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Abstract. In this paper, a method to derive the synergies subspace of
an anthropomorphic robotic arm–hand system is proposed. Several hu-
man demonstrations of different objects grasping are measured using the
Xsens MVN suite and then mapped to a seven Degree-of-Freedom (DoF)
robotic arm. Exploiting the anthropomorphism of the kinematic struc-
ture of the manipulator, two Closed-Loop Inverse Kinematics (CLIK) al-
gorithms are used to reproduce accurately the master’s movements. Once
the database of movements is created, the synergies subspace are de-
rived applying the Multivariate Functional Principal Component Analy-
sis (MFPCA) in the joint space. A mean function, a set of basis functions
for each joint and a pre-defined number of scalar coefficients are obtained
for each demonstration. In the computed subspace each demonstration
can be parametrized by means of a few number of coefficients, preserving
the major variance of the entire movement. Moreover, a Multilevel Neu-
ral Networks (MNNs) is trained in order to approximate the relationship
between the object characteristics and the synergies coefficients, allowing
generalization for unknown objects. The tests are conducted on a setup
composed by a KUKA LWR 4+ Arm and a SCHUNK 5-Finger Hand,
using the Xsens MVN suite to acquire the demonstrations.

1 INTRODUCTION

In order to execute complex tasks and interact deftly with the environment,
robots are becoming more and more sophisticated and endowed with great ma-
nipulation capabilities. This dexterity requires a high number of DoFs of the
arm–hand system, along with high sensorimotor and reasoning skills. On the
other hand, this implies the need of greater computational capabilities, more
powerful hardware and different control strategies to speed up and simplify the
execution of these complex tasks.

Despite a classical model-based method [1], in the latest years robotics and
neuroscience researchers have focused their efforts on bio-inspired systems and
joined their efforts in order to try to understand and recreate particular aspects,
structures and/or behaviours of biologic systems. One of the main sources of
inspiration is, of course, the human being [2], [3].
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Santello et al [4] and later Mason et al [5] show that human hand movements
during grasping tasks are computed in a space of highly reduced dimensions with
respect to the joint space.

Fig. 1. Diagram of the methodological approach

This reduced subspace is called synergies subspace. A synergy mapping method
from a human hand to a robotic one is proposed in [6], operating in the task
space and with the usage of a virtual sphere. In [7] a Neural Network (NN)
is trained with the object’s features and the synergies coefficients in order to
generalize the grasping strategy.

Grasping tasks do not rely only on the hand, but also on the arm config-
uration. A possible way to generalize the arm motion could be the Dynamical
Movement Primitives (DMPs) [8], as explored in [9], [10]. Another possibility
is the MFPCA. With the aim of extending the work done in [7] and in [3], we
propose to obtain the synergies subspace of a robotic arm–hand system with the
MFPCA technique, which is an extension of the Functional Principal Compo-
nent Analysis (FPCA) to the multivariate case. FPCA, that allows computing
the dominant modes of variation in functional data, can be seen as the extension
of the Principal Component Analysis (PCA) to the functional case. The moti-
vation to investigate the MFPCA for dimensionality reduction is to preserve as
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much information as possible contained in the motion coordination. Instead of
final configuration considered in [7], [3], here the demonstrations are time series.

To this purpose, reach-to-grasp movements are acquired by teleoperating the
robotic system. The grasped objects have different dimensions. On this set of
demonstrations, the MFPCA is applied in order to link each object to a fixed
number of scalar coefficients that reproduce the grasping movement.

Finally, MNNS are trained with pairs of object’s characteristics and scalar co-
efficients in order to try to generalize the behaviour to new objects. A schematic
recap is in Fig. 1. The scope of this work is to compute the synergies subspace
of the arm–hand system and to evaluate if MNNs, successfully tested on the
hand, are good enough to find the function that maps the object characteristics
into the MFPCA coefficients. In future works, a Reinforcement Learning (RL)
approach could be introduced to explore the space around the final configuration
computed by the MNN.

