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Abstract—A robotic system that is designed to coexist with
humans has to adapt its behavioral and social interaction param-
eters not only with respect to the task it is supposed to accomplish,
but also with respect to the human being it is interacting with
by profiling her habits, preferences, and personality. This is
particularly relevant in the domain of assistive robotics where
the behavioral adaptability has been shown to enhance the
users’ acceptability of a robot. In this work, we propose a
neuro-fuzzy-bayesian system able to adapt the robot proxemics
behavior with respect to the human users’ personality and the
action she is currently performing. The user’s personality is
evaluated according to the Big-Five factors model and the activity
recognition is obtained by classifying data from a wearable device
through the use of a Bayesian Network classifier. As shown
by a statistical study, the proposed framework is capable of
computing the most appropriate robot proxemics behavior in
order to improve human feeling in interacting with artificial
agents, such as robots.

I. INTRODUCTION

For acceptance of robots to occur, there are three basic
requirements: a motivation for using the robot, sufficient ease
of use, and comfort with the robot physically, cognitively and
emotionally [1]. Current research shows that the majority of
people are still skeptical or even against the application of
robots in real contexts, and, in particular, for child, elderly
and disabled care [2]. In this direction, research suggests that
a robot’s ability to adapt its behavior with respect to a user
profile (e.g. to the user’s preferences on the social aspects
modeling the interaction) can improve acceptability [3]. The
possibility of modeling such interaction preferences in order
to modulate the robot behavior has been shown to have a
great impact on the robot acceptance by the user as well as
to provide a feeling of safety [4]. Conversely, an interactive
robotic device whose behavior is unrelated to the specific
needs of a person, her abilities and preferences can cause
discomfort [5].

The majority of robotic applications are based on user
static models and contexts of interaction [6]. This makes such
systems incapable of adapting independently and proactively
to changes in the users needs and preferences. More generally,
such assistive technology products do not take into account
the cognitive and personality characteristics (including specific
deficit of an individual, emotional and behavioral problems,

the attitude towards technology and the physical and social
environment), which could affect the acceptance, use and ef-
fectiveness. A valid robotic system providing a high degree of
user acceptance must be based on knowledge of the potential
users, as well as contextual information on the user current
behavior, that provide essential parts of effective planning and
customization of the assistance process. However, the typical
uncertainty and vagueness that characterise a human profile
make the design of adaptive robotics frameworks very hard to
be successfully achieved and, consequently, there is a strong
emergence for computational techniques useful for dealing
with this gap in an appropriate way. Neuro-Fuzzy frameworks
could represent a suitable approach for enabling robots to
be tolerant with human ambiguity and make human-robot
interaction (HRI) as a more natural and adaptive to humans’
needs and preferences.

In a previous work [7], we showed, with an user study, that
the perception of comfortable interacting distances by the user
is affected by users’ personality factors, as well as the current
users’ activity. In this paper, our goal is to design a robotic
control system able to adapt the robot proxemics behavior,
and, in particular, the distance a robot has to keep in order to
interact with a user, with respect to her current data on the
activity and the personality. In spite of its apparent simplicity,
robot proxemics behavior is one the most challenging and
fascinating issue in the field of cognitive robotics. Indeed, as
robots are accessing the everyday physical world of people, it
is very important that they abide by society’s unspoken social
rules such as respecting people’s personal spaces [8] so as not
to affect the feelings of fear and confidence that people can
have towards the robots. In this paper, a Neuro-Fuzzy system
will be integrate into a human-robot interaction framework
to prove the efficiency of this methodologies in modeling
a robot proxemics behavior that is adaptive with respect to
human activities and personalities. The proposed system is
characterized by a two-layer architecture, where a first level,
based on a Bayesian Network, will be used to perform the
human activity recognition process and a second Neuro-Fuzzy
layer will be used to correlate the classified current activity
with the user’s personality and testing condition to infer the
most comfortable stopping distance for the particular user.
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As shown by a statistical study, the proposed framework for
human-robot interaction is capable of computing the most
appropriate stop distance in order to guarantee a comfortable
interaction.

II. RELATED WORKS

The correlation of acceptable social distances with the user
personality has been addressed before in the literature. For
example, [9] studied the impact of personality on human-
robot mutual distancing, while [7], [10] examined the effects
of the subject’s personality and her position, namely sitting
or standing, on the preferred stopping distance and on the
robot approaching direction. Here, the goal of this paper was
to rely on this data (and, in particular, on [7]) to model a
robot proxemics control mechanism able to show an adaptive
behavior.

