the backstepping controller: (a) x-axis position error,
(b) y-axis position error, (c) z-axis position error, and (d) pitch error

the closed-loop system. Besides, the controllers are discretized at 100 Hz as in the
common practice. The final idea is that both the controllers fulfill the sought task.
However, at least for the analyzed case study, the PID-based control seems to be more
robust and employing less power for the motors.

2.6 Conclusion

This chapter provided a tutorial solution, based on [7,8], to solve the tracking control
problem for a birotor UAV. Such a birotor configuration could be employed in those
cases where a quadrotor UAV has one damaged propeller. Two control schemes have
been proposed to deal with the contemplated problem: namely, a PID-based control
scheme and a backstepping approach. It was shown that, with both approaches, the
birotor could reach any position in the Cartesian space, and thus it could follow a safe
emergency trajectory.
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Figure 2.7 Commanded velocities of the active birotor propellers. In blue, the
results obtained with the PID-based controller. In red, the results
obtained with the backstepping controller: (a) motor 1 and (b) motor 3
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