The paper is organized as follows: Section 2 describes the experimental setup;
Section 3 describes the technical approach adopted for the human motion map-
ping on the robotic arm, for the synergies subspace derivation and for the MNN
training; Section 4 illustrates the mapping procedure using the Xsens MVN; in
Section 5 the MFPCA is briefly described together with the synergies subspace
computation procedure; in Section 6 the training of the MNN is analyzed along
with the results; finally, Section 7 provides conclusions and future developments.

2 EXPERIMENTAL SETUP

The arm–hand robotic system used to acquire the demonstrations is com-
posed by a SCHUNK 5-Finger Hand (S5FH) and a KUKA Lightweight Robot
(LWR) 4+ arm. The S5FH is an underactuated anthropomorphic robotic hand
with 20 DoFs actuated by 9 motors. Its mechanical design presents an example
of hand synergies through mechanical couplings, to reduce the weight and the
dimensions. The KUKA robotic arm has 7 DoFs like the human arm. The redun-
dant joint allows changing the internal configuration of the arm while keeping
the end-effector in a fixed pose. The Robot Operating System (ROS) is used
to control the S5FH through an SVH Driver developed by Forschungszentrum
Informatik (FZI). This driver for the low-level interface allows an easy control
using a C++ customized library. The KUKA LWR 4+ is controlled using the
Fast Research Interface (FRI) library, developed at Stanford University. The mo-
tion capture tool used to acquire the demonstrations is the Xsens MVN package,
composed by the Xsens suite and the MVN software. The Xsens suite does not
need cameras, emitters or markers but consists essentially of 17 MTx sensors.
After a calibration process, it is possible to obtain position and orientation of the
body parts where the sensors are attached. Each MTx includes a 3D gyroscope, a
3D accelerometer and a 3D magnetometer. The MVN software, instead, receives
the data from the suite and reproduces the human movements in a simulator.
Moreover, the network streamer can be used to send the data received to third
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applications using UDP/TCP-IP packets. Finally, Matlab NN Toolbox has been
used to train the MNNs.

Fig. 2. SCHUNK 5-Finger Hand, KUKA LWR 4+ and Xsens suite

3 TECHNICAL APPROACH

In order to replicate human manipulation skills, artificial limbs for robotics
and prosthetics require a biomechanical human-like structure with high num-
ber of DoFs. On the other hand, recent advances in neuroscience research have
shown that the human Central Nervous System (CNS) coordinates these DoFs to
generate complex tasks by means of a synergistic organization at postural, mus-
cular and neural level. Using a limited set of motion patterns, named postural
synergies, a wide range of grasping tasks can be achieved, reducing substantially
the dimension of the robotic hand control problem. The main objective of this
work is to apply this concept of dimensionality reduction to a robotic arm, gen-
eralizing it to the entire movement and not only looking at the final pose. We
have investigated the MFPCA technique and to this purpose, we firstly need a
set of demonstrations. Thus, the first problem is how to create this dataset.

To provide the robotic system with human-like movements, the demonstra-
tions are obtained by teleoperating the systems. The main advantages of this
technique is to be fast and general: if we need further demonstrations, we just ex-
ecute them, recording the variables of interest while performing the task. Imita-
tion learning can be achieved in different ways, the main methodologies are two:
teleoperation, using tracking systems like vision, exoskeletons or other wearable
motion sensors, and kinesthetic teaching, where the robot is physically moved
by the human to execute the task. Since we deal with high-DoF platforms, the
latter method is not really practicable: the human master should move too many
joints at the same time, resulting in discontinuous movements and jerky trajec-
tories. Therefore, in this work the system is teleoperated using a motion tracking
suite. However, in order to reproduce the demonstrations as close as possible,
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teleoperation needs a mapping of human motion to the robotic system. For this
purpose, two Closed-Loop Inverse Kinematics (CLIK) algorithms are used to
control the KUKA arm. The first CLIK algorithm controls the first three joints
(shoulder) by giving to the robotic arm the same orientation of the master. The
second CLIK algorithm controls the S5FH palm orientation with respect to the
robotic forearm using the last three joints of the robot. Moreover, the null space
of the second CLIK Jacobian, that relates the velocities of the last four joints to
the Cartesian space velocities, is used to reproduce the angle between the human
arm and forearm. Once the mapping problem is solved, several demonstrations
are acquired to cover a complete grasp taxonomy [6].