Studies on proxemics and on the recognition of user’s pose
and movements in the environment may help in developing
adaptive behaviors for robots, in particular in the context
of service robotics. For example, in [11], starting from the
analysis of data on service staff members collected in a
shopping mall, the authors propose a robot that can adapt its
approaching behavior depending on a visitor’s intention. The
goal is to not disturb visitors until it is clear that they intend to
interact with the robot. Hence, the robot modulates its behavior
by orienting toward visitors and waiting, when their intentions
are not certain, and by moving towards them, when their
intentions are perceived as willing to interact. Another example
is [12], where the authors used proxemics data, in terms of
general preferences and robot predictions on the user state for
deciding to move to a better position to maximize the potential
for its performance in the interaction. In particular, the robot
detects the inter-agent pose that could be used to predict how
loudly the user will likely speak and so the performance of the
speech recognition process. In the presented work, preferences
of proxemics are combined with the current activity of the user
to model the robot behavior.

Finally, in literature, adaptivity with respect to personality
has been approached mainly from the point of view of the
robot intrinsic personality, and the way it can affect the robot
behavior or the user’s perception. For example, in [13] the
authors presented the results of different experiments where
each of the children has various game session with a robot
that chooses its personality: extrovert or introvert. In these
experiments, an extrovert robot challenges players and moves
faster, while introvert robot moves slower, encourages and
comforts with many positive comments the player. On the
contrary, in [3], the authors presented a behavior adaptation
system, characterized by a hands-off therapist robot, which
adjusts its therapy style behavior basing on users’ introversion-
extroversion personality traits. The system was tested in a
rehabilitation domain and resulted in user improvements of
the exercise task performance.

Different from state-of-the-art systems, in this paper, we
introduce a novel robotics framework based on the integration
of methodologies such as neural networks, fuzzy logic and

bayesian classifiers, able to directly deal with intrinsic uncer-
tainties characterising human personalities and daily activities.
Thanks to this synergic vision, robots will be able to better
approach human beings without affecting their feelings of fear
and confidence.

III. ROBOT PROXEMICS BEHAVIOR:
PROBLEM DESCRIPTION

The customization of the interaction is one of the fun-
damental issues to tackle in order to achieve effective HRI
applications [14]. In particular, the proxemics, e.g., the study
of spatial distances used in the interaction by human and/or
robot agents, is one of the main topics since people react and
behave differently depending on how their space is occupied.
Examples of behaviors requiring the proper modulation and
adaptation of proxemics parameters are the approaching be-
haviors, but also the following or avoidance ones.

Previous studies have established that the proxemics be-
havior of the robot has a strong impact on the level of the
users’ acceptability and it strongly depends on subjective and
demographic characteristics. Among the fundamental aspects
to characterize a user, there is the personality. Personality is
a key determinant in human social interactions, since there is
a direct relationship between personality and behavior [15].
Personality factors, in particular, affect the way in which pub-
lic spaces are shared and the perception of socially acceptable
movements. Thus a robot should be able to perform the same
actions, but in a different way depending on the personality
of the person, whom it interacts with.

Moreover, while the user personality can be considered as
characterized by stable attributes in time, the effectiveness of
the robotic interaction should also consider context depended
characteristics of the users that have to be evaluated and
recognized from time to time, and that may have potentially
an impact on whether the user is willing to interact and,
consequently, on proxemics decisions. In particular, the effec-
tive recognition of the user activity constitutes an enabling
technology in order to develop effective HRI applications,
since users may not want to interact while being occupied
in particular activities, and their own movements may have an
impact on perceived conformable distances [7].

While, our long term goal is to dynamically adapt a robot
user’s monitoring behavior with respect to a more complete
user’s profile, here, we are interested in providing an adaptive
control mechanism with respect to both the user personality
(that can be evaluated by using questionnaires) and the activity
she is currently performing (that are evaluated with an online
recognition mechanism). In particular, the proposed architec-
tures aims to decide the comfortable monitoring distances
starting from data collected in a previous work [7], where
we evaluated the preferred stopping distance with respect to
both the activity and the personality. Data for the activity
recognition process will be extracted from wearable devices
(e.g., wristbands, wristwatches, armbands), that represent an
non-intrusive way to monitor the user and that can provide a
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Fig. 1. The architecture for a robotic control system aimed at deciding the robot comfortable stopping distance for the users

fast sampling of human motion including acceleration, angular
rate, and magnetic field [16].

