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I. INTRODUCTION

New generation of robots should have comparable abilities

to deftly move in different environments, autonomously learn

and make decisions. The use of anthropomorphic hands has

become a key breakthrough in advanced robotics involving

both humanoid robots and prosthetic applications. An efficient

and forefront design of advanced robotic hands requires solv-

ing a compromise among size and weight, functional dexterity

and control complexity. Advanced mechatronic structure and

high number of degrees of freedoms (DoF) are essential to

change different configurations and adapt to the environment.

On the other hand, design and control complication due to high

DoF can be somewhat offset by means of coordinated motion

that help to simplify robot hardware and software. This can

be summarized by saying that the robot must be equipped

with embodied intelligence. A solution to the problem can be

found in designing underactuated devices and comes down to

choosing the optimal number of motors as well as the motion

couplings between fingers and joints. However, underactuated

hands require the investigation of planning and control meth-

ods that disregard accurate definition of the desired contact

points on the object and guarantee robustness with respect to

variability of shape and size. To overcome these problems,

synergies concept is used to develop control and learning

algorithms. The synergy concept is useful for innovative under-

actuated design of anthropomorphic hands and is a powerful

tool to plan grasps and control artificial hands both fully-

actuated and underactuated, i.e. already provided of their own

mechanical synergies.

II. SYNERGIES SUBSPACE

Several methods have been proposed to compute the syn-

ergies subspace. In [1], the basis space of synergies is

represented by a matrix of constant eigengrasps (basis of

eigenvectors) and refers to fully actuated anthropomorphic

hands. Here, the experimental results highlight that, despite the

differences in kinematics and mapping methods, the first three

synergies have some basic features that are preserved if the

hand kinematics is anthropomorphic and if the grasps data set

is suitably chosen to cover a large variety of human grasping
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postures. The method adopted in [1] is based on a joint-to-

joint mapping technique where the hand configurations are

manually adjusted in order to imitate as much as possible the

human hand desired configuration. Thus, the method strongly

depends on the interpretation of the reference grasp by the

operator and on his/her ability to reproduce the grasp with

the robotic hand. To overcome this limitations, in [2] a new

model-based method to map grasps from the human to the

robotic hand has been developed. A set of grasping postures

performed by five subjects in grasping commonly used objects

has been mapped to a robotic hand. The core idea of the

mapping method is to dramatically simplify the detection of

the human hand posture by measuring strategic points using

a low cost camera and using the robotic hand kinematics as a

paradigmatic model of the human hand for inverse kinematic

computation. In [3], the same data set of grasps, measured

on five human subjects and available from [2], is used to

evaluate the grasping capabilities of an underactuated robot

hand in a synergy-based framework. Once the synergy matrix

of an underactuated hand has been computed, in order to test

the efficiency of the mapping method, different grasps will

be reproduced in the three dimensions synergies subspace.

In [3] the kinematics and the mechanical synergies of the

underactuted SCHUNK five-finger hand are considered for the

theoretical formulation and for the experiments. Nevertheless,

the study can be extended to any underactuated kinematics of

anthropomorphic hands. Actually, since mechanical synergies

affect the mapping from the human hand, the projection of a

grasp from the data set in the synergies subspace is not so

effective as for the full-actuated anthropomorphic hands [2].

Thus, the reproduction is not successful for all the grasps. This

means that a control strategy is required to adjust the reference

grasp in order to let the hand adapting to the object while

moving in the synergies subspace. The synergies subspace

has been tested for the hand control using a CLIK algorithm

based on the synergies Jacobian. A simple strategy to modify

the reference grasp can be adopted. The fingertips desired

positions are modified in the control algorithm in order to

reduce their distance with respect to the centroid of a virtual

object computed as the centroid of the fingertips involved in

the desired grasp. Moreover, in order to limit the grasping

forces, the desired target of the CLIK is modified on the basis

of the measured motor current and of a defined threshold

that is related to the texture of the object. The experiments

demonstrate that the synergies subspace is suitable for hand

control in grasping a wide variety of objects, i.e. the algorithm

is stable and effectively regulates the grasping forces by

modifying the motor positions in the synergies subspace.
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III. LEARNING

Synergies might also be useful in conjunction with the

learning process [4], [5]. This aspect is less explored since

few works on synergy-based learning have been realized in

robotics. In learning new tasks through trial-and-error, physical

interaction is important. Consequently, advanced mechanical

designs enhance capabilities of adapting to changing envi-

ronments and learning from exploration while increase the

complexity of modelling and control. Analytic approach to

manipulation planning requires a precise model of the object,

an accurate description of the task, and an evaluation of the

object affordance, which all make the process rather time

consuming. The integration of learning into control naturally

leads to relaxing the above requirements through the adoption

of coordinated motion patterns and sensory-motor synergies

as useful tools leading to a problem of reduced dimension.

To this purpose, model-based control strategies relying on

synergistic models of manipulation activities learned from

human experience can be integrated with real-time learning

from actions strategies. The use of supervised learning, such

as artificial neural networks, or reinforcement learning tech-

niques, serves for the parameterization of synergies depending

on task requirements.

1) Supervised Learning (SL): In [6] a multilayer feedfor-

ward neural network with non linear transfer function has

been adopted. The use of synergies reduces the search space

of the learning algorithm addressing a simplification in the

neural network architecture design, especially regarding the

number of hidden layers and the neurons in each of them. As a

result of experimental evaluations, the network model has been

chosen as a feedforward NN with two hidden layer and ten

sigmoid neurons for each layer. To improve the generalization,

multiple neural networks have been trained and an average of

their outputs has been considered for the experiments. The

experiments demonstrate that multiple neural networks are

able to approximate with a high quality level the relationship

between the synergies coefficients and the geometrical object

features distinguishing among precision, power and lateral

grasps, and also the number of fingers involved.

2) Reinforcement Learning (RL): From recent research

in the field it seems that RL represents the future toward

autonomous and intelligent robots since it provides learning

capabilities as those of humans, i.e. based on exploration and

trial-and-error policies. In [7] is demonstrated that a synergy-

based approach is powerful for reinforcement learning of

grasping with anthropomorphic hands due to configuration

space dimesionality reduction that guarantees the convergence

and efficiency of the learning algorithm. The design of appro-

priate policy representations is essential for RL methods to

be successfully applied to real-world robots. PCA and human

grasps data set serve as data structures to define a policy and

its initial parameters for a RL algorithm. Indeed, starting from

a good enough demonstration, the algorithm can optimize the

policy parameters to gradually refine a stable grasp. When

a clear measure about the success of the task is available,

RL adaptability to new objects is ensured. A key point is the

adoption of a suitable reward function representing the goal

of the task and ensuring one-step performance evaluation. In

[7] as a cost function, force closure quality of the grasp in the

synergies subspace has been chosen.

IV. CONCLUSION

A question that often arises, among researchers working on

artificial hands and robotic manipulation, concerns the real

meaning of synergies. Namely, are they a realistic represen-

tation of the central nervous system control of manipulation

activities at different levels and of the sensory-motor manip-

ulation apparatus of the human being, or do they constitute

just a theoretical framework exploiting analytical methods

to simplify the representation of grasping and manipulation

activities? Apparently, this is not a simple question to answer

and, in this regard, many minds from the field of neuroscience

and robotics are addressing the issue. The interest of robotics is

definitely oriented towards the adoption of synergies to tackle

the control problem of devices with high number of DoF which

are required to achieve motor and learning skills comparable

to those of humans.
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