Table 1. Objects used for the demonstrations

Object Diameter [cm] Height [cm]

Ba
lls

Bottle cap 2.7 2.7
Table tennis ball 4.4 4.4

Plastic plum 5.2 5.2
Racquetball 5.5 5.5
Plastic peach 5.9 5.9
Tennis ball 6.4 6.4
Blue ball 6.9 6.9

Plastic orange 7.1 7.1
Plastic apple 7.4 7.4

Red ball 8.8 8.8
Softball 9.6 9.6

Cy
lin

de
rs

N°1 1.2 21
N°2 1.8 21
N°3 2.4 21
N°4 3.3 21
N°5 4.9 18.2
N°6 5.1 16
N°7 5.4 23
N°8 6 21
N°9 6.6 21
N°10 7 21.0

Chips tube 7.5 21.0

Robot joint trajectories are recorded during teleoperated reach and grasp
tasks of different objects (Table 1). The considered objects are “balls” and
“cylinders” of different dimension grasped with precision and/or a power grasp,
depending on whether the object allows both or not.
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Once the dataset is created, Dynamic Time Warping technique [11] is applied
for better data conditioning, and a subsampling is carried out in order to have
all the time series as similar as possible and with same length.

Finally, we have a database of 38 demonstrations with the same length. After-
wards, MFPCA technique is applied and a set of scalar coefficients parametrizing
the demonstrations are obtained.

The pairs constituted by object characteristics and related synergies coeffi-
cients have been used to train an MNN using Matlab Toolbox. The goal is to
generalize to novel objects the synergy-based grasping motion obtained from the
MFPCA.

4 HUMAN MOTION MAPPING

Regarding the human hand motion mapping to the S5FH, the work already
done in [8] is exploited. A Jacobian matrix of the synergies is computed and
used into a CLIK algorithm to map human hand grasping configurations to the
robotic hand. Further details of the mapping and the results can be found [9].

To map the human motion to the robotic arm, we recall that the MTx sensor
on the Xsens suite provides position and orientation of the human limbs whith
respect to the global frame of the mo-cap system. Moreover, the KUKA arm
presents 7 DoFs as the human arm. Thus the developed method to map the mo-
tion involves two CLIK algorithms that take the arm and the hand orientations
as reference input respectively.

We look at the robotic arm like two separate kinematic structures: the first
one made by three joints (shoulder) and the second one made by four joints
(wrist) with one redundant DoF (elbow). To reproduce at best the human move-
ment, the angle between the arm and the forearm is computed with geometric
properties and assigned to the redundant joint, exploiting the null space of the
Jacobian matrix of the second kinematic structure.

With the described mapping algorithm, we are able to teleoperate the KUKA
arm, as can be seen in Fig. 3. 38 demonstrations are performed and the seven
joint trajectories are recorded along the entire task execution.

5 SYNERGIES SUBSPACE COMPUTATION

The PCA technique is a tool for multivariate data analysis and dimension-
ality reduction, extended to functional data from 1950, as Functional Principal
Component Analysis (FPCA). Functional data can be seen as the realization
of a stochastic process that, under mild assumptions, can be expressed as a
sequence of uncorrelated random variables, called Functional Principal Compo-
nents (FPCs). The i-th realization of the stochastic process X has the form:

Xi(t) = µ(t) +

∞∑
k=1

ξikϕk(t) t ∈ T (1)
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Fig. 3. Snapshots of performed demonstrations

where µ(t) is the mean function of the dataset, ϕk is the k-th functional principal
component and ξik is the k-th coefficient of the respective FPC that parametrize
the i-th realization.

The basic idea is to map the initial domain of the dataset into a subspace
that allows parametrizing each realization with a reduced number of scalar pa-
rameters. The major advantage of these techniques is that they preserve major
variance with respect to other transformations like Fourier or Wavelet.