The next section is aimed at introducing a proposal for
a Neuro-Fuzzy-Bayesian framework for identifying suitable
robot proxemics behavior that adapts to the inherent impreci-
sion that characterize human personality and daily activities.

IV. A NEURO-FUZZY-BAYESIAN SYSTEM FOR ROBOT
PROXIMIC BEHAVIORS

Our proposal for a robotic control system able to adapt the
human-robot comfortable stopping distance with respect to the
activity the user is performing and her personality is based
on a hierarchical architecture which combines the Adaptive
Neuro Fuzzy Inference Engine (ANFIS) [17] with a Naive
Bayes (NB) classifier. Precisely, the hierarchical architecture
of our proposal is characterized by two layers: 1) the bottom
level uses a NB classifier to recognise the activity the user
is performing; 2) the top level uses ANFIS to infer the most
comfortable stopping distance for the particular user starting
from her personality and the activity recognised by the bottom
level. Figure 1 shows the architecture of our robotic control
system. Hereafter, more details about the two layers are given.

A. Bottom layer: activity recognition

The bottom layer of our robotic control system is devoted
to identify the activity the user is performing. In order to
achieve this aim, it exploits a usual classifier, i.e., Naive
Bayes (NB) classifier. NB classifiers are a family of simple
probabilistic classifiers based on applying Bayes’ theorem
with strong (naive) independence assumptions between the
features. However, they have good performance also if the
independence assumptions are wrong. In this work, we use a

NB characterized by a kernel density method. The choice of
this method is tied to unknown nature of the data. Indeed, the
absence of prior knowledge about data leads to believe that the
considered features will not conform to a certain parametric
distribution, and, as a consequence, using a non-parametric
probability distribution could fit data more accurately.

The features used by the exploited NB classifier to identify
the user activity are eight (Acc.x, Acc.y, Acc.z, Gyro.x,
Gyro.y, Gyro.z, Hr, Velocity). The first seven inputs are
captured through three sensors whose a smart watch worn by
the user is equipped. In particular, Acc.x, Acc.y and Acc.z
represent, respectively, the three coordinates X, Y and Z of the
acceleration measure in g units provided by an accelerometer.
Gyro.x, Gyro.y and Gyro.z represent, respectively, the three
coordinates X, Y and Z of the angular velocity provided by a
gyroscope. Hr represents the heart rate of the user provided by
a heart rate monitor. Finally, Velocity represents the velocity
assumed by the robot while approaching the user in order to
interact.

B. Top layer: stopping distance computation

The top layer of our robotic control system is devoted to
produce the stopping distance to be used by a robot during the
interaction with a user. In order to achieve this aim, it exploits
ANFIS to build a Takagi-Sugeno-Kang (TSK) fuzzy inference
system able to control the stopping distance in an opportune
way.

ANFIS is an adaptive network and, as such, it works to
achieve a desired input-output by updating parameter sets
according to given training data and a gradient-based update
procedure [17]. In particular, this updating feature is used in
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Fig. 2. The Adaptive Neuro Fuzzy Inference System [17]

ANFIS to learn and adapt the parameters of a given TSK
system.

As example, Figure 2 shows an adaptive network that
models a first-order TSK fuzzy inference systems composed
by two rules:

1) If x is A1 and y is B1 Then f1 = p1 · x+q1 · y+ r1
2) If x is A2 and y is B2 Then f2 = p2 · x+q2 · y+ r2

ANFIS works by updating an initial TSK during a set of
epochs. In this work, we execute ANFIS for 5 epochs with an
initial TSK whose input variables are characterized by gbell
membership functions.

The inputs used by ANFIS are seven (Velocity, Activity,
Extraversion, Agreeableness, Conscientiousness, Neuroticism
and Openness). The first input is related to the robot, whereas,
the other ones are related to the user. In particular, Activity
represents the activity performed by the user and identified
through the bottom level system. Instead, Extraversion, Agree-
ableness, Conscientiousness, Neuroticism and Openness rep-
resent aspects of the personality of the user obtained through
a questionnaire filled by the user.

During the design, the input variables are considered be
characterized by three gbell membership functions, except
for the variable Activity that has been considered with four
membership functions since the user can perform four kinds
of activities (lying, sitting, standing and walking).

V. EXPERIMENTS

This section is devoted to show the benefits of the proposed
hierarchical approach to HRI. In order to achieve this aim, in a
previous work [7], an experimental session has been performed
in order to collect training and test data. All details related
to this experimental session are reported in Section V-A.
Once collected data, the proposed approach has been evaluated
through a set of metrics described in Section V-B. The results
of the proposed approach in terms of the considered evaluation
metrics are reported in Section V-C.

