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INTRODUCTION

In Minimally Invasive Robotic Surgery suturing is
one of the most critical and delicate tasks, even for a
skilled surgeon, because of its time demanded, high
dexterity required and risks of causing damage to
organs and/or tissues. Several works have been pro-
posed, in the last years, to help the surgeon during
this task. For instance in [1] and [2], an automatic
multi-throw framework and a supervised paradigm
have been developed to investigate fully autonomous
and supervised suturing procedure. To adapt the su-
turing planner to environment changes, e.g. wound
motion and deformation, the wound needs to be
tracked on-line. In literature, some methods have
been proposed relying on edge and color based seg-
mentation [3] or Near-Infrared Fluorescent (NIRF)
markers [2]. In this work, we propose a simple and ef-
ficient GrubCut-based wound segmentation method
and an automatic stitch planning that can be used
to on-line obtain the optimal stitch poses.

MATERIALS AND METHODS

Consider a suturing procedure composed of N
stitches, the k-th stitch can be defined as a circu-
lar trajectory, for the needle tip, from the point ak
to bk in the stitch frame Os,k

1 (see Fig. 1). Os,k
can be defined by choosing: (i) the axis xs along
the direction from xe,k to xi,k (extraction and in-
sertion points); (ii) the zs axis along the tissue nor-
mal unit vector nk, (iii) the axis ys to have an or-
thonormal frame; (iv) the frame origin in the center
of the circle, with radius equal to the chosen needle
radius r, passing through the points xi,k and xe,k.
Hence, each stitch k can be uniquely defined by the n-
upla sk = [xi,k,xe,k,nk, r] extracted from the wound
shape. In this work we model the wound using: (i)
a central spline (Σc(σ)) defining the wound shape,
(ii) two lateral splines (Σr(σ), Σl(σ)) defining two
guides for the stitch insertion and extraction points,
(iii) a parametric unit vector n(σ) locally orthogonal
to the tissue2.

Each stitch sk have been calculated by equally spac-
ing N points imposing a relative 25% of overlap be-
tween the stitches: N = d1.25l/De where, both the

1The stitch and PSM base frame has been calibrated w.r.t. the
camera frame using a standard hand-eye approach

2σ ∈ [0, 1] is the curvilinear abscissa.
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Fig. 1: Stitch plan. βi/βe: insertion/extraction angles

wound length l and the wound depth D are obtained
on-line respectively from the length of the central
wound spline and the average distance between the
wound borders.

Wound segmentation and registration

Using the force measure, obtained using our trocar
force sensor [4] and the surgeon’s visual perception
in the loop, we design an effective method to inter-
actively initialize the wound pose. In details, the
wound initialization is obtained by touching the tis-
sue at the beginning and at the end of the wound,
moving along the wound shape. All the collected
points are smoothed using a spline and used to ini-
tialize the segmentation by defining a set of pixels
belonging to the foreground.
To on-line segment the wound we rely on the efficient
and widespread GrabCut method [5]. The GrabCut
algorithm addresses the visual bilayer segmentation
task as an energy minimization problem, based on
statistical models of the foreground (FGD) and the
background (BGD). For an input image, we denote

by α = [αi]
N
i=1 the set of the unknown binary labels of

the pixels (αi = 0 for the BGD pixels, αi = 1 for the
FGD). Estimating the values α̂ of an unknown pixel
can be formulated as the minimization of an energy-
based Markov Random Field objective function

E(α) =
∑
i

(Ui(αi)) + γEs(α)

with respect to α, where, Es is a smoothness energy
term, γ is a gain, and Ui(αi) is a term accounting for
the observation probability p(pi|αi) for a pixel pi to
belong to the FGD or to the BGD. In our implemen-
tation this therm is computed as Gaussian Mixture
Models (GMM), based on image color distribution,
learned, during the initialization process, for both
the FGD and BGD layers.
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Fig. 2: Snapshots: (a) initial image, (b) segmentation trimap mask, (c) segmented image, (d) wound skeleton, (e) wound model
and stitching points overlapping, (f) registration onto the 3D point cloud. In (e,f) the central spline is indicated in blue, the lateral
splines are indicated in green while the stitch points are indicated in red.

Fig. 3: Robustness w.r.t. partial occlusion occurrence.

Once the initial image is segmented through user in-
teraction, the following frames are evaluated by con-
sidering a defined mask. In details, from the previ-
ous segmented foreground, we calculate the distance
transform, providing a signed distance map. On this
distance map, we define a narrow strip composed by
three areas (trimap) with different probabilities of
the pixels to be FGD or BGD. With reference to
Fig. 2 (b) we have been defined. m1: Ui(αi = 1) =
inf (FGD); m2: Ui(αi = 1) = − log(p(pi|αi)) (prob-
ably FGD/BGD); m3: Ui(αi = 0) = inf (BGD). In
this manner, temporal consistency is ensured, since
energy minimization is only effective within the strip
in the vicinity of the previous segmentation bound-
ary, avoiding some outliers outside or inside, and re-
ducing computations [6].

From the segmented image, the straight morpholog-
ical skeleton of the polygon has been extracted3.
The role of the skeleton is to account the topo-
logical structure of the incision. Moreover, the
wound contours have been extracted relying to well
known Open-Cv functions (Canny and find con-
tours). Hence, we fitted: (i) the image central spline
Σc,i(σ) on the skeleton points; (ii) the two image
lateral splines (Σr,i(σ), Σl,i(σ)) by a defined off-
set w.r.t. the wound contours points belonging to
the central spline normals unit vectors in the image
plane. Finally, by resorting on the efficient stereo
(ELAS) approach [7] the 3D point cloud of the tis-
sue has been calculated. From the point cloud we
obtained the wound normals n(σ), the 3D splines
(Σc(σ), Σr(σ), Σl(σ)), by registering the image
plane splines, and the 3D stitch points in order to
have a 3D description of the wound.

EXPERIMENTS AND RESULTS

Our experimental setup is composed of the full
da Vinci Research Kit commanded in teleoperation
mode. All the visual computations, including the
3D point cloud generation, have been obtained using
the da Vinci endoscopic cameras acquired at 30 Hz.
Figure 2 shows some snapshots resulting from the

3felix.abecassis.me/2011/09/opencv-morphological-skeleton/

Fig. 4: Robustness w.r.t. wound motion or deformation.

segmentation. From left to right all the segmenta-
tion phases and the stitch point selection and reg-
istration have been reported in a case study tested
on a suturing phantom. Moreover, in Fig. 3 we re-
port some snapshots showing the robustness of the
proposed approach w.r.t. partially occluded images.
Our preliminary experiments show also the capa-
bility of the method to maintain the segmentation
during the wound motion or deformation allowing a
wound tracking at 10Hz (Fig. 4).

CONCLUSIONS

In this work, a wound segmentation method sup-
ported by an interactive force-enabled wound initial-
ization and an automatic stitch point selection are
presented. Preliminary experiments show good re-
sults and robustness in the segmentation. In future
work, a GPU-based GrabCut algorithm will be used
to improve the tracking capability.
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