In the PCA each input realization is a vector of scalar components and the
dimension is finite. The mean value is a vector and the eigenvalues/eigenvectors
of the entire dataset have a finite number of components. In the FPCA each
realization is a time series, hence the dimension is infinite. The mean value is a
mean function and the number of eigenvalues/eigenfunctions of the entire dataset
is infinite (Tab. 2).

The FPCA can be extended to the multivariate case as Multifunctional Prin-
cipal Component Analysis (MFPCA). Each observation has now n ≥ 2 functions,
possibly defined on different domains T1, ...Tn. It has the form of a vector X such
that:

Xi(t) = (X
(1)
i (t1), ..., X

(n)
i (tn)) ∈ Rn (2)

with t = (t1, ..., tn) ∈ T = T1 × ...× Tn.
The decomposition of a realization of the stochastic process can be thus

extended as:

Xi(t) = µ(t) +

∞∑
k=1

ξikϕk(t) t ∈ T (3)

By truncation of the sum to m components, we are capable of parametrizing
each realization with m scalar coefficients, also called scores.
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Table 2. Comparison between PCA and FPCA techniques

Element In PCA In FPCA

Data X ∈ IRp X ∈ L2(T )

Dimension p < ∞ ∞

Mean µ = E(X) µ(t) = E(X (t))

Covariance Cov(X) = Σp×p Cov(X (s), X (t)) = G(s, t)

Eigenvalues λ1, λ2, ..., λp λ1, λ2, ...

Eigenvectors/Eigenfunctions ν1, ν2, ..., νp ϕ1(t), ϕ2(t), ...

Inner Product 〈X,Y〉 = Σp
k=1XkYk 〈X,Y〉 =

∫
T

X (t)Y (t)dt

Principal Components zk = 〈X − µ, νk〉, k = 1, 2, ..., p ξk = 〈X − µ, ϕk〉, k = 1, 2, ...

After the data conditioning, we have now the matrix D = {di | i = 1, ..., 38}
of the demonstrations. Each di is a reaching and grasping execution in different
conditions (different objects or same object with different grasp types) and is
composed by seven functions representing the values of the KUKA arm joints
during the demonstration of the task:

di =
(
d
(1)
i (t), ..., d

(7)
i (t)

)
t ∈ T (4)

The MFPCA is applied on D by setting the desired number of FPCs m = 4
(see [11] for further details on the procedure). We obtain mean functions µ(j)(t)

and m eigenfunctions ϕ
(j)
1 , ..., ϕ

(j)
m for each joint (j = 1, ..., 7). The m eigenfunc-

tions represent the basis of the subspace for the relative joint. Finally, we obtain
a matrix of scores Ξ ∈ R38×m where each row parametrizes a demonstration. It
is important to highlight that the k-th score modulates the correspondent k-th
FPC for each joint. In other words, the coefficient the same for all the seven
joints, while the eigenfunctions (and thus the basis of the subspace) are different
for each of them.

Reconstructing the x, y and z trajectories (Fig. 4) we can see that 2 FPCs
represent quite well the original data. Yet, if we rely only on MNNs to grasp the
objects, we will need to be more precise. Therefore, the usage of 3 or 4 FPCs will
improve performances. Another important advantage is the filtering effect of the
MFPCA: the reconstructions eliminate the noise acquired while performing the
demonstration.

6 NEURAL NETWORK TRAINING

To confer autonomy to the system, MNNs can be a suitable choice due to
their ability to learn mapping functions. Moreover, the usage of synergies reduces
the search space of the learning algorithm, implying also a simplification of the
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Fig. 4. x, y and z coordinates reconstructed using 2 FPCs (red) and 4 FPCs (blue).

architecture, especially regarding the number of hidden layers and number of
neurons.

Two MNNs are used in this work, one for the hand and one for the arm.
Their architecture is experimentally chosen by trying different combinations of
hidden levels and neurons and analyzing the corresponding performance in terms
of Mean Squared Error (MSE). We found out that a feedforward structure with
2 hidden layers and 10 neurons for each is the suitable choice for the particular
application.

To learn the function that relates the object shape and grasp type with the
arm-hand grasping action, MNNs need a training dataset constituted by pairs of
object geometric features and scores obtained from the MFPCA. The input pa-
rameters are the height, diameter and an information on the grasp type (power
or precision). Since MMNs inputs must have the same dimensions for all the
objects, the height is set equal to the diameter for spherical shaped objects.
The output are the three synergy coefficients that determine the configuration
of the SCHUNK 5-Finger Hand and the 4 coefficients of the KUKA arm that de-
termine the reaching movement towards the object, respectively for each MNN.
It is well known that neural networks performance increase when decrease the
dimension of the space where is defined the function to be learned. Therefore,
for the arm we decided to test the net with 4 FPCs since they can reconstruct
the motion with a lower error with respect to the use of the first two FPCs,
meanwhile the dimension of the search space is reduced from 7 to 4 with a good
compromise between performance and generalization capabilities. The goal now
is to experimentally evaluate if the use of MNNs based on FPCs can generalize
grasps of new objects with respect to the database used for training.
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The first evaluation is made by comparing the waveforms obtained from
the Multilevel Neural Network with the reconstruction shown in Fig. 4 using 4
eigenfunctions.

The comparison is performed on a grasp example contained in the database
and is shown in Fig. 5. As we expected, the combination of eigenfunctions com-
puted with the Multilevel Neural Network provides a higher reconstruction error
for each grasp in the database. This is the drawback of the generalization pro-
cess provided by the net. To evaluate the ability of the MNN to generalize the
grasps, we have selected two objects with geometrical features closed to objects
contained in the database and two objects different from the examples contained
in the database.

Fig. 5. Comparison between the reconstruction with 4 FPCs of Fig. 4 and the recon-
struction with 4 FPCs obtained from the neural network.

From experiments represented in Fig. 6, we can state that the MNNs are
not good enough to realize grasps of new objects but need to be integrated with
strategies based on trial-and-error.

Indeed, from an error analysis performed on a wide set of objects, the average
of the errors between the hand palm posture planned by the MNNs and the hand
posture measured from the human demonstration is:

ep =
[
0.99 0.93 1.64

]
(5)

eo =
([

0.65 0.51 0.55
]
, 0.20944

)
(6)

where ep is the position error expressed in [cm] and eo is the orientation error
with the axis-angle system (angle in radians).
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Fig. 6. Examples of grasping actions obtained using the MFPCA outputs. Figures on
the top represent grasps of objects closed to ones contained in the dataset. Figures on
the bottom represent grasps of objects with dimensions that are more different with
respect to the dataset ones.

Despite the pose error that doesn’t always ensure successful grasps, the hand
for each grasp is very close to the target, this makes the coefficients provided by
the MNNs a good initialization for a reinforcement learning algorithm.

7 CONCLUSIONS AND FUTURE WORK

Multifunctional Principal Component Analysis method to derive the syner-
gies subspace of a robotic system with a high number of DoFs is proposed in
this paper. MFPCA technique is an extension of the well-known PCA to the
multivariate functional data. Several demonstrations of reach-to-grasp tasks for
objects with different dimensions are acquired. The acquisitions are carried out
using a motion capture system and a mapping of the human movement to the
robotic arm. MFPCA is applied to the collected data by defining a set of FPCs
for each joint and a set of scalar coefficients, each one parametrizing a demon-
stration. By considering the first four FPCs for the arm, it is shown that the
reconstructed motion provides a very good approximation of the original func-
tional data.

Afterwords, we used MNNs to generalize the grasps. The training procedure
is carried out using the Matlab NN Toolbox and pairs of objects geometric fea-
tures and relative FPCs coefficients. We have observed that the MNNs it is not
sufficient to plan new object grasps. Nevertheless, even if the grasp fails, the hand
is close to the correct position. This is a necessary condition for further improve-
ments of the system using a reinforcement learning strategy. Future works, will
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develop solutions to explore the space around the initial configuration provided
by the MNNs, in order to look for a correct final configuration that allows the
system to grasp the object.

ACKNOWLEDGMENTS

The research leading to these results has been partially supported by the
RoDyMan project, funded by the European Union (EU) Seventh Framework
Programme (FP7/2007-2013) under ERC AdG-320992, and partially by MUSHA
project, National Italian Grant under Programma STAR Linea 1. The authors
are solely responsible for the content of this paper, which does not represent the
opinion of the EU, and the EU is not responsible for any use that might be made
of the information contained therein.

References

1. F. Ficuciello, R. Carloni, L.C. Visser, S. Stramigioli, “Port-Hamiltonian model-
ing for soft-finger manipulation”, in Proc. IEEE/RSJ Internationl Conference on
Intelligent Robots and Systems, Taipei, Taiwan, pp. 4281–4286, 2010.

2. F. Ficuciello, G. Palli, C. Melchiorri, B. Siciliano, “Planning and control during
reach to grasp using the three predominant UB Hand IV postural synergies”, in
Proc. IEEE International Conference on Robotics and Automation, St. Paul MN,
USA, pp. 2255–2260, 2012.

3. F. Ficuciello, D. Zaccara, B. Siciliano, “Synergy-based policy improvement with
path integrals for anthropomorphic hands”, in Proc. IEEE/RSJ Internationl Con-
ference on Intelligent Robots and Systems, Daejeon, Korea, pp. 1940–1945, 2016.

4. M. Santello, M. Flanders, J. Soechting, “Postural hand synergies for tool use”,
Journal of Neuroscience, 18(23), 10105–10115, 1998.

5. C. Mason, J. Gomez, T. Ebner, “Hand synergies during reach-to-grasp”, Journal
of Neurophysiology, 86(6), 2896–2910, 2001.

6. G. Gioioso, G. Salvietti, M. Malvezzi, D. Prattichizzo, “Mapping synergies from
human to robotic hands with dissimilar kinematics: An object based approach”,
in Proc. IEEE International Conference on Robotics and Automation, Workshop
on Manipulation Under Uncertainty, Shanghai, China, 2011.

7. F. Ficuciello, G. Palli, C. Melchiorri, B. Siciliano, “Postural synergies and neu-
ral network for autonomous grasping: A tool for dextrous prosthetic and robotic
hands”, in Proc. International Conference on NeuroRehabilitation, Toledo, Spain,
2012.

8. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, “Dynamical move-
ment primitives: Learning attractor models for motor behaviors”, Neural Compu-
tation, 25(2), 328–373, 2013.

9. P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, “Learning and generalization of
motor skills by learning from demonstrations”, in Proc. IEEE International Con-
ference on Robotics and Automation, Kobe, Japan, pp. 763–768, 2009.

10. A. Gams, A. Ude, “Generalization of example movements with dynamic systems”,
in 9th IEEE–RAS International Conference on Humanoid Robots, Paris, France,
pp. 28–33, 2009.



Multifunctional Principal Component Analysis for Human-like Grasping 13

11. T. Giorgino, “Computing and visualizing dynamic time warping alignments in R:
The dtw package”, Journal of Statistical Software, 31(7), 1–24, 2009.

12. F. Ficuciello, A. Federico, V. Lippiello, B. Siciliano, “Synergies evaluation of the
SCHUNK S5FH for grasping control”, in Proc. 15th International Symposium on
Advances in Robot Kinematics, Grasse, France, 2016.

13. I.T. Jolliffe, Principal Component Analysis, Springer, 2002.
14. C. Happ, S. Greven, “Multivariate functional principal component analysis for data

observed on different (dimensional) domains”, Journal of the American Statistical
Association, doi: 10.1080/01621459.2016.1273115, 2017.


	Multifunctional Principal Component Analysis for Human-like Grasping
	INTRODUCTION
	EXPERIMENTAL SETUP
	TECHNICAL APPROACH
	HUMAN MOTION MAPPING
	SYNERGIES SUBSPACE COMPUTATION
	NEURAL NETWORK TRAINING
	CONCLUSIONS AND FUTURE WORK