A. Experimental session configuration

a) Participants: The subject sample set consists in 50
adult volunteers that were not payed for the participation. In

detail, 37 men and 13 women with an average age of 27±9.
Most of the participants were master students, for the majority
of the cases in Computer Science. They were all Italian,
and 38% of the participant, in the average, declared not to
have confidence with robotics applications (e.g., by answering
YES/NO to a specific question). The sessions lasted on average
15 minutes.

b) The Robot: The robot used for the experimentation
was a Pioneer 3DX with a 16 sonars range. The robot was
opportunely modified in order to have a kinect at the height
of 1.3m and a tablet at the height of 1.1m. The robot is shown
in Figure 3 (right). The robot behavior was controlled in a
Wizard of Oz mode.

c) Data collection: For the activity recognition phase,
the Microsoft Band 2 was used. The users wearing this
smart watch were monitored through an app installed on a
smartphone. The sensors of the smart-watch send the measured
data to the proposed control system for the activity recognition,
while a supervisor manually annotated with a label each activ-
ity (lying, sitting, standing and walking). The sensors used for
the activity recognition are: Accelerometer, Gyroscope, Heart
rate. The accelerometer provides the acceleration measures in
g units in three coordinates X , Y , Z at 62 Hz. Gyroscope
provides angular velocity measured in three coordinates X , Y ,
Z at 62 Hz. Heart rate provides the number of beats per minute
at 1 HZ.

Personality was classified with respect to the BFI (Big Five
Inventory), as in [18], in terms of Extraversion, Agreeableness,
Conscientiousness, Neuroticism, and Openness. We used the
BFI questionnaire reported in [19], where users were asked
to define a certain number of characteristics that may or may
not be applied to themselves, by associating a rate from 1
(Disagree Strongly) to 5 (Agree Strongly) to each question.
The scoring analysis of the results will provide the personality
evaluation calculated through specific formulas that relate
these answers with personality traits, and it will generate the
membership with a certain percentage to one of the 5 possible
traits.

d) Procedure: The design of this study is a within-
subjects, counterbalanced, repeated measures experiment. That
means that each participant is subjected to more than one
experiment under different conditions (activity to perform) and
that these settings are randomly presented to her.

Following the work of [9], we designed the experimental
procedure as follows:

1) Co-habituation and Personality: the user enters to a
room (an empty lab) and sits on a sofa while answering
the personality and demographic questionnaire on a
laptop. While the subject is filling in the questionnaires,
the robot wanders randomly around the test area.

2) Test: The user is asked to perform one of the following
activities: lying, sitting, standing and walking. The order
of the activity is randomly established for each user.
During each activity the robot, starting from a predefined
position, approaches the person with an approaching
angle of 90 degrees. The users are asked to stop the robot



Fig. 3. Data collection: the considered activities and the used robot (right).
Proxemics distances scale is set according to [20].

(by saying the word “STOP”) when the robot comes as
close as they felt is is comfortable. Whenever the user
stops the robot, the distance from the user is stored and
the robot stops.

An operator supervised each test. Each experiment was
also repeated three times, with different robot velocities, as
consistency check.

B. Evaluation procedures
Once collected data, we perform a ten-fold cross-validation

procedure in order to evaluate the performance of the proposed
approach. This procedure consists in dividing data in 10 folds.
Of these 10 folds, in each round, a single fold is used as
test data and the remaining ones are used as training data.
The exploitation of this technique allows to assess how the
performance results of our proposal will generalize to new
data sets.

As for performance metrics, since we are dealing with a
regression problem, we consider the well-known Root-Mean-
Square Error RMSE. This metric is a frequently used measure
of the differences between values predicted by a model and the
values actually observed. The formal definition is as follows:

RMSE =

√
∑n

i=1(ŷi− yi)2

n
(1)

where y is the vector of the observed values, ŷ is the vector
of the predicted values and n is the length of the vector y.

In order to compute an evaluation independent from the
unit/scale of the output variable, we consider together RMSE
other two evaluation metrics: Normalized Root-Mean-Square
Error NRMSE and the Coefficient of Variation of the RMSE
CVRMSE . Formally,

NRMSE =
RMSE

ymax− ymin
(2)

where ymax and ymin are respectively the maximum and the
minimum of the vector of the observed values.

CV (RMSE) =
RMSE
µ(y)

(3)

where µ(y) is the mean of the observed values.
In order to give a statistical significance of the performance

of the proposed approach, we use a statistical test to verify if
an equivalence between the observed and predicted values ex-
ists. A typical equivalence test is Schuirmann’s two one-sided
test (TOST) [21], but it cannot be used in our context, because
our data do not follow a normal distribution. Unfortunately,
there is not a well-known equivalence test for non-parametric
context1, but TOST test can be replaced2 by Wilcoxon’s signed
rank test [22]. This test is used to compare two related samples
and to assess whether their population mean ranks differ.
Therefore, in Wilcoxon’s test, the null hypothesis states no
difference between samples, i.e H0 : ΘD = 0, indicating that in
the underlying populations represented by the two samples,
the median of the difference scores is equal to zero [23].
On the contrary, the alternative hypothesis is H1 : ΘD 6= 0.
Once computed the Wilcoxon’s statistic by ranking differences
between the two samples, a p-value can be performed by
means of the normal approximation for the statistic. If the p-
value is lesser than the used level of significance α , the null
hypothesis is rejected in favor of the alternative one. Since
we use the Wilcoxon’s test to assess equivalence between the
observed values and those predicted by our model, the null
hypothesis is expected not be rejected.

In the next section, the performance of the proposed ap-
proach in terms of the considered evaluation metrics and the
results of the Wilcoxon’s test are reported.

C. Results

Table I shows the performance of the proposed approach
in terms of RMSE, NRMSE and CVRMSE and the computed
p-value for each round of the cross-validation procedure. By
analyzing the Table I, RMSE, NRMSE and CVRMSE averaged
on the ten considered folds are 0.3188, 0.0873, 0.3425, respec-
tively. By taking into account the RMSE value, it is possible to
state that the proposed control system allows the robot to stop
itself to a distance by a user that deviates, on average, from the
distance desired by that user by about 0.32 m. This amount of
error is less than the 10% of the size of the range containing
the users’ desired distances collected during the experimental
session (see Section V-A), as described by the NRMSE value.
The proposed robotic control system is characterized by an
enough stable behavior since, in average, it produces an error
that approximately deviates by 35% from RMSE value (as
described by CVRMSE value).

As for the statistical analysis of the behavior of the proposed
robotic control system, by considering a typical significance
value for α (α = 0.05), it is possible to state that in each round
of the cross-validation procedure the Wilcoxon’s null hypoth-
esis is not rejected (all p-values are greater than α). Hence, it
is possible to put in evidence that the stopping distance values

1https://help.xlstat.com/customer/en/portal/articles/
2062457-which-statistical-test-should-you-use-?b id=9283

2https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/
Procedures/PASS/Equivalence Tests for Paired Means-Simulation.pdf



predicted by the proposed system are not significant different
from the observed values at 95% confidence level.

TABLE I
PERFORMANCE OF THE PROPOSED FUZZY-BASED HIERARCHICAL

APPROACH TO CONTROL HRI

Test data RMSE NRMSE CVRMSE p-value
fold 1 0.34239 0.093699 0.366711 0.888233
fold 2 0.28117 0.076946 0.30353 0.525081
fold 3 0.315564 0.086358 0.336541 0.57697
fold 4 0.316919 0.086729 0.341382 0.227968
fold 5 0.359135 0.098282 0.38369 0.760833
fold 6 0.316966 0.086742 0.345193 0.873294
fold 7 0.324449 0.088789 0.35108 0.432143
fold 8 0.298769 0.081762 0.319779 0.249871
fold 9 0.341981 0.093587 0.365056 0.770238
fold 10 0.291083 0.079658 0.312358 0.695476
average 0.3188 0.0873 0.3425 0.6000107

VI. CONCLUSION

Robot proxemics behavior is one of the most challenging
problems in the area of cognitive robotics. In this paper, the
problem has been tackled by means of an innovative synergic
approach where fuzzy logic, neural networks, and Bayesian
classifiers are used to adapt the robot proxemics behavior
(stopping distances) with respect to the human personality and
activities. Thanks to this framework, humans will not suffer
from negative feelings of fear and distrust in the interaction
with robots, making this enhanced kind of communication as
safe and natural. Starting from the data collected in a previous
work, here the proposed approach was tested in order to
evaluate the ability of the system to reproduce the desired robot
proxemics behavior. Statistical tests proved the reliability of
the proposed model. In the future, more complete experiments
involving a real human trial will be performed to actually
measure the level of involvement of users in this kind of
interaction with artificial agents. Moreover, different classifiers
will be integrated withing the framework in order to improve
activity classification results and to enrich the user profiling
mechanism with more data